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Abstract 
Aim: The purpose of this experimental study was to evaluate the existence of adrenergic receptors 
in ketamine-induced corneal blood vessels in rat pups.  
Methods: The study of corneal neovascularization motricity was performed on 45-day-old Wistar 
rats in which, starting from the 15th day of life, corneal blood vessels were obtained by injecting 
intraperitoneal ketamine at a dose of 150 mg/ kg body weight, a total of 5 successive doses. The 
examination of the neovascularization was done with the help of a Nikon stereomicroscope 
connected to a video camera and a computer, the total magnification being 400X. The reactivity of 
the new corneal blood vessels to the administration in conjunctival instillations of a 1.5 mmol/L 
adrenaline solution was tested. The parameters followed were represented by variations in the 
caliber of corneal blood vessels. The data were analyzed using Microsoft Office Excel. 
Results: Administration of distilled water did not produce statistically significant changes in 
corneal blood vessels, while adrenaline produced a statistically significant constriction of vascular 
diameter (p=0.01 at T9, p=0.004 at T10, p=0.019 at time T11 of examinations). 
Conclusions: The results showed that adrenaline produces vasoconstriction in the new corneal 
blood vessels, which allows us to assume that they contain α-adrenergic receptors. However, we 
cannot say that corneal pathological vessels do not contain β2-type adrenergic receptors, because 
the effect of adrenaline may be an algebraic sum between vasoconstriction produced by 
stimulating α-adrenergic receptors and vasodilation produced by stimulating β2-adrenergic 
receptors, but in which the vasodilating effect may be masked by the vasoconstrictor effect given 
by a higher density of α-adrenergic receptors. 
Keywords: adrenaline, new blood vessels, cornea, vasoconstriction 
Abbreviations: A= adrenaline, DNM = non-measurable diameter, NA= noradrenaline, Std.Er.= 
Standard error 
 

 

Introduction 

The adrenergic system comprises all the 
structures that use the catecholamines adrenaline and 
noradrenaline as chemical mediators. First described 
by Ahlquist in 1948 [1], adrenergic receptors are 
divided into two categories: α-adrenergic receptors 
and β-adrenergic receptors. Subsequently, the sub-
types α1 with postsynaptic localization and α2 
located predominantly presynaptic, but also 

postsynaptic and extrasynaptic were highlighted for 
α-adrenergic receptors [2-4]. α-adrenergic receptors 
were also divided into several sub-types β1, β2, β3, 
and β4 [5-7]. In 1959, Furchgott discovered other 
types of adrenergic receptors, gamma, and delta [8], 
responsible for the actions of catecholamines in 
smooth muscles. Currently, most authors admitted 
the existence of α1-, α2-, β1- and β2-adrenergic 
receptors. α1-adrenergic receptors are found mainly 
in the vascular smooth muscles, and their stimulation 

DOI:10.22336/rjo.2021.12 

 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=479
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=505


Damian et al.                                                                             Romanian Journal of Ophthalmology 2021; 65(1): 64-69 

 

 
65 

© 2021 The Authors.  
Romanian Journal of Ophthalmology 

causes vasoconstriction. α2-adrenergic receptors are 
located mainly presynaptically, and their stimulation 
inhibits presynaptic release of norepinephrine 
leading to relaxation of vascular and intestinal 
smooth muscles. There are also postsynaptic α2-
receptors that cause vasoconstriction [9]. Stimulation 
of β2-adrenergic receptors causes vasodilation by 
relaxing the vascular smooth muscles (arteriolar and 
venous). 

The corneal epithelium expresses α- and β-type 
adrenergic receptors. β-adrenergic receptors are 
found at the cell surface, and through adenylate 
cyclase, leading to the formation of AMP-cyclic, with 
stimulation of Cl- permeability at the epithelial 
membrane [10], as well as α1-adrenergic receptors 
that regulate inositol-phosphate turnover [11]. 
Stimulation of corneal β-adrenergic receptors causes 
protein kinase A activation and an increase in 
intracellular cAMP concentration, and stimulation of 
α2-adrenergic receptors inhibits protein kinase A 
(PKA) activity by inhibiting adenylate cyclase. 
Modulation of the corneal cAMP-PKA pathway can 
play important roles in homeostasis and corneal 
wound healing [12]. 

The effects of adrenaline and noradrenaline 
depend on their selectivity to the types of adrenergic 
receptors, as well as the density of the types of 
adrenergic receptors in the tissues. Noradrenaline has 
a high affinity for α-adrenoreceptors, causing a 
pressor-type response. Noradrenaline causes 
vasoconstriction in all vascular territories and 
increased volume by contraction of the spleen capsule 
[9]. Adrenaline has an affinity for both types of 
receptors, thus determining biphasic actions, the final 
response depending on the types of receptors it binds 
to and their density at the cell surface. Thus, in the 
cutaneous, mucosal, and splanchnic territories, where 
there is a higher density of α1-adrenergic receptors, 
adrenaline leads to vasoconstriction, while in the 
brain, in striated muscles, kidneys, or coronary 
adrenaline causes vasodilation due to an increased 
density of β2-adrenergic receptors. Table 1 shows a 
distribution of adrenergic receptors in the ocular 
tissues (in humans), and Table 2 shows a 
classification of adrenoceptors with agonists 
(endogenous and exogenous) and antagonists. 

 
Table 1. Distribution of adrenergic receptors in human eye tissues 

Type of 
adrenergic 

receptor 

Tissue location  

α1 
 

- iris dilator muscle [13]; retinal blood vessels [14]; ciliary muscle [15]; conjunctival epithelium 
[16]; corneal epithelium [11] and endothelium [17] 

α 2 - retinal pigmented epithelium- choriocapillaris, neurosensory retina [18]; iris epithelium and 
ciliary epithelium [18,19]; ciliary muscle [19]; retinal blood vessels [14]; retina (ganglion cells, 
and cells in the inner and outer nuclear layers) [20]; conjunctival epithelial cells [16,21]; 
trabecular meshwork cells [22] 

β1 - iris-ciliary body (small number) [23]; conjunctival epithelium [16]; retinal blood vessels [24] 
β 2 - ciliary muscle [15]; trabecular meshwork cells [25-27]; corneal epithelium and endothelium, lens 

epithelium, retina [27]; conjunctival epithelium [16,27] 
β 3 - conjunctival epithelium [16]; retinal endothelial cells [28] 

 
Table 2. Classification of adrenergic receptors with agonists (endogenous and exogenous) and antagonists 

Type of 
adrenergic 
receptor 

Agonists (endogenous) Selective agonists (exogenous) Selective antagonists 

α1 NA=A [29,30] 
 

-phenylephrine [31] 
-methoxamine [32] 
 

-prazosin [33] 
-doxazosin [33,34] 
-terazosin  [33,34] 
-tamsulosin [34] 

α2 A=NA [30,31] -clonidine [35] 
-dexmedetomidine [35] 
-oxymetazoline [31] 

-yohimbine  [35] 
 

β1 NA=A [36] 
 

-dobutamine [37] 
 

-metoprolol [38,39] 
-atenolol  [38,39] 
-bisoprolol  [38,39] 

β2 A>NA [36] 
 

-fenoterol [40] 
-terbutaline [40] 
-salbutamol [40] 
 

-Butoxamine [41] 
 

β3 NA>A [36] -mirabegron [42] -SR59230A [43] 
NA = noradrenaline, A = adrenaline 
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In certain situations, ocular neovascularization 
can lead to impaired visual function as well as the loss 
of the eyeball. The study of pharmacological receptors 
developed in the new blood vessels remains a 
challenge for the discovery of drug active substances, 
without/with minimal side effects, which may lead to 
their stopping or regression. 

Material and method 

The experiments were performed on Wistar rats. 
The animals were provided by the Biobase of “Carol 
Davila” University of Medicine and Pharmacy, 
Bucharest. The batches of animals were brought to 
the working laboratory where they were kept in 
standard environmental conditions. The animals had 
ad libitum access to food and water and were housed 
in plexiglass cages. The ambient temperature was 
between 21 and 24 °C, and the relative humidity was 
maintained between 45 and 60%. 

The experiment started with 75 rat pups, aged 15 
days, in which corneal blood vessels were obtained by 
successive administration of ketamine at a dose of 
150 mg/kg body weight, at an interval of 5 days 
between administrations, a total of five doses, to 
obtain a possible experimental model of corneal 
neovascularization. After the fifth dose of ketamine, 
rats with at least one eye neovascularization were 
selected, so that 19 batches of animals were formed, 
each batch of 6 eyes/experiment evaluable from the 
point of view of corneal neovascularization, on which 
adrenergic, cholinergic, and histaminergic substances 
were tested. The batch on which the adrenaline was 
tested was composed of 4 animals/6 eyes with 
neovascularization. The testing of the reactivity of 
new corneal blood vessels to adrenergic substances 
was performed on 45-day-old rats weighing 47-75 
grams, in which corneal blood vessels were obtained 
by the method described above. Recordings were 
made for each eye with neovascularization, 6 eyes for 
each experiment. 

The experiments were carried out with the 
approval of the Ethics Commission of “Carol Davila” 
University of Medicine and Pharmacy Bucharest, as 
well as following the provisions of Directive 2010/ 
63/ EU on the protection of animals used for scientific 
purposes, as well as their transposition into national 
law, by Law No. 43/ 2014. 

The substances used were ketamine 10% solution 
(CP-Ketamine 10%, CP-Pharma, Germany, veterinary 
medicine), distilled water (Zentiva SA, Romania), 
adrenaline Therapy 1 mg/ ml solution for injection 
adrenaline (SA Therapy, Romania). 

Adrenaline and distilled water were administered 
as solutions in conjunctival instillations, and ketamine 
was administered by injection, intraperitoneally. 

A Nikon stereomicroscope, model SMZ 1270, 
connected to a Mshot video camera, model MSX2-C, 
was used to visualize the corneal blood vessels, and 
the video camera was connected to a computer. The 
video camera was equipped with an intermediate lens 
attached to the front of the sensor to compensate for 
the magnification given by the stereomicroscope 
eyepieces. The system was manually calibrated using 
the “Mshot Imaging Analysis System” software and 
the Nikon micrometric calibration blade, type B (1 Div 
= 0.1 mm = 100 µm), J28004 series. The total 
magnification was 400X. 

The anesthetized rats were placed in lateral 
decubitus in a restraint device to have optimal access 
to the eyeball to be examined, and the eyelid slit was 
kept open by manual traction. The examination was 
performed for each eye that developed corneal 
neovascularization. Image recording was performed 
at set time intervals of 60 to 60 seconds over a period 
of 630 seconds. To have the same magnification 
factor, the records were made from the same working 
distance for each eye, and then the data were 
processed. 12 images were saved as jpg files for each 
eye. The images were processed in the Mshot Imaging 
Analysis System program. 

The substances to be researched were applied in 
the conjunctival sac by instillation, without touching 
the ocular surface, at moments T1 and T6. A drop of 
distilled water was administered 30 seconds after the 
start of the recording, and a drop of 1.5 mmol/ L 
adrenaline solution was administered at 330 seconds. 
Moments T1 and T6 were not analyzed. The vascular 
diameter measurement moments were: T0 (0 
seconds), T1 (30 seconds), T2 (90 seconds), T3 (150 
seconds), T4 (210 seconds), T5 (270 seconds), T6 
(330 seconds), T7 (390 seconds), T8 (450 seconds), 
T9 (510 seconds), T10 (570 seconds) and T11 (630 
seconds). Moments T1 and T6, when the substances 
to be investigated were applied, were not analyzed. 

The parameters followed were variations in 
vascular caliber (vasodilation/ vasoconstriction), and 
the measurements were expressed in micrometers. 

For each eye, respectively for each image of the 
chosen moment T0-T11, 3 measurements of the 
external diameter were performed at the same points 
for which the average was calculated. Subsequently, 
for each moment of each determination, the 
percentage variation of the diameter of the new blood 
vessels relative to the time T0 was calculated 
according to the following formula: 

𝐷𝑟𝑒𝑙 = (
𝐷𝑥 − 𝐷0

𝐷0
)𝑥100 

where Drel represents the mean of the percentage 
variation of the blood vessel diameter from the 
moment T0, Dx represents the diameter in µm of the 
blood vessel at the measured moment, and D0 
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represents the diameter of the blood vessel in µm 
from the moment T0. 

The positive values of Drel are represented by the 
increases in the diameter (vasodilation), while the 
negative values are the expression of the decrease of 
the vascular diameter (vasoconstriction). 

The mean and the standard error were calculated 
for each batch and each moment of the 
determinations. Using the T-Student test, the variant 
for paired samples (2-tailed, 1 paired), the statistical 
significance of the difference between each moment 
and the T0 moment was calculated, comparing Drel 
with the value from the T0 moment. The results were 
considered statistically significant if p<0.05. 

Results 

After administration of distilled water at time T1, 
the mean percentage change in blood vessel diameter 

± standard error was -0.28 ± 0.92 at time T2, -0.43 ± 
0.87 at time T3, 0.89 ± 0.8 at time T4, and 0.57 ± 1.1 at 
time T5, the differences being statistically 
insignificant compared to time T0. After 
administration of adrenaline 1.5 mmol/ L at time T6, 
the mean percentage change in vascular diameter ± 
standard error was -4.5 ± 4.38 at time T7, -15.59 ± 
7.82 at time T8, -33.32 ± 8.7 at time T9, -46.72 ± 9.72 
at time T10, and -40.71 ± 8.88 at time T11, for the last 
3 values the differences being statistically significant 
compared to time T0. At the T11 moment, the 
vascular diameter for 2 of the examined eyes 
decreased so much that the optical-electronic system 
used for recording no longer allowed its 
measurement. The results are presented in Table 3 
and Fig. 1. 

 
Table 3. Evolution over time of the mean percentage change in the diameter of the corneal blood vessels after the 
administration of distilled water at time T1, respectively after the administration of adrenaline 1.5 mmol/ L at time T6 

 Specimen 1 2 3 4 5 6 Mean Std.Er. p-value 

Im
ag

e 
ca

p
tu

re
 t

im
e 

(s
ec

o
n

d
s)

 

T0 0 0 0 0 0 0 0  0 0 

T1 -30s- Administration of distilled water 

T2 - 90s 2.94 0 -1.33 1.66 -2.08 -2.86 -0.28 0.92 0.77 

T3 - 150s 2.94 0 -2.66 0 0 -2.86 -0.43 0.87 0.64 

T4-210 2.94 3.7 -1.33 0 0 0 0.89 0.8 0.32 

T5 - 270s 1.47 3.7 -2.66 1.66 2.08 -2.86 0.57 1.1 0.63 

T6 - 330s- Adrenaline administration 

T7 - 390s 8.82 0 -10.66 -21.66 2.08 -5.55 -4.5 4.38 0.35 

T8 - 450s 8.82 -14.81 -9.33 -40 -2.08 -36.11 -15.59 7.82 0.10 

T9-510s  -14.7 -18.52 -9.33 -48.33 -56.25 -52.77 -33.32 8.7 0.01 

T10 -570s -42.64 -22.22 -18.66 -61.66 -54.58 -80.55 -46.72 9.72 0.004 

T11 -630s -41.17 -33.33 -23.33 -65  DNM  DNM -40.71 8.88 0.019 

           Std.Er. = Standard error, DNM = non-measurable diameter 

 

Discussions 

The model of corneal neovascularization is the 
result of research done to investigate sodium 
selenite-induced cataract in 15-day-old rat pups in 
which, for microscopic study of lens opacities, general 
anesthesia was performed with ketamine at a dose of 
150 mg/ kg body weight and in which in vivo study of 
lens transparency changes was no longer possible due 
to the occurrence of changes in corneal transparency 
(Fig. 2). The determining factor in the production of 
corneal changes was further investigated, and the 
conclusion was that ketamine is responsible for these 
changes in corneal transparency, which is consistent 
with existing data in literature [44-47]. 

The results presented above showed that the 
administration of adrenaline produces a statistically 
significant decrease in the diameter of the blood 

vessels (vasoconstriction). In two of the eyes 
examined, the vasoconstriction was so intense that 
the measurement of the vascular diameter was no 
longer possible. The administration of distilled water 
did not produce statistically significant changes in 
vascular diameter. These allowed us to assume that 
there are α-adrenergic receptors at the level of the 
corneal blood vessels, whose stimulation classically 
produces vasoconstriction. 

Following these results, we cannot exclude the 
existence of β-adrenergic receptors whose 
stimulation produces vasodilation. The 
vasoconstriction found above may be an algebraic 
sum between the vasoconstrictor effect produced by 
stimulating α-adrenergic receptors and the 
vasodilatory effect produced by stimulating β-
adrenergic receptors if the vasodilatory effect is less 
intense than the vasoconstrictor effect. 
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Conclusions 

1. Administered in conjunctival instillations, 
adrenaline produces vasoconstriction in the corneal 
blood vessels. 

2. In our experimental conditions, there were α-
adrenergic receptors in the corneal blood vessels. 

3. It is possible that there are also β-adrenergic 
receptors in the corneal blood vessels, but whose 
stimulation produces lower intensity vasodilation, 
masked by the vasoconstrictor effect produced by the 
stimulation of α-adrenergic receptors. 
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