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64Cu and 67Cu are theragnostic pair radionuclides with promising application in the

nuclear medicine. 64Cu is PET nuclide for the non-invasive diagnosis and 67Cu is beta

emitter for therapy of various cancers. This study discusses optimization efforts in the

production of these radioactive coppers carried out with 30 MeV cyclotron. Optimized

conditions include target preparation, chemical separation, and quality control. The

production routes of 64Cu and 67Cu were studied based on the nuclear reactions of
64Ni(p,n)64Cu and 70Zn(p,α)67Cu. The produced 64Cu and 67Cu have >99.9% of the

radionuclidic purity. The yield at the end of bombardment (EOB) of 64Cu and 67Cu is

28.5 MBq/µAh and 67Cu is 0.58 MBq/µAh, respectively.

Keywords: Copper-64, Copper-67, cyclotron, radioisotope, pair-radioisotope

INTRODUCTION

The nuclear medicine field relies on incorporating radioisotopes in small-molecule, nucleic
acids, peptides, proteins, antibodies, and drug delivery technologies (1–3) that show high
sensitivity for various diseases in order to impart diagnostic and therapeutic effects. Because
of the same chemical properties, Copper-64 (64Cu) and (Copper-67) 67Cu can form chemical
complexes using the identical labeling protocol, and diagnosis/therapy can be performed
simultaneously (4–8). Copper is an essential trace element for the health of all living creatures.
In humans, copper is necessary for proper function of organs and metabolic processes (9–
13). Therefore, radioactive copper is a promising candidate that can be applied to various
diseases. The multipurpose coordination chemistry of copper allows for its radiometallation with
various chelators, such as DOTA (1,4,7,10-tetraazacyclododecane-tetraacetic acid), NOTA (1,4,7-
triazacyclononane-triacetic acid), TETA (1,4,8,11-tetraazacyclotetraadecane-1,4,8,11-tetraacetic
acid), and CB-TE2A (4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2] hexadecane) (14–
17), which can be conjugated to various radiopharmaceuticals. 64Cu(T1/2: 12.7 h) is an
attractive radioisotope of significant interest for positron emission tomography (PET) with
β+(Emax: 653.03 keV and Emean: 278.21 keV) and EC (electron capture: 1675.03 and 1345.77
keV) (18, 19). Furthermore, it has a relatively long half-life compared to fluorine-18 (T1/2:
110min) and carbon-11 (T1/2: 20.4min) (19, 20), which corresponds to an adequate half-
life for drug requiring long-term follow-up. 67Cu(T1/2 = 61.83 h, β− mean energy = 141
keV) is a radioisotope with significant potential for therapeutic applications in nuclear
medicine due to a similar beta mean energy as 134 keV of 177Lu (21–24, 26). Despite its
potential, the use of 67Cu for radionuclide therapy has been hindered for decades by its
limited supply and low-specific activity. However, the production of 67Cu has been attempted
through various nuclear reactions, such as 68Zn(p,2p)67Cu, 70Zn(p,α)67Cu, 67Zn(n,p)67Cu, and
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68Zn(γ,p)67Cu (25–31). In this study, the irradiation, target
preparation, chemical separation, and quality control of
radioactive copper (64Cu and 67Cu) were verified. The results
show that optimized enriched target electrodeposition, proton
beam irradiation, separation/purification, and quality control
processes can enhance the routine capability of 64Cu and
67Cu production.

MATERIALS AND METHODS

As shown in Figure 1 below, radioisotopes are produced
with a proton beam irradiation process to 64Ni and 70Zn
electrodeposited target. In order to maximize the target cooling
and the production efficiency of 64Cu and 67Cu when irradiating
the target material with a proton beam, a tilted target and a
backside water cooling system were applied. The radioactive
copper from the target materials was carried out through a
solid-phase separation method. The steps of impurities removal,
radioactive copper purification, and target material recovery were
performed. Finally, 64Cu and 67Cu were verified through quality
control of radionuclidic purity and impurity metal content.

Materials and Reagents
Ultra-high purity reagents were used for production of 64Cu
and 67Cu in this study. Isotopically enriched 64Ni (58Ni: 0.05%,
60Ni: 0.03%, 61Ni: 0.004%, 62Ni: 0.396%, 64Ni: 99.52%) and 70Zn
(64Zn: 0.1%, 66Zn: 0.1%, 67Zn: 0.1%, 68Zn: 2.2%, 70Zn: 97.5%)
were supplied from ISOFLEX (San Francisco, CA, USA). The
proton beam verification film (Gafchromic Quick Phantom) was
obtained from Ashland Company (GafchromicTM Ashland Inc.,
New Jersey, USA). Substrates of Au-Cu and Ag were received
from Doowon Machinery Company (Seoul, South Korea) in
a bar shape (1 x 12 cm). Concentrated HCl was purchased
from Thermo Fisher Scientific (Waltham, MA, USA); Hydrazine
hydrate and sodium hydroxide were purchased from Sigma-
Aldrich (St. Louis, MO, USA); CU resin and ZR cartridge were
obtained from TRISKEM Company (Bruz, Brittany, France);
and AG1X8 anion exchange resin was obtained from Bio-Rad
Laboratories (Hercules, CA, USA).

Equipment
The proton beam irradiation studies were performed using a
RFT-30 cyclotron (30 MeV, Korea Atomic Energy Research
Institute). The apparatus for enriched target material
electroplating and dissolution was developed in house. For
64Cu and 67Cu radioactivity measurement, an ionization
chamber (AtomlabTM500, BIODEX, New York, USA) was used.
The radionuclidic purity was measured by a calibrated high
purity germanium gamma detector (HPGe, Oak Ridge, USA).
An inductively coupled plasma-mass spectrometry (ICP-MS)
system (Agilent 7500, Stevens Creek Blvd, CA, USA) was used
to analyze the metallic impurity of the final eluted radioactive
copper solution.

Target Preparation
The electroplated target was prepared by an electrodeposition
procedure. A typical electroplating target material (64Ni or 70Zn)

was dissolved in 10mL of concentrated HCl. After the target
metal was completely dissolved, the target solution was then
evaporated to dryness under a vacuum system. The residue was
re-dissolved in 600mL of water, and then 2mL of hydrazine
hydrate was added as an electrolyte to the target solution. The
final solution was loaded into the electroplating cell with the
substrate. The electroplating was carried out on the substrate
at optimized conditions (waveform: square, frequency: 50Hz,
amplitude: 2000, tau: 2, phase: 10 deg, chopping frequency and
duty: 100Hz and 84%, square duty: 60%). After electroplating,
the 64Ni and 70Zn targets were examined by measuring their
thickness and uniformity.

Proton Beam Irradiation
64Cu and 67Cu were produced at RFT-30 MeV cyclotron by
64Ni(p,n)64Cu and 70Zn(p,α)67Cu nuclear reaction, respectively.
The electroplated target was fixed on the solid target station and
irradiated with 11.0 MeV (64Cu) and 17.7 MeV (67Cu) protons.
The solid target station was fitted with a self-made cradle for the
tilted 6◦ target compared to the beam line. Using Gafchromic
film, we optimized the target area of 1175 mm2 with a beam
distribution of 90% under the same conditions as employed for
64Cu and 67Cu. Furthermore, the beam currents and cooling
system were considered for reducing target thermal damage.
The central cooling-water system was connected to the target
station (water-pressure: 1.1 MPa, water cooling line: 1/4”). For
the production of 64Cu and 67Cu, the beam current was fixed at
30 and 100 µA for 3 and 12 h, respectively.

Separation and Purification
Copper-64

The irradiated 64Ni target (Electroplated target weight: 130mg)
was directly transported to the hot-cell using an automatic target
transport system. The irradiated target was dissolved in 7mL
of 8M HCl with a target dissolving device at 90◦C for 1.5 h.
The recovered target solution was filtered with a 0.45µm PVDF
syringe filter. To adjust the pH of the dissolved target solution to
2, the solution was evaporated and re-dissolved with water. 64Cu
was separated using copper selective CU resin. In brief, 300mg
of CU resin was immersed in water to remove air bubbles and
then left in a vacuum for 30min at 8 mbar. In the wet-packing
method, the empty column was filled with immersed CU resin
and then the solution was replaced with 0.01M HCl for the pre-
conditioning column. The proton beam irradiated crude 64Ni
target solution was loaded on the CU resin pre-packed column
at a concentration of 0.01M HCl. After loading the 64Cu and
other radio impurities, the CU resin was washed with 20mL of
0.01M HCl (1.0 mL/min) to recover and remove the 64Ni target
and impurities. Finally, the 64Cu was eluted with 2mL of 8M
HCl, and then 64Cu fractions were collected and then evaporated
nearly to dryness under a vacuum system.

Copper-67

The separation and purification of the carrier-free 67Cu
were performed as follows. After irradiation, the 70Zn target
(electroplated target weight: 260mg) was placed into the target
dissolving device. The 70Zn target was dissolved in 7mL of
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FIGURE 1 | Schematic illustration of pair-radioisotope production route.

9M HCl at 90◦C for 10min. The dissolved target solution was
filtered with a 0.45µm PVDF syringe filter. We used a two-
step separation procedure to remove 66Ga impurities and recover
the 70Zn target materials with a ZR cartridge and AG1X8 ion
exchange resin. In brief, the target solution was loaded into a
ZR cartridge to remove 66Ga and then the cartridge was washed
with 9M HCl for complete recovery of 70Zn and 67Cu. The
eluted solution was passed through a wet-packed AG1X8 column
(packing height: 7 cm). The column was then washed with 2.5
column volumes of 9M HCl to eliminate other impurities. The
67Cu was eluted with 8mL of 2M HCl, and then 67Cu fractions
were collected and then evaporated nearly to dryness under a
vacuum system. Finally, enriched 70Zn was completely recovered
with 30mL of 2M HNO3 and then evaporated for future use.

QUALITY CONTROL

Metallic Impurity
The impurity metal content (V, Cr, Mn, Fe, Co, Ni, and
Zn) of the separated and purified radioactive copper (64Cu
and 67Cu) was evaluated via an inductively coupled plasma-
mass spectrometer (ICP-MS) to secure biological safety and
optimize the radio-labeling yield. The operating conditions were
as follows: instrument (Agilent 7500 series), nebulizer (Babington
type), spray-chamber (Scott-type), FR generator (frequency: 10
MHz, power 1,300W), Ar flow rate (plasma 15 L/min, auxiliary
0.9 L/min, nebulizer 1 L/min), sample uptake rate 1 mL/min, and
number of replicates (three).

Radionuclidic Purity
Radionuclidic purity was determined using gamma spectroscopy
with a high purity germanium detector, multichannel analyzer,
and Gamma Vision software. Efficiency and energy calibration
was performed with 210Pb (401 Bq/g; 57 keV), 241Am (40 Bq/g; 60
keV), 109Cd (385 Bq/g; 88 keV), 57Co (15 Bq/g; 122 keV), 123mTe
(22 Bq/g; 159 keV), 51Cr (491 Bq/g; 320 keV), 113Sn (73 Bq/g; 392
keV), 85Sr (92 Bq/g; 514 keV), 137Cs (65 Bq/g; 662 keV), 88Y (149
Bq/g; 898 and 1,836 keV), and 60Co (77 Bq/g; 1,173 and 1,333
keV). Activity of the multi-nuclide standard source was checked
at the day of measurement. The purified samples were fixed on a
universal sample holder located 5 cm from the detector window.
The gamma spectra were recorded for 86,400 s each for the crude
target solution and purified product.

RESULTS

Target Manufacturing
To optimize the production of 64Cu and 67Cu via the nuclear
reaction of 64Ni(p,n)64Cu and 70Zn(p,α)67Cu, we prepared 64Ni
and 70Zn targets on the substrate by electrodeposition. Gold
and silver were used as a cathode and a platinum rod was used
as an anode. The bar-shaped substrates were electrodeposited
with 64Ni and 70Zn. After cleaning and drying, the weight
of the electroplated 64Ni and 70Zn on the substrate was
130 and 260mg, respectively. The target having a uniform
surface was confirmed through an optical microscope (Figure 2;
Supplementary Figure 4).

Proton Beam Irradiation
Enriched 64Ni and 70Zn targets were mounted using a self-
produced cradle (6◦ tilted target system) and a target transfer
device and then a proton beam was irradiated at 11 and 17.7
MeV incident energy, respectively. We predicted the nuclear
reaction cross-section for 64Cu and 67Cu production as 800
and 15mb at 11 and 17.7 MeV incident energies, respectively,
through the NNDC (National nuclear data center) database.
The nuclear cross-sections of 64Cu and 67Cu are detailed in the
Supplementary Figures 1–5. Based on the theoretical calculation
results, the proton beamwas irradiated with accumulated current
of 90 and 1,200 µAh. The purified 64Cu and 67Cu were
produced and isolated from irradiated 64Ni and 70Zn targets;
considering the correction due to the decay, at the end of
bombardment (EOB) we obtained 64Cu 28.5MBq/µAh and 67Cu
0.58 MBq/µAh.

Separation and Purification
Preparation of 64Cu

After irradiation for three hours, the 64Cu was completely
separated from the enriched 64Ni target solution (Figure 3A).
Figure 4A shows the elution profile obtained from the
measurement of the fraction activity from the CU resin. To
elute 64Cu from CU resin, 64Cu was eluted four times with
a volume of 500 µL at a flow rate of 0.5 mL/min using 8M
HCl (64Cu elution yield: 98.6%). The radioactivity of purified
64Cu in each 500 µL fraction and the residual activity on the
column were measured by using a dose calibrator. To improve
the availability of 64Cu in mild labeling conditions, the purified
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FIGURE 2 | Enriched target electroplated onto substrate (Au-Cu and Ag) (A) 64Ni electrodeposition with Au-Cu substrate (B) 70Zn electrodeposition with silver

substrate (magnification under optical microscope X20).

64Cu solution was evaporated and re-dissolved in 0.1M HCl.
Finally, 64Ni was collected during the separation and purification
procedure for the target recycling.

Preparation of 67Cu

After irradiation for 12 h, the enriched 70Zn target was
completely dissolved in 9M HCl. The target solution was
chemically processed using two-step separation with a solid-
phase resin, specifically, a ZR cartridge and AG1X8 resin
(Figure 3B). The target solution was passed through the ZR
cartridge to remove 66Ga radio metallic impurities. The 66Ga
was completely removed from the crude target solution and
then fractions were collected for subsequent separation. During
67Cu production, ∼2 days of cooling time was required to
remove 66Ga. To maximize the production yield, the method of
removing 66Ga was adopted within 20 minutes. Figure 4B shows
the elution profile obtained from the measurement of fraction
activity from the collected solution. AG1-X8 ion exchange resin
was c in water and transferred into an empty column (1 x
10 cm). The target solution was passed through pre-conditioned
AG1X8 resin. To elute 67Cu and 70Zn from the AG1X8 resin,
2M HCl and 2M HNO3 were used at a 1.0 mL/min flow
rate, respectively.

QUALITY CONTROL

The radionuclidic purity of 64Cu and 67Cu in the separated
fraction volume was assessed using a high purity germanium
detector. The radioisotope production routes involved
radionuclidic impurities that should be removed by
chemical separation before use. The gamma energy of the
final product must be measured. Figure 5A shows >99%
high purity γ-ray spectra of purified 64Cu and 67Cu. In

addition, gamma energy spectra of proton beam irradiated
target materials described in the Supplementary Figures 1–
5. Metallic impurities of the 64Cu and 67Cu elute were
determined using ICP-MS to identify metal species that may
compete with copper during radio-labeling reactions for
radiopharmaceuticals. The content of metallic impurities
in the purified 64Cu and 67Cu is <1 ppm, as shown in
Figure 5B, and it will not affect the radio-labeling reaction
(Supplementary Figure 5).

DISCUSSION AND CONCLUSIONS

The production procedure of pair-radioisotope 64Cu and
67Cu has been studied. This attempt is an imperative study
to guarantee the supply and quality of radioisotopes for
diagnosis/therapy in the field of nuclear medicine. Each
condition was established using RFT-30 cyclotron, equipment,
and chemicals to optimize the entire process, including proton
beam irradiation, targetry, chemical separation, and quality
control of 64Cu and 67Cu. The expected thick target yields of
64Cu and 67Cu were calculated considering the NNDC cross-
sections with 11 and 17.7 MeV as incident energy, respectively.
The obtained experimental production yields were 2.57 GBq and
696 MBq, respectively. These results have secured sufficiently
radioactivity that can be supplied to researchers in the field of
nuclear medicine. Furthermore, we will continue to conduct
research for mass production. Preparation of electrodeposited
target has several advantages including high solidity, density,
and heat dissipation efficiency for beam irradiation. Moreover,
it is helpful for tilted targets to secure the maximum beam
irradiation area. Chemical separation studies were performed
using ZR cartridge and AG1X8 resin for 67Cu and CU
resin for 64Cu, respectively, considering the copper adsorption
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FIGURE 3 | (A,B) Schematic of chemical separation processing.

FIGURE 4 | Elution profile of radioactive copper separation from the irradiated target materials (A) 64Cu and (B) 67Cu.
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FIGURE 5 | Quality control of pair-radioisotopes (A) gamma energy spectrum of purified 64Cu (left) and 67Cu (right), (B) metallic impurity content in purified final

volume of 64Cu (left) and 67Cu (right).

capacity, target material recovery, and impurity removal. 64Cu
and 67Cu were prepared with >98% separation efficiency,
and the final product contains the maximum radioactivity
in the minimum volume to introduce the radioactive copper
in the radiopharmaceutical under mild reaction conditions,
it was evaporated and dried and then re-dissolved in 0.1M
HCl. Furthermore, the radiopharmaceuticals limit the amount
of radionuclide contamination allowed in 64Cu and 67Cu
solutions for safety and radio-labeling efficiency. The major
radionuclide contaminant of radioactive copper solutions is its
target material, such as nickel or zinc. Through the quality
control procedure, the radionuclidic purity of the final eluted
solution was measured as >99% and the metallic impurity
content was maintained less than 1 ppm. Further studies on
the automation separating apparatus are underway for 64Cu and
67Cu production.
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