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Abstract

The hippocampal formation is a key structure for memory function in the brain. The functional anatomy of the brain
suggests that the hippocampus may be a convergence zone, as it receives polysensory input from distributed association
areas throughout the neocortex. However, recent quantitative graph-theoretic analyses of the static large-scale connectome
have failed to demonstrate the centrality of the hippocampus; in the context of the whole brain, the hippocampus is not
among the most connected or reachable nodes. Here we show that when communication dynamics are taken into account,
the hippocampus is a key hub in the connectome. Using a novel computational model, we demonstrate that large-scale
brain network topology is organized to funnel and concentrate information flow in the hippocampus, supporting the long-
standing hypothesis that this region acts as a critical convergence zone. Our results indicate that the functional capacity of
the hippocampus is shaped by its embedding in the large-scale connectome.
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Introduction

The hippocampal formation is among the most studied areas of

the brain. Along with adjacent cortical structures, such as the

entorhinal, perirhinal and parahippocampal cortices, the hippo-

campus is thought to facilitate memory function, particularly the

initial encoding of memories [1–4]. Lesion studies in various

model organisms and in humans, as well as functional neuroim-

aging studies, have consistently found that the hippocampal

formation appears specialized for forming conjunctions between

arbitrarily different external events.

The functional anatomy of the brain supports the notion that

the hippocampus may be a central structure that serves to bind

together information from distributed sites in neocortex to

represent a memory. Sensory information converges upon the

hippocampus via multisynaptic projections, such that all fields of

the hippocampus receive polysensory input from association areas

of the neocortex, via perirhinal and parahippocampal cortices. In

particular, the final field of the hippocampus, CA1, receives

multimodal input. A prominent idea is that the hippocampus is a

‘‘convergence zone’’ in the brain, whereby successive levels of

convergence culminate in maximally integrative regions, such as

medial temporal lobe cortices [5,6]. Altogether, the literature

suggests that the hippocampus should occupy an important

position in the whole-brain network.

However, despite the prominent role of the hippocampus in

memory function, quantitative analyses of anatomical and

functional whole-brain networks have largely failed to demonstrate

the topological centrality of the hippocampus. Recent graph-

theoretic studies of the connectome, both in humans [7–9] and in

the macaque [10–13] have consistently found that the hippocampus

is unlikely to be a hub in the context of the whole brain, as it is not

among the most highly connected areas, nor does it appear to

occupy a position along many of the shortest paths in the network.

Likewise, the hippocampus is not highly central in large-scale

functional networks [14–16] and even large-scale computational

models have found no evidence to suggest that the hippocampus is

central in the context of the whole-brain connectome [11,17].

However, these studies have largely focused on the anatomical

connectivity of brain networks, rather than on how that

connectivity supports communication. In a recent report, we used

a novel computational model to show that the anatomical

connectivity shapes and constrains the communication dynamics

of the network [18]. Interestingly, our results also suggested that

the final field of the hippocampus, CA1, may be particularly

important for communication, as it was the only area outside of

the a set of highly connected hub nodes that was significantly over-

congested relative to a null model. In the present study we show

that when the communication capacity of the whole-brain network

is taken into account, the hippocampus becomes a critical area,

above and beyond its ostensibly average topological attributes.

Results

To investigate the role of the hippocampus in large-scale

network communication, we modeled a macaque brain anatom-

ical network as a communication system. The structural network

was derived from the online Collation of Connectivity data on the

Macaque brain (CoCoMac) [19,20], while information flow was

modeled as a discrete-event queueing network [18,21](Fig. 1).

Signal units were continually generated at randomly-selected grey

matter nodes in the network and assigned randomly-selected
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destination nodes. They then diffused through the network via

white matter projections. Grey matter nodes were modeled as

servers with a finite buffer capacity, such that if a signal unit

arrived at an occupied node, a queue was formed. Upon reaching

its destination node, the signal unit was removed from the

network.

The primary goal of this approach was to generate explicit

communication metrics for individual nodes in the network and to

investigate the extent to which those metrics are the product of

how individual nodes are embedded in the network. Information

flow at individual nodes was summarized by three distinct but

complementary metrics: the total number of signal units that

arrive to a node (arrivals), the mean number of signal units at a

node (node contents) and the proportion of time a node is

occupied (utilization).

The first step of the analysis focuses on various communication

metrics for node CA1 relative to the rest of the network. Notably,

CA1 experiences a high throughput of signal traffic (Fig. 2).

Fig. 2A shows the complete information flow profile for the

network, with mean utilization, node contents and total arrivals at

each node, while Fig. 2B shows the spatial distribution of total

arrivals. For all three metrics, CA1 is ranked #7 out of 242 nodes,

placing it in the top 3%. Note that there are several other brain

regions that experience high traffic, including areas 13a (anterior

insular cortex), 32 (anterior cingulate cortex), 23c (ventral posterior

cingulate cortex) and 31 (dorsal posterior cingulate cortex). These

high-degree areas are part of the putative rich club of hub nodes

and their role in network communication is explored in another

report [18].

To determine whether the high ranking of CA1 is due to its

degree or due to its embedding in the global topology, the data

from the macaque network were compared against a ‘‘null’’

model, comprised of randomized surrogate networks. In these

surrogate networks the degree sequence is preserved but the global

topology is destroyed by randomization. Critically, when the

network is randomized, information flow through CA1 is greatly

reduced (Fig. 3). The extent to which the role of CA1 differs when

embedded in a randomized network versus the macaque network

can be quantified and statistically assessed by expressing the mean

of the macaque network distribution (red) as a z-score relative to

the randomized null distribution (blue). In the present case, the

scores for the node contents, arrivals and utilization were

z~16:63,8:60 and 8:52 respectively, corresponding to

pvv0:001.

To determine whether the directionality of cortical projections

contributes to the high signal traffic at CA1, the directions of all

projections in the network were reversed. We created a range

directional null distributions, by reversing 20, 40, 60, 80 and 100%

of all unidirectional projections in the CoCoMac adjacency matrix

(Fig. 3). In other words, projections i?j were altered such that

i/j. In the new network, the congestion at CA1 disappears,

suggesting that the directionality of all projections in the network

serves to funnel signal traffic to CA1.

Thus, comparisons with null models confirm that the conver-

gence of signal traffic at CA1 is not due to its degree, but some

other higher-level feature of macaque connectivity. Specifically,

the convergence of signal traffic appears to be related to both the

topology and the directionality of the network. Figs. 4A and B

confirm this, showing that CA1 behaves in a unique way. While

greater in-degree (i.e. number of afferent projections) is associated

with greater signal traffic, CA1 is a clear outlier. Namely, CA1

attracts signal traffic to an extent that is above and beyond what

would be expected on the basis of its in-degree alone.

It is possible that the communication profile of CA1 is not

determined by its own degree properties, but by the connectivity in

its local neighbourhood. Given the diffusive dynamics of the

present model, it may be that signal traffic converges to CA1

because of the nodes that project to it (i.e. its in-neighbours). One

possibility is that the in-neighbours of CA1 collectively have a

higher than average in-degree, and that CA1 is statistically more

likely to experience higher levels of signal traffic. A second

possibility is that the in-neighbours of CA1 collectively have a

lower than average out-degree, thus funneling signal traffic to

CA1. The plots in Figs. 4 C-F explore these possibilities and

suggest that neither is likely, because neither the mean in-degree

nor out-degree of the in-neighbours of CA1 is able to explain the

high levels of signal traffic at that node. Furthermore, the

assortativity plots in Fig. 5A and B suggest that the in-neighbours

of CA1 have neither higher than expected in-degree nor lower

than expected out-degree.

However, it may be possible that the mean connectivity profile

of the in-neighbours of CA1 obscures the contribution of

individual projections. For instance, it may be the case that there

is a small number of projections terminating in CA1 that carry

high levels of signal traffic. The total throughput along each

directed connection in the macaque network is shown in Fig. 6A,

while Fig. 6B shows the top 10 most traversed connections (i.e.

highest-valued elements in the matrix). Note that the two most

traversed connections in the network are from TFM to CA1 and

from TFL to CA1. TFM and TFL represent the medial and lateral

portions of parahippocampal area TF, and are known to project

directly to CA1 [22–24]. The histogram in Fig. 6C helps to get a

sense of the contribution of these two projections. The two

projections are not only the most traversed; they are far removed

from the distribution, representing extreme outliers.

The most plausible reason why these two projections carry so

much signal traffic is because of a severe degree imbalance.

Namely, both TFM and TFL have relatively large in-degrees (34

and 41, respectively), and relatively low out-degrees (1 and 2,

respectively) (Fig. 6D). Thus, TFM and TFL absorb high levels of

signal traffic but - as they project only to CA1 and one other node

(prosubiculum) - create a funneling effect, resulting in a

convergence of signal units at CA1. This degree imbalance is

illustrated in Fig. 7, which shows the connectivity between TFM/

TFL and CA1. Both TFM and TFL have very large in-degrees but

very low out-degrees, causing traffic to be funneled towards CA1.

Author Summary

The hippocampus is a key structure in the brain,
particularly for memory function. The functional anatomy
of brain networks suggests that the hippocampus should
be a hub in the large-scale connectome, yet so far
quantitative network analyses have failed to find any
evidence of such a role. Here we show that when
communication dynamics are taken into account, the
hippocampus is a critical hub in the connectome. Using an
anatomically realistic structural network and a novel
computational model, we demonstrate that the topology
of the brain is organized in a way that allows information
to be funneled towards the hippocampus. Despite the fact
that the hippocampus is neither among the most
connected or most central nodes in the network, it
receives a disproportionately high level of information
flow and acts a convergence zone for the network. This
convergence effect demonstrates that the architecture of
the cerebral cortex facilitates integration and binding of
information in the hippocampus.

Network Convergence Zone
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Discussion

The present results demonstrate that to assess the functional

capacity of the brain, it is important to consider communication

dynamics, above and beyond static connectivity. Importantly, the

CA1 field of the hippocampus appears to be a critical node,

embedded in the connectome in a way that allows signal traffic to

converge from multiple distributed areas.

These results are consistent with the notion that the hippocam-

pal formation is a convergence zone for multiple information

streams, giving rise to polysensory, multimodal representations

[25,26]. Our data suggest an integrative role, wherein information

from diverse afferents is pooled and presumably integrated to

engender a coherent, multimodal representation. Although the

functional anatomy is highly suggestive of this role, to our knowledge

the present network communication study is the first to provide

quantitative topological evidence of such an organizational principle.

The information processing capacity of the hippocampus has

traditionally been studied at the local level, with a focus on

information flow and plasticity in the hippocampal formation and

its local neighbourhood [27]. Our results suggest the hippocampus

is also critical for information processing at the global level and

that it is a central communication hub in the context of large-scale

networks, building on considerable work regarding the role of

hippocampal-cortical projections [28,29]. Recent research sug-

gests that information processing in hippocampal circuits is

mediated by endogenous theta rhythms, with distinct phases in

every field of the hippocampus [30,31]. Information flow is then

dynamically ‘‘routed’’ by a gamma rhythm riding on the theta

troughs, centered at CA1 [32]. The results of the present study also

Figure 1. Discrete-event simulation. Schematic showing the propagation of two signal units in a simple 3-node, 2-pathway network.
doi:10.1371/journal.pcbi.1003982.g001

Network Convergence Zone
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point to CA1 as the critical field of the hippocampal formation,

but more research is necessary to relate local oscillatory activity to

global information flow.

Our data also indicate that the connectivity between hippo-

campus proper and adjacent cortex in the ventral temporal lobe is

particularly important for information flow. In particular, the

parahippocampal and perirhinal cortices are thought to be the

primary route by which information is exchanged between the

hippocampal formation and the neocortex. In the present study,

the highest volume of signal traffic arrived to CA1 via direct

projections from parahippocampal area TF rather than along the

perforant path. This suggests that parahippocampal cortex (TF/

TH) may act as a gateway for information flow to the hippo-

campus. The anatomical connectivity of parahippocampal cortex

also supports this notion, with many neocortical afferents

converging on this particular site [33].

More generally, the present results highlight the dynamic

importance of unidirectional connections and of degree sequences

[34]. Several recent studies have pointed to degree imbalances and

their possible importance for information flow [13,35,36]. The

present results confirm that large scale network communication

may depend on these properties, and further illustrate why

analyses of structural and functional connectomes should take into

account the role directionality and degree sequences.

Methodological limitations
In the present study communication dynamics are modeled in

terms of diffusive signal traffic. This approach confers several

advantages, including the ability to trace individual signal units, as

well as no strong assumptions about the routing and transforma-

tion of information in the network. However, the model is also

limited in some ways and it is important to consider to what extent

Figure 2. Node metrics. (a) Three local metrics of communication efficiency (utilization, node contents and arrivals) and information flow are
shown for all 242 nodes of the network. averaged over 500 simulations (l~0:01, H~20, m~0:02). (b) Inflated surface renderings showing the
anatomical distribution for the arrivals statistic, for the lateral and medial surfaces.
doi:10.1371/journal.pcbi.1003982.g002

Network Convergence Zone
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the assumptions of the model limit the conclusions drawn from the

data.

First, all areas and projections are assumed to have the same

capacity, despite the fact that the former vary in size and the latter

vary in fiber density. The model was configured in this way to

avoid making even stronger assumptions about how size influences

processing capacity. For example, it is unclear a priori whether the

information processing capacity of an area should vary in a linear

or nonlinear fashion with size. In addition, the current configu-

ration of the model makes the results of the study comparable to

conventional graph-theoretic analyses, which also assume no

variation across nodes or across edges [37–39].

Second, all signal units are assumed to carry the same amount

of information and they flow through the network unchanged.

This is unlikely to be the case in real brain networks, where

information is fundamentally transformed at each node [40,41].

The model was configured in this particular way to reduce the

complexity of the problem and to focus on the main experimental

question: how does the topology of the network influence

information flow to the hippocampus? To trace the trajectory of

individual signal units it is necessary that they remain unchanged.

Thus, discrete signal units represent the ability of brain areas to

influence each other via anatomical projections.

Third, the present model is unable to incorporate physiologi-

cally realistic oscillations in different frequency bands. We

anticipate that, given the importance of theta and gamma rhythms

in the hippocampus [30–32], this will be an important future step.

Likewise, the input to the model may be further refined in the

future, to more accurately reflect 1/f sensory inputs, as well as the

contribution of thalamocortical projections.

In addition, it is important to note that our findings are only as

accurate as the anatomical connectivity data on which they are

based. The CoCoMac-derived anatomical connectivity matrix

used in the present study is collated from a database of tract

tracing studies [19,20] and may be limited by the fact that these

studies used different tracing methods, nomenclature and planes of

section. In a set of recent reports, Markov and colleagues described

a large-scale profile for 29 areas of the macaque brain, derived using

a systematic and consistent retrograde tracing procedure [35,36].

When this connectivity matrix is completed and includes the

different fields of the hippocampus as well as parahippocampal

areas, it will be possible to verify and validate the present findings

which are based on the coarser CoCoMac network.

Conclusion
The present study demonstrates that the hippocampus, partic-

ularly subfield CA1, is an important communication hub not just

at the local level, but in the large-scale connectome as well. These

results showcase an important principle: the functional capacity of

a given region or subnetwork cannot be fully discerned by only

analyzing the static structural connectivity of the brain. It is the

communication between regions that engenders complex phenom-

ena such as perception, cognition and action. Communication

dynamics are the link between structure and function and thus

represent an important attribute of brain networks.

Materials and Methods

The data were generated using the same anatomical connectivity,

queueing network model and parameters as reported in [18].

Anatomical and reference networks
The anatomical adjacency matrix was compiled using the online

Collation of Connectivity data on the Macaque brain (CoCoMac)

database [19,20], which includes information from 413 tract

tracing studies in the macaque brain. The database was originally

queried by [12] and subsequently refined by [13]. The resulting

fully connected directed adjacency matrix included 242 nodes and

4090 edges. Importantly, the connectivity matrix contained several

nodes that are part of the hippocampal formation and neighbour-

ing cortical structures, including parahippocampal areas TF/TH,

perirhinal areas 35/36, entorhinal cortex, dentate gyrus, subfield

CA3, subfield CA1 and subiculum.

To determine the effect of global network topology on commu-

nication, a population of degree-matched randomized surrogate

networks was generated using a Markov switching algorithm that

randomly swapped pairs of edges [42]. In these randomized net-

works, the in-degree and out-degree of each node is preserved

while the global topology is altered, allowing us to differentiate effects

due to topology from effects due to degree. All statistical inference

was performed by comparing 100 simulations on the CoCoMac

network with 100 simulations on a randomized surrogate network

(serving as a ‘‘null’’ network), for 100 network realizations.

Discrete-event simulation
Individual signal units were generated in the network as a Poisson

process with rate l, i.e. with exponentially distributed inter-arrival

Figure 3. Role of network topology and directionality. The mean and standard deviation of CA1 node metrics: (a) arrivals, (b) utilization and (c)
node contents. Data represent 100 simulations on the original macaque brain network (red), a single simulation for 100 randomized surrogate
networks (green) and a single simulation for 100 surrogate networks with randomly reversed directions (blue).
doi:10.1371/journal.pcbi.1003982.g003

Network Convergence Zone

PLOS Computational Biology | www.ploscompbiol.org 5 December 2014 | Volume 10 | Issue 12 | e1003982



times. Each signal unit was generated at a randomly selected source

node and assigned a randomly selected destination node. When a

signal unit reached its destination node, it was removed from the

network. Until it reached its destination node, the signal unit

propagated to one of the neighbouring nodes. Thus, if a signal unit

was at node i, with out-degree ki, the probability of traveling to any

one of the neighbouring nodes was 1=ki. The time spent at each

node (service time) was exponentially distributed with rate m.

Signal units that arrived at an occupied node were placed in a

buffer and formed a queue. Signal units queued on a last-in-first-

out (LIFO) basis, also known as last-come-first-served (LCFS) [43–

45]. The buffers had limited capacity (H~20), such that signal

units that arrived at a full buffer caused the last signal unit in the

queue to be ejected from the buffer and removed from the system.

Fig. 1 illustrates how a discrete-event simulation works. In this

example, there are three nodes, each of which has a two-slot

buffer, that are interconnected by two pathways. At time 2, a

signal (red) completes service at node 1 and moves to node 2. The

signal (red) arrives at node 2 and enters the buffer. Due to the last-

come-first-served queueing discipline, the signal moves to the front

of the buffer. Meanwhile, the signal (teal) in the buffer at node 1

commences service (time 3). At time 4, the signal (teal) at node 1

completes service and moves to node 2, where it moves to the front

of the buffer and displaces the oldest signal (green), which is

ejected from the network (time 5). At time 6, the signal (blue) at

node 2 completes service and moves to node 3, where it enters the

empty buffer (time 7). Meanwhile, the signal (teal) at the front of

the queue at node 2 commences service.

Figure 4. CA1 as a communication outlier. Communication metrics (node contents and arrivals) are compared to connectivity metrics, including
in-degree (a,b), neighbours’ mean in-degree (c,d) and neighbours’ mean out-degree (e,f). In panels c-f, ‘‘neighbours’’ refers to nodes that project to CA1.
doi:10.1371/journal.pcbi.1003982.g004

Network Convergence Zone
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All simulations had a duration of 2 million dimensionless time

units. System state was updated at non-uniform intervals due to

the presence of stochastic variables (signal inter-arrival time and

service time). To allow further analysis, the time series of system

states were re-sampled at uniform intervals using linear interpo-

lation (‘‘table lookup’’). Using the ensemble average method [44],

an initial transient of 40,000 time units was identified and removed

from further analysis. The exponentially distributed random

Figure 5. Assortativity. The degree of each node is compared to its neighbours’ mean out-degree (a) and in-degree (b).
doi:10.1371/journal.pcbi.1003982.g005

Figure 6. Degree imbalances. (a) The total number of signal units that traversed a particular connection. (b) The ten most traversed connections.
(c) A histogram of all connections in (a), showing the distribution of signal traffic on all connections. (d) The relationship between in-degree and out-
degree for all nodes in the network.
doi:10.1371/journal.pcbi.1003982.g006

Network Convergence Zone
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variables (inter-arrival time and service time) were generated by

the inverse transform method, using the Mersenne Twister to

generate a uniform distribution for input [46].

Communication metrics
Node-specific communication metrics were defined as follows.

For node i, the total number of arrivals during a simulation run

included both the exogenous Poisson arrivals, as well as arrivals

from afferent projections. Node i at time t consists of two parts: a

server with contents si(t)~0,1 which corresponds to whether there

is a signal unit currently in service, and the queue length

qi(t)~0,:::,H, which corresponds to the number of signal units in

the buffer. The node contents ni(t) are the sum of the server and

queue contents

ni(t)~si(t)zqi(t): ð1Þ

Finally, the utilization of node i is proportion of simulation

time that si~1.

Mapping parameter space
Parameter space mapping is described in detail in [18], but for

completeness is reviewed here. The key consideration is that this

type of stochastic model has two modes of operation. System

behaviour is primarily determined by the ratio of the external

arrival rate (l) and the service rate (m) at each node. When the

external arrival rate: service rate ratio is low, the total number of

signal units in the network is stable and the system is in a steady

state. As the external arrival rate: service rate ratio is increased, the

system undergoes a phase transition to a jammed state, such that

the total number of signal units in the network increases

monotonically until all buffers are filled to capacity [47,48].

The focus of the present study was on the steady state behaviour

of the network, so the parameters were chosen to sustain stationary

flow, prior to the phase transition, following the findings presented

in [18]. The service rate (m) and the rate of external arrivals (l)

were fixed at m~0:02 and l~0:01. The results of the present

analysis hold for a wide range of external arrival rates

(l~0:005,0:01,0:015,0:02), but for simplicity only this point in

parameter space is shown. For this type of dynamic system, buffer

capacity (H ) is not a critical parameter, because it cannot induce a

phase transition. For the present set of simulations, buffer capacity

was set to H~20.

Physiological foundation
The discrete-event stochastic model entails a number of

simplifying assumptions and it is important to clarify what aspects

of neural physiology are captured by different features of the

model.

External arrivals to the network represent the assumption

that information is perpetually generated in brain networks, either

due to external stimulation or some endogenous process. Poisson
arrivals were informed by research in psychophysics. In the

psychophysics and signal detection literature, statistical fluctua-

tions of the sensory environment (e.g. photons impinging on the

retina, energy fluctations in auditory stimuli) display Poisson

statistics and/or are well-fitted by Poisson process models [49–52].

Discrete signal units represent the ability of brain regions to

influence one another and may be thought of as perturbations that

spread through the network. Physiologically, these perturbations

may correspond to spike trains or coordinated volleys of spike

trains. In addition, for discrete signal units (as opposed to

continuous information flow), it is possible to monitor the

trajectory of information flow in the network and to investigate

Figure 7. Neighbourhood of CA1. Nodes TFM and TFL have large in-degrees and low out-degrees, causing traffic to be funneled towards CA1.
The nodes are spatially positioned in a way that coincides with the directionality of edges, i.e. information is projected from top to bottom.
doi:10.1371/journal.pcbi.1003982.g007

Network Convergence Zone
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how the anatomical connectivity facilitates communication. The

purpose of queues and finite buffers is to model how

information flow is constrained by the topology of the network.

Queueing is a mechanism by which signal units interact, allowing

us to model how multiple information flows emerge on the

anatomical network. Finite buffers ensure that signal units can be

lost, which mimics the poor fidelity of information transmission in

the brain [53]. Moreover, the LIFO queueing displine ensure that

the oldest signals in the buffer are the first to be lost, which models

the natural time-dependent decay of biological signals.

Communication in the network is mediated by diffusion.

Diffusive dynamics seem advantageous for modeling neural

information flow because this type of model does not assume that

signal units have knowledge about global network topology.

Moreover, a number of recent studies have shown that diffusion

may be a viable mechanism for information transfer in real brain

networks [54–56] (but see also [40,41]).

Supporting Information

Dataset S1 Supplementary materials. Simulation results are

contained in three structures, representing metrics of congestion at

CA1: Arrivals, Utilization and Contents. Each structure contains

three fields, which correspond to the three network types: the

original CoCoMac network, as well as Randomized and Reversed

surrogate networks. In the case of Randomized networks, there are

5 sets of 100 simulations, which correspond to 20, 40, 60, 80 and

100% reversals of unidirectional projections. The array ‘‘CoCo-

Mac_adjacency’’ contains the adjacency matrix of the CoCoMac

network, while the cell ‘‘Labels’’ contains the labels of each of the

242 brain regions.
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