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Iron plays an important role in host–pathogen interactions, in being an essential element
for both pathogen and host metabolism, but also by impacting immune cell differentiation
and anti-microbial effector pathways. Iron has been implicated to affect the differentiation
of T lymphocytes during inflammation, however, so far the underlying mechanism
remained elusive. In order to study the role of iron in T cell differentiation we here
investigated how dietary iron supplementation affects T cell function and outcome in a
model of chronic infection with the intracellular bacterium Salmonella enterica serovar
typhimurium (S. Typhimurium). Iron loading prior to infection fostered bacterial burden
and, unexpectedly, reduced differentiation of CD4+ T helper cells type 1 (Th1) and
expression of interferon-gamma (IFNg), a key cytokine to control infections with
intracellular pathogens. This effect could be traced back to iron-mediated induction of
the negative immune checkpoint regulator T cell immunoglobulin and mucin domain-
containing protein 3 (TIM-3), expressed on the surface of this T cell subset. In vitro
experiments demonstrated that iron supplementation specifically upregulated mRNA and
protein expression of TIM-3 in naïve Th cells in a dose-depdendent manner and hindered
priming of those T cells towards Th1 differentiation. Importantly, administration of TIM-3
blocking antibodies to iron-loaded mice infected with S. Typhimurium virtually restored
Th1 cell differentiation and significantly improved bacterial control. Our data uncover a
novel mechanism by which iron modulates CD4+ cell differentiation and functionality and
hence impacts infection control with intracellular pathogens. Specifically, iron inhibits the
differentiation of naive CD4+ T cells to protective IFNg producing Th1 lymphocytes via
stimulation of TIM-3 expression. Finally, TIM-3 may serve as a novel drug target for the
treatment of chronic infections with intracellular pathogens, specifically in iron
loading diseases.
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INTRODUCTION

Because of its high redox activity, iron is a key component of several
enzymatic processes. Virtually every cell of the body requires iron
for metabolism and proliferation. In mammals most iron for the
daily needs is deliverd by macrophages which ingest aged or
damaged red blood cells (1). After phagocytosis iron is extracted
from erythrocyte heme and exported from the macrophage via the
iron-exporter ferroportin-1 to the circulation, where it is bound to
transferrin, and taken up by cells via transferrin receptor-1 (TfR-1)
(2). This uptake is thus of high relevance for the differentiation of
most cells including lymphocytes (3, 4). Since iron is crucial for both
microbes andmammalian cells, iron homeostasis undergoes subtle
changes during infection and inflammatory processes which is
mediated by various mechanisms (5). Moreover, iron availability
affects lymphocyte proliferation and function (6–8). In human T
lymphocytes, iron induces refractoriness to IFNg/STAT1 (Signal
transducer and activator of transcription 1) signaling via
involvement of the TfR-1 (9). The TfR-1 regulates IFNg signaling
inactivatedTcells by interactingwith theTcell receptor (TCR)after
being recruited to the immunological synapse in response to TCR
activation (10). Activation of the TCR causes naïve CD4+ T cells to
proliferate and differentiate into different subsets [Th type 1 (Th1)
cells, Th2, Th17, Th9, Th22, and regulatory T cells (Treg)] (11),
depending on the specific cytokine milieu.

As a consequence of persisting antigenic stimulation and
inflammation, like in chronic infections and cancer, T cell
exhaustion develops as a state of cellular and immunological
dysfunction (12). Exhausted T cells are characterized by reduced
cytokine production and over-expression of a distinct set of
inhibitory receptors like programmed cell death protein 1 (PD-
1), cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4),
Lymphocyte-act ivation gene 3 (Lag-3) , and T cel l
immunoglobulin and mucin containing protein-3 (TIM-3)
(12). Several studies demonstrated a key role of TIM-3 in T
cell dysfunction and exhaustion (13–15) and in activating
signaling cascades leading to the regulation of immune cell
functions (16–20).

Whereas inhibitory receptors on lymphocytes such as PD-1,
CTLA-4, Lag-3, T cell immunoreceptor with Ig and ITIM
domains (TIGIT-1), and TIM-3 have been identified as crucial
components mediating T cell exhaustion in cancer and viral
infections (21), the role in chronic bacterial infections is largely
elusive. However, upon infection with Mycobacterium
tuberculosis Tim-3 knockout mice show an improved survival
(22), pointing to the importance of TIM-3 in bacterial infections.
Abbreviations: CFSE, carboxyfluorescein succinimidyl ester; Ctrl, control; CFU,
colony forming unit; DSS, dextran sodium sulfate; DMT1, di-valent metal
transporter 1; IL, interleukin; IFNg, interferon gamma; NTBI, non-transferrin
bound iron; TBI, transferrin bound iron; Tc, cytotoxic T cell, Th, helper T cell;
Treg, regulatory T cell; S. Typhimurium, Salmonella enterica serovar
Typhimurium; TNF, tumor necrosis factor; STAT1, signal transducer and
activator of transcription 1; TfR-1, transferrin receptor 1; TGF, transforming
growth factor; PD1, programmed cell death protein 1; CTLA-4, cytotoxic T-
lymphocyte-associated Protein 4; Lag-3, Lymphocyte-activation gene 3; PDL-1,
programmed cell death 1 ligand 1; TIGIT, T cell immunoreceptor with Ig and
ITIM domains; ZIP14, Zrt- And Irt-Like Protein 14.
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Salmonella enterica serovar Typhimurium (S. Typhimurium)
is a Gram negative, facultative intracellular bacterium which
causes typhoid fever like infections in mice. Many studies with
attenuated bacterial strains have emphasized an essential role for
Salmonella-specific CD4+ Th1 cells as important host response
mechanisms to intracellular pathogens (23, 24). Of note,
Salmonella are siderophilic bacteria and iron loading is
associated with increased bacterial multiplication and impaired
immune control of infection (25).

Here, we provide evidence that detrimental effects of high
systemic iron on the integrity of bacterial immune defense in a
model of chronic S. Typhimurium infection can be traced back to
a strong iron- mediated upregulation of TIM-3 expression in
helper T cells and an impaired differentiation into protective
IFNg producing Th1 lymphocytes. Administration of TIM-3
blocking antibodies to iron-loaded animals restored the Th1
cell expansion and greatly reduced bacterial burden, indicating
that the negative checkpoint modulator acts as a crucial, iron-
dependent regulator of T cell immune response to
bacterial pathogens.
MATERIALS AND METHODS

Mice
C57BL/6 mice had free access to food and water and were housed
according to institutional and governmental guidelines in the
animal facility of the Medical University of Innsbruck with a 12-
hour light-dark cycle and an average temperature of 20°C ± 1°C.
Animal experiments were approved by the Austrian Federal
Ministry of Science and Research (licence number BMWF-
66.011/0113-WF/V/3b/2016) according to the directive 2010/
63/EU. NrampG169 C57BL/6 mice are a kind gift from Ferric C.
Fang (University of Washington, Seattle). All experiments were
performed with male mice.

Infection of Mice
Wildype Salmonella enterica serovar typhimurium (S.
Typhimurium) strain ATCC14028 was used for experiments
and grown under sterile conditions in LB broth (Sigma-
Aldrich) to late-logarithmic phase. For the infection model
male mice were fed with different iron diets for two weeks and
during the course of the infection. Low iron diet had an iron
content of ≤9 mg iron/kg diet (26), high ion diet contained 5 g
iron/kg diet (both diets from Altromin). Male mice were used at
8–12 weeks of age and infected intraperitoneally with 500 CFU of
S. Typhimurium in 200 ml PBS (27–29). After 14 days of infection
mice were euthanized by cervical dislocation, spleens and livers
were isolated, erythrocytes lysed, and flow cytometry was
performed. The bacterial load of organs was determined by
plating serial dilutions of organ homogenates on LB agar
(Sigma-Aldrich) under sterile conditions and the number of
bacteria calculated per gram of tissue.

Blocking Antibody Experiments
Mice were fed and infected as described. Additionally from the
day of infection on, mice were intraperitoneally injected with
May 2021 | Volume 12 | Article 637809
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100µg inVivoMAbanti-mouseTIM-3 antibody (BioXCell; BE0115)
or InVivoMAb rat IgG2a isotype control (BioXCell; BE0089)
(30–34) in 200 µl PBS every second day till day 14 post infection.

Flow Cytometry Analysis
Spleens were homogenized through 100 µm nylon cell strainer
(Falcon) and red blood cells were lysed by incubation in ACK
buffer (150 mM NH4Cl, 10 mM KHCO3, 0.1 mM Na2EDTA) for
2 min at room temperature.

Flow cytometry staining was performed with panels of
antibodies specific for naïve, activated/memory and exhausted
T cells (anti-CD45-FITC, anti-CD3-Biotin + Streptavidin-
PeCy7, anti-CD4-FITC, anti-CD62L-PeCy7, anti-CD44-APC,
anti-TIM-3-APC, anti-PD1-PE) and neutrophils, macrophages
and monocytes (anti-CD45-FITC, anti-F4/80-BV421, anti-
CD11b-APC, anti-Ly6G-PerCPeF710, anti-MerTK-PECy7,
anti-Ly6C-BV510), in PBS with 0.5% FCS 2mM EDTA for
15 min. For the staining of iron recptors anti-TfR-1/CD71-PE,
anti-ZIP14 + donkey anti-rabbit DyLight488, and anti-DMT1 +
donkey anti-rabbit DyLight488 were used. For intracellular
staining cells will be stimulated with a mix containing 10 µg/
ml Brefeldin A (Sigma), 50 ng/ml PDBu (Sigma) and 500 ng/ml
ionomycin (Sigma) in RPMI-1640 (PAN Biotech) plus 10% FCS
(Biochrom) plus 1% penicillin/streptomycin (Lonza) plus 2 mM
L-glutamine (Lonza) for 4 h. Brefeldin A leads to blockade of
protein transport to the Golgi complex and therefore the
accumulation of proteins in the endoplasmic reticulum.
Following, cytokines are trapped inside the cells and can be
detected by intracellular staining as described. The cells were
then formalin-fixed, permeabilized (0.05% Triton X-100 in PBS)
and stained for cytokines (anti-IFNg-PE, anti-IL17-FITC, anti-
IL4-PE), and transcription factors (anti-FOXP3-FITC) for 1 h.
All antibodies were from Biolegend. Cells were analyzed with
Gallios and Cytoflex S flow cytometers (Beckman Coulter) and
FlowJo Software (Beckton Dickinson).

Iron Measurement
Serum iron concentrations are measured with a colorimetric iron
quantification kit (QuantiChrom Iron Assay Kit, BioAssay
Systems) following the manufacturer’s instructions. Tissue iron
was quant ified us ing a co lor imetr ic method with
bathophenanthroline disulfonic acid (35). In brief, organ
lysates were hydrolyzed with acid for 24 h at 65°C, mixed with
a colorimetric solution containing sodium acetate ,
bathophenanthroline disulfonic acid and l-ascorbic acid and
absorbance at 539 nm was measured. The iron content of the
organ was calculated from a standard curve and normalized to
the protein content of the lysate determined by the
Bradford method.

Splenocyte Cell Culture
Spleens were isolated and after lysis of erythrocytes using the
Mouse Erythrocyte Lysing Kit (R&D Systems) 2.5 x 105

splenocytes per well were then seeded in a 96-well round
bottom plate and stimulated with 4 µg/ml plate-bound or 1 µg/
ml soluble rat anti-mouse CD3 (clone 17A2; BD Pharmingen).
Ferric chloride FeCl3 (Sigma Aldrich), ferric sulfate Fe2(SO4)3
Frontiers in Immunology | www.frontiersin.org 3
(Sigma Aldrich), ferric citrate FeC6H5O7 (Sigma Aldrich) were
added at concentrations of 2.5, 5, 10 and 20 µM elementary iron.
Splenocytes were cultured in RPMI-1640 medium (PAN
Biotech) supplemented with 10% FCS (Biochrom), 2% sodium
pyruvate (Sigma), 1× non-essential amino acids (Gibco), 0.01%
b-mercaptoethanol (Roth), 1% penicillin/streptomycin (Lonza)
and 2 mM L-glutamine (Lonza).

BrdU Labeling of Splenocytes
Splenocytes were cultured as described before and pulsed with
10 µM BrdU (Sigma-Aldrich) 4 h before harvesting. Intracellular
staining for BrDU with surface co-staining for CD3, CD4
and CD8 was performed with BrdU Flow Kit (BD) according
to the manufacturers` instructions and cells were analyzed
with flow cytometry. Iron sources ferric chloride FeCl3, ferric
sulfate Fe2(SO4)3, ferric citrate FeC6H5O7 were added at
indicated concentrations.

T Cell Proliferation and
Differentiation Assays
Total and naive CD4+ T cells were isolated using the MagniSort
Mouse CD4 T cell Enrichment Kit and MagniSort Mouse CD4
Naive T cell Enrichment Kit (Invitrogen), respectively. 5 × 105

cells in 200 µl RPMI-1640 medium (PAN Biotech) supplemented
with 10% FCS (Biochrom), 2% sodium pyruvate (Sigma), 1×
non-essential amino acids (Gibco), 0,01% b-mercaptoethanol
(Roth), 1% penicillin/streptomycin (Lonza) and 2 mM L-
glutamine (Lonza) were cultivated in 96-well U-bottom cell
culture plates (Greiner) coated with 4 µg/ml anti-CD3 (BD
Pharmingen) and supplemented with 1 µg/ml anti-CD28 (BD
Pharmingen). For differentiation of the naive CD4+ T cells into
Th1 lymphocytes, the culture was additionally supplemented
with 10 ng/ml mIL-12 (Invitrogen) and 5 mg/ml anti-IL-4
(Invitrogen). Th2 cells were differentiated with 10 ng/ml IL-4,
5 µg/ml anti-IL-12, and 5 µg/ml anti-IFNg. For Th17
differentiation 5 ng/ml TGFb, 40 ng/ml IL-6, 10 ng/ml IL-23, 2
µg/ml anti-IFNg, and 2 µg/ml anti-IL-4 were added to the
medium, for regulatory T cell differentiation 5 ng/ml TGFb, 20
ng/ml IL-2, 5 µg/ml anti-IL-12, 5 µg/ml anti-IFNg, and 5 µg/ml
anti-IL-4 were used. Iron sources ferric cloride FeCl3, ferric
sulfate Fe2(SO4)3, and ferric citrate FeC6H5O7 were added at a
concentration of 5 µM for 48 h.

RNA Extraction and Quantitative Real-
Time PCR
Total RNA was prepared from nitrogen-frozen tissues with
peqGOLD Tri-Fast™ (Peqlab). For reverse transcription 4 µg
RNA was used. Real-time PCR was performed on a CFX96 light
cycler (Bio-Rad) using Ssofast Probes Supermix and Ssofast
EvaGreen Supermix (Bio-Rad Laboratories GmbH). Relative
gene expression was calculated with the DDCT method,
normalizing the results to the value for the Hypoxanthine
phosphoribosyltransferase (Hprt) gene. Havcr2 (Tim-3) fw 5`-
atgtgactctggatgaccatggga-3`; rv 5`-agtgaccttggctgctttgatgtc-3`;
probe 5`-aggtcactccagctcagactgcccat-3`; Hprt fw 5`-gaccggtc
ccgtcatgc-3`, rv 5`-tcataacctggttcatcatcgc-3`, probe 5`-accc
gcagtcccagcgtcgtc-3`; TfR-1/CD71 fw 5`-atgaggaaccagaccgttatg-
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3`, rv 5`-ccccaagtttcaactgacc-3`, prob 5`-cccacactggacttcgccgca-
3`. DMT-1 fw 5`-ggactgtggacggtcggtaa-3`, rv 5`-aatg
ttgccaccgctggt-3`, probe 5`-catctcgaaagtcctgctgaccga-3`, ZIP14
fw 5`-attgccctagccgatatgttc-3`, rv 5`-tgccctgaatacattgtgagg-3`.

Statistics
Statistical analysis was generated using Prism GraphPad software
(Version 7). Significance was determined by unpaired two-tailed
t test to assess data, when only two groups were compared. For
multiple comparisons Analysis of variance (ANOVA) combined
with Tukey`s post test was performed. P values less than 0.05
were considered as statistically significant in any test.

Specific Statistical Data Analyzed in
Main Figures
Figures 1A, B, D: one-way ANOVA for particular iron forms,
ANOVA p values presented in the plots.

Figures 1C, E, F, G: Two-tailed T test for control – iron
comparisons, p values presented in the plots. (C) p = 0.034, (E)
p = 0.044, (F) p = 0.006, (G) ns.

Figure 2: Two-tailed T test for low iron–high iron
comparisons, p values presented in the plots. (A) p = 0.038,
(B) p = 0.002, (C) p = 0.022, (D) p = 0.009.
Frontiers in Immunology | www.frontiersin.org 4
Figure 3: Two-tailed T test for low iron–high iron
comparisons, p values presented in the plots. (A) ns, (B) ns,
(C) day 14 p = 0.0018, day 21 p = 0.018.

Figure 4: Two-tailed T test for low iron–high iron
comparisons, p values presented in the plots. (A) %IFNg+ p =
0.001, %Tim-3+ p = 0.002, (B) p = 0.041, (C) ns.

Figure 5: Two-tailed T test for low iron–high iron
comparisons, p values presented in the plots. (A) p = 0.048,
(B) CFU/g spleen p = 0.037, CFU/g liver p = 0.033.
RESULTS

Iron Supplementation Inhibits T Cell
Priming and Expansion and Upregulates
the Immune Checkpoint Regulator TIM-3
Based on previous observations that iron loading affects Th1 and
Th2 cell differentiation (36, 37) and the regulatory effects of TIM
proteins on T cell priming (38) we hypothesized a possible
interconnection between those pathways.

First, iron supplementation of anti-CD3-primed splenocytes
isolated from naive mice induced a slight decrease in the
proliferation and dramatically slowed cell cycle progression of
A B C

E F G

D

FIGURE 1 | Iron inhibits T helper cell priming and expansion and stimulates TIM-3 expression in pan-CD4+ T cells and Th1 lymphocytes. (A, B) Splenocytes from
C57Bl/6 male mice were stimulated with plate-bound anti-CD3 antibodies and FeCl3, FeC6H5O7, Fe2(SO4)3 were added at different concentrations. Proliferation of
CD4+ T cells was measured as CFSE dilution (A) and BrdU incorporation (B) 72 h after culture start by flow cytometry. (C, D) Isolated CD4+ T cells were stimulated
with plate-bound anti-CD3 and soluble anti-CD28 and 5 µM (C) or indicated concentrations (D) of FeCl3, FeC6H5O7, or Fe2(SO4)3. Tim3 transcript levels were
determined by quantitative real-time PCR and normalized to Hprt mRNA levels using the DDCT method (C). Percentage of TIM3-positive cells was measured by flow
cytometry (D). (E–G) Splenic naive CD4+ lymphocytes were differentiated to Th1 cells by stimulation with plate bound anti-CD3, soluble anti-CD28, anti-IL-4
antibodies and IL-12 with or without (−) 5 µM FeCl3 for 72 h. Tim3 transcript levels were determined by quantitative real-time PCR and normalized to Hprt mRNA
levels using the DDCT method (E). Percentages of TIM-3 (F) and PD-1 (G) positive cells were measured by flow cytometry. Means ± SEM are shown in the plots.
Statistical significance was assessed by one-way ANOVA for each iron source (A, B, D) and by two-tailed Student`s t-test (C, E, F, G). Results of T test and ANOVA
are presented in the plots. *p < 0.05, **p < 0.01. (A–F) n = 3. (G) n = 5.
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T cells as demonstrated by CFSE dilution (Figure 1A) and BrdU
pulsing (Figure 1B) assays even at concentrations as low as 2.5 to
5 µM (39). Both effects were independent of the iron source
(chloride, sulfate and citrate) and, hence, independent of iron
Frontiers in Immunology | www.frontiersin.org 5
source-inherent differences in solubility, dissociation properties,
and cellular iron availability. In parallel, we found a strong
upregulation of both transcript and surface protein levels of
TIM-3 in the total CD4+ T cell fraction primed with anti-CD3/
A B C D

FIGURE 2 | Dietary iron supplementation increases iron stores and compromises anti-bacterial host defense in the chronic Salmonella Typhimurium infection.
C57BL/6 male mice expressing functional NrampG169 were fed either a high iron (5 g iron/kg diet) or a low iron (≤9 mg iron/kg diet) diet two weeks before and during
infection with 500 CFU of S. Typhimurium. The animals were analyzed 14 days post infection. (A, B) Iron content of the liver (A) and spleen (B) was assessed by a
colorimetric assay and normalized to the protein content of the organ homogenates. (C, D) Bacterial burden was determined by plating of spleen (C) and liver
(D) homogenates and CFU counting. CFU numbers were normalized to organ mass. Means ± SEM are shown in the plots. Statistical significance was determined
by the two-tailed Student`s t-test. *p < 0.05, **p < 0.01. (A) iron low n = 11, iron high n = 15; (B) iron low n = 17, iron high n = 24; (C) iron low n = 21, iron high n =
29; (D) iron low n = 8, iron high n = 16.
A B C

FIGURE 3 | Iron loading increases surface TIM-3 protein on effector/memory T helper cells during Salmonella typhimurium infection. NrampG169-expressing C57Bl/6
male mice were fed either a high iron (5 g iron/kg diet) or a low iron (≤9 mg iron/kg diet) diet two weeks before and during infection with 500 CFU of S. Typhimurium.
(A) Total spleen cellularity was measured by flow cytometry on day 14 post infection. (B, C) Percentages of effector/memory T helper cells (CD4+CD62LloCD44hi)
within CD4+ lymphocytes and percentage of TIM3-positive cells within the effector/memory T helper population were quantified by flow cytometry at the indicated
time points. Means ± SEM are shown in the plots. Statistical significance was determined by two-tailed T test (A) and two-way ANOVA with Tukey post-hoc tests
(B, C). Results of T test and post-hoc tests are presented in the plots. *p < 0.05, **p < 0.01. (A) iron low n = 16, iron high n = 22. (B) day 0 low iron n = 4, high iron
n = 4; day 14 low iron n = 12, high iron n = 12; day 21 low iron n = 3, high iron n = 5. (C) day 0 low iron n = 4, high iron n = 4; day 14 low iron n = 9, high iron n =
11; day 21 low iron n = 3, high iron n = 5.
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CD28 and supplemented with iron, as compared to control-
treated cultures (Figures 1C, D). Again, this upregulation was
observed with different iron supplements and occurred in a dose-
dependent manner. Notably, the same mode of regulation of
Tim-3 mRNA and protein levels was observed in naive Th cells
differentiated into Th1 lymphocytes in presence of iron (Figures
1E, F). Of note, surface abundance of another checkpoint
regulator, PD-1, was comparable in control- and iron-
stimulated Th1 differentiation cultures (Figure 1G).

In Vivo Dietary Iron Supplementation
Impairs Pathogen Control, Upregulates
TIM-3 and Reduces Th1 Differentiation
We then investigated if the strong inhibitory effects of iron on T
cell priming and the stimulation of the checkpoint regulator
TIM-3 can be recapitulated in vivo and if this affects anti-
bacterial defense in a model of chronic bacterial infection.
Frontiers in Immunology | www.frontiersin.org 6
To this end we used C57BL/6 mice with transgenic expression
of a functional natural resistance associated macrophage protein
1 (NRAMP1 or SlC11A1), which results in an improved host
resistance to infections with S. Typhimurium and thus prolonged
bacterial infection allowing to study T cell responses over time
(Figure 2, Supplementary Figure 1).

Mice were fed with low (<9 mg elementary Fe/kg) (26) or high
iron (5 g/kg) diets for two weeks and during the course of the
infection. After intraperitoneal infection with 500 CFU of S.
Typhimurium (27–29) mice were followed up for 14 days. Since
the canonical high iron feeding regime used in the short-term
Salmonella infection model (25 g/kg) led to strong weight
reduction and pre-term mortality, we decided to induce iron
overload with chow containing less iron (5 g Fe/kg), which was
sufficient to significantly increase the levels of the metal in the
canonical storage organs, liver and spleen, as compared to mice
on a low-iron diet (Figures 2A, B). This was accompanied by
A

B C

FIGURE 4 | Stimulation of TIM-3 expression and impaired differentiation of Th1 cells by iron loading in Salmonella typhimurium infection. NrampG169-expressing
C57Bl/6 male mice were fed either a high iron (5 g iron/kg diet) or a low iron (≤9 mg iron/kg diet) diet two weeks before and during infection with 500 CFU of S.
Typhimurium. The animals were analyzed on day 14 post infection. (A) Total number of cells per spleen, percentages of splenic Th1 cells (IFNg+, T-bet+) within CD4+

helper T cells and percentages of TIM-3 positive cells within the Th1 subset were quantified by flow cytometry. (B) Serum concentration of IFNg was measured by a
multiplex assay. (C) Percentages of Th17 (IL-17A+), regulatory T helper T cells (FOXP3+), and Th2 (IL-4+) within the CD4+ helper T lymphocyte subset were
determined by flow cytometry. Means ± SEM are shown in the plots. Statistical significance was assessed by two-tailed T test. *p < 0.05, **p < 0.01. (A) IFNg + iron
low n = 17, iron high n = 19; TIM3+ iron low n = 12, iron high n = 20; (B) iron low n = 8, iron high n = 10. (C) IL-17+ iron low n = 6, iron high n = 9; FOXP3+ iron low
n = 6, iron high n = 9; IL-4+ iron low n = 17, iron high n = 14.
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elevated bacterial burden in those organs (Figures 2C, D;
Supplementary Figure 1). In line with the in vitro results,
TIM-3 surface protein expression in effector-memory T helper
cells (CD4+CD62LloCD44hi), which is the population primed
and expanded during infection (40), was progressively increasing
over time (Figure 3C). Of note, neither spleen cellularity
(Figures 3A, 4A), nor general abundance of this CD4+ T cell
subset was changed by dietary iron supplementation (Figure
3B). The IFNg expressing Th1 subset plays a central role in
mounting effective immune protection against S. Typhimurium
(40). Dietary iron loading strongly upregulated surface TIM-3
levels in that subset (Figure 4A, Supplementary Figure 1D) and
dramatically reduced frequencies of Th1 cells within splenic
helper CD4+ and CD3+ pan-T cells on day 14 post bacteria
challenge. This suggested reduced priming and differentiation of
Th1 cells and/or their exhaustion by high iron availability
Frontiers in Immunology | www.frontiersin.org 7
(Figure 4A, Supplementary Figure 1C). In line with the
reduced Th1 differentiation, we found significantly decreased
percentages of helper T cells expressing T-bet, the key
transcription factor orchestrating development of the Th1
phenotype (Figure 4A). Consequently, at the systemic level,
the diminished Th1 cell expansion culminated in reduced
circulating concentration of IFNg in iron-fed mice (Figure
4B). Of note, we did not observe any substantial effects of
dietary iron overload on the residual, self-sustaining pool of
Th1, Th2, Th17 and Treg lymphocytes in the spleen
(Supplementary Figure 4).

Analogically to the in vitro setting, iron loading in vivo had no
impact on the levels of another immune checkpoint protein, PD-
1, on the surface of helper T lymphocytes (Supplementary
Figure 1E), which suggests that the inhibitory effects of the
metal are limited to TIM-3 regulation. Importantly, the effects of
A

B

FIGURE 5 | TIM-3 blockade restores Th1 cell differentiation and pathogen control in iron supplemented S. Typhimurium-infected mice. NrampG169-expressing
C57Bl/6 male mice were fed a high iron (5 g iron/kg diet) diet two weeks before and during infection with 500 CFU of S. Typhimurium. From the day of infection on,
mice were intraperitoneally injected with 100 µg in vivo MAb anti-mouse TIM-3 antibody or in vivo MAb rat IgG2a isotype control on every second day. The animals
were analyzed on day 14 post infection. (A) Total cell number per spleen and percentages of Th1 (IFNg +) cells within the CD4+ helper T cells were assessed by flow
cytometry. (B) Bacterial burden was determined by plating of spleen and liver homogenates and CFU counting. CFU numbers were normalized to organ mass.
Means ± SEM are shown in the plots. Statistical significance was assessed by two-tailed T test. *p < 0.05, **p < 0.01. (A) isotype control n = 12; Tim-3 blocking Ab
n = 7. (B) spleen isotype control n = 6, Tim-3 blocking Ab n = 7; liver isotype control n = 7, Tim-3 blocking Ab n = 8.
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iron were highly Th1 cell specific, as neither the IL-4+ Th2, nor
the IL-17A+ Th17, nor the regulatory FOXP3+ T cell subsets
displayed numerical alterations upon high-iron diet (Figure 4C).
In addition, serum levels of IL-2, the key cytokine for T cell
expansion were not changed after iron loading of S.
Typhimurium infected mice (Supplementary Figure 2A). Of
note, the levels of major inducers of TIM-3 expression, namely
IL-12 (31) and IL-27 (32), were not significantly affected by iron
challenges (Supplementary Figures 2B, C), suggesting that iron
controls TIM-3 mRNA and protein expression rather directly via
a cell-intrinsic mechanism and not via modulating the
expression of those two TIM-3 inducing cytokines.

So far, our data clearly showed the negative impact of iron
overload on Th1 cell differentiation, function, and microbial
control. However, in theory these effects could also be attributed
to the particularly effective T cell response in the low iron setting
or to the extreme difference in iron content between the diets. To
account for that, we performed the S. Typhimurium infection
experiments in animals fed the low iron (<9 mg/kg), standard
(166 mg/kg) and high iron chow (5 g/kg). As shown in
Supplementary Figure 5, there was no significant difference
neither in Th1 (CD4+ IFNg+) differentiation or expression of
surface TIM-3 in Th1 cells (A, B), nor in abundance of Th2, Treg
and Th17 cells (C–E) between the low- and standard iron chow.
Conversely, the Th1 cell percentages were significantly higher
and their TIM-3 expression was significantly lower in the
animals fed standard diet than in iron overloaded mice
(Supplementary Figures 5A, B).

Dietary Iron Supplementation Has No
Effect on Numbers of Non-Lymphoid
Immune Cells in Response to S.
Typhimurium Infection
Because TIM-3 is not only expressed on lymphocytes but also on
myeloid cells such as monocytes and macrophages (41), we
reasoned that innate immune cell numbers may also be
affected by iron challenge. As shown in Supplementary Figure
3, we could not find any significant differences in relative
frequencies of any of the investigated myeloid populations
(neutrophils, macrophages, Ly6Chi classical monocytes and
Ly6Clo resident monocytes) attributed to the iron content of
the diets after 14 days of infection with S. Typhimurium. These
results point towards comparable levels of systemic
inflammation in both experimental groups. The percentages of
TIM-3-expressing cells in the myeloid leukocytes were found, in
general, to be less than half of the expression of TIM-3 in the Th1
lymphocytes and, in addition, were not significantly affected by
dietary iron loading (Supplementary Figure 3, Figure 4A).

Administration of TIM-3 Blocking
Antibodies Restores Th1 Cell Expansion
and Improves Pathogen Control in Iron-
Supplemented Mice
We next tested whether neutralization of TIM-3 affects iron
induced Th1 cell exhaustion and the impaired immune control
of chronic S. Typhimurium infection.
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To test that, we administered isotype and blocking antibodies
against TIM-3 (17) to iron loaded animals infected with S.
Typhimurium. In this setting, blocking TIM-3 significantly
increased the numbers of IFNg-producing Th1 lymphocytes
within the CD4+ T cell compartment as compared with
animals receiving the isotype antibody (Figure 5A). Moreover,
it virtually restored the Th1 differentiation to the levels observed
in Salmonella-infected mice fed an iron-low chow (Figure 4A).
Importantly, this intervention had no effect on the total
cellularity of the spleens (Figure 4A). Furthermore, the TIM-3
blockade in vivo improved bacterial control as demonstrated by a
significant reduction of bacterial burden in the liver and spleen
(Figure 5B). Collectively, our findings demonstrate that TIM-3
links the negative effects of iron on IFNg production by Th1
lymphocytes to impaired host defense against the intracellular
pathogen S. Typhimurium.

Th1 Cells Express the Highest Levels
of Cellular Iron Importers Among the
Th Subsets
Finally, we sought to investigate the mechanism behind the
highly specific TIM-3-mediated impact of iron on Th1
lymphocytes but not on the other CD4+ T cell subsets. The
most obvious explanation is a potential difference in uptake of
iron by various Th cell classes. To test that, we investigated levels
of cellular iron importers in Th1, Th2, Th17, and Treg
lymphocytes. Iron can be ingested by the cell in two forms: as
transferrin-bound iron (TBI), being the physiological form of the
element, and as chemically reactive, potentially toxic non-
transferrin-bound iron (NTBI), as for example upon iron
overload conditions. Interestingly, among the Th subsets
differentiated ex vivo, Th1 cells demonstrated the highest
mRNA and surface protein expression of both the TBI
importer TfR1 (transferrin receptor 1) and NTBI uptake
proteins DMT1 (di-valent metal transporter 1), as well as
ZIP14 (Zrt- And Irt-Like Protein 14) (Supplementary Figure
6). This may be related to the superior iron uptake capabilities of
Th1 cells and the higher sensitivity to iron compared with other
CD4+ T cells.
DISCUSSION

Here we report a novel mechanism by which the increased
availability of iron leads to an unfavorable outcome of
infections with the intracellular bacterium Salmonella enterica
serovar Typhimurium. Iron specifically acts on IFNg-producing
CD4+ T cells and stimulates the expression of the negative
regulatory surface receptor or ‘immune checkpoint’ inhibitor
TIM-3, thus reducing the functionality of these cells. This is in
line with earlier studies indicating that Th1 T cells are exquisitely
sensitive to iron perturbations because intracellular iron
depletion affects Th1 cells more than the Th2 cell subset (8, 36,
37). In our model of chronic bacterial infection, the effects of iron
were highly specific for Th1 cells as neither the number of Th2,
nor Th17 or Treg subsets displayed differences after high iron
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diet. Interestingly, our previous report provided evidence that the
function of the CD8+ IFNg-producing T cell subset in murine
mammary carcinoma was strongly hampered by intravenous
iron supplementation (39).

Principally, iron can be ingested by cells as transferrin-bound
iron, being the physiological form of the element, which is
mediated by the TfR-1. Additionally, iron can be taken up as
chemically reactive and potentially toxic non-transferrin-bound
iron, mediated by the receptors DMT1 and ZIP14. This form of
iron ingestion happens e.g. upon iron overload conditions. Our
in vitro results showed a preferential expression of iron uptake
receptors, both of the transferrin- and non-transferrin bound
iron forms, in the Th1 subset which is likely to explain their
particular sensitivity to iron overload. Appropriately, the CD4+ T
cell subset was described to be the main effector subset in the
defense of Salmonella infections (20, 40, 42).

Importantly, in chronic infections T cell exhaustion is
described to develop as a state of cellular and immunological
dysfunction as a consequence of persisting antigenic stimulation
(12), leading to reduced cytokine production and over-expression
of inhibitory receptors. TIM-3, an inhibitory receptor widely
expressed on Th1 cells, is described as an important player in T
cell dysfunction and exhaustion (12–15). This supports our
finding that iron specifically impacts on TIM-3 expression in
Th1 cells during chronic infection. Indeed, we showed that dietary
iron loading strongly upregulated surface TIM-3 levels on Th1
cells. A pathophysiological role of this interaction is strongly
supported by the finding that anti-TIM-3 treatment improved
infection control in iron loadedmice to levels observed in animals
on an ironbalanced diet. This is in line with recently published
studies, demonstrating the crucial role of TIM-3 over-expression
on T cells in the control of infections with intracellular bacteria
such as Mycobacterium tuberculosis, where IFNg mediated
immune effector pathways play a decisive role (23, 43, 44).
Accordingly, in M. tuberculosis infected mice administration of
a TIM-3 fusion protein, acting as a molecular sink for TIM-3
ligands, reduced the bacterial burden (22). In ourmodel, similar to
theM. tuberculosis infectionmodel, blocking TIM-3 overcame the
detrimental effect of iron on IFNg-producing Th1 cells.
Furthermore, it rescued Th1 differentiation, and reduced bacterial
burden in livers and spleens of Salmonella infected mice This
highlights the role of TIM-3 as a crucial negative regulator of Th1
cell expansion and Th1-mediated bacterial host defense acting
downstream of iron in chronic Salmonella infection.

Our findings raise the question how iron impacts Th1
immunity by influencing the expression of TIM-3. According
to our in vitro data (Figure 1) iron dose-dependently increased
TIM-3 expression, and blocked cell cycle progression and
differentiation of Th0 to Th1 cells. Hence, two non-exclusive
mechanisms may be proposed: first, interference of iron with the
Th1-specific transcription factor network and second, signaling
induced by reactive oxygen species, as postulated in our previous
report on iron and anti-tumor CD8+ T cells (39). While iron did
not affect the expression of TIM-3-inducing cytokines, IL-12 and
IL-27 in vivo, it still could affect signals mediated by those
cytokines via the IL-12 receptor or via T-bet, the master switch
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transcription factor of Th1 cells. This is supported by our data
showing similar effects of iron on T-bet and on IFNg expression
in Th1 cells. This would be in a line with the description of T-bet
as important regulator of TIM-3 on Th1 cells (45). In addition,
iron may act on transcription factors other than T-bet such as c-
Jun N-terminal kinases (JNK) (46) which, in turn, can activate
several down-stream factors including c-Jun and SMAD Family
Member 4 (Smad4) which are known to trans-activate TIM-3
expression (47, 48).

Our recently published data (39) indicate that high cellular
iron content in CD8+ T cells induces accumulation of reactive
oxygen species (ROS) in mitochondria and that treatment with a
mitochondria-specific ROS scavenger could restore T cell
priming even in the high iron setting. Whether a ROS-
mediated mechanism including ferroptosis (49) or
mitochondrial dysfunction (50) as a consequence of iron
loading underly the TIM-3 up-regulation and functional
impairment of Th1 cells in high iron-fed Salmonella-infected
animals remains to be investigated.

Importantly, the increased expression of TIM-3 in response
to iron overload is pathophysiologically relevant as we were able
to restore host defense against Salmonella by a TIM-3 blocking
antibody. As microbial resistance against major classes of
antibiotics continues to increase, immune-modulatory
therapies that strengthen host defence mechanisms and
promote bacterial killing will become more and more
important. Therefore, the selective acquired immune deficit
that iron overload exerts on Th1 immunity could be partly
overcome by a monoclonal antibody against TIM-3. This may
be specifically relevant in subjects with iron overload on the basis
of repeated transfusions in the course of hematological diseases
or hemoglobinopathies. Hence, our study provides a novel
rational for an immune-modulatory therapy by blocking the
checkpoint molecule TIM-3.
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