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Altered Phenylpropanoid 
Metabolism in the Maize Lc-
Expressed Sweet Potato (Ipomoea 
batatas) Affects Storage Root 
Development
Hongxia Wang1, Jun Yang2, Min Zhang1, Weijuan Fan1, Nurit Firon3, Sitakanta Pattanaik4, 
Ling Yuan4 & Peng Zhang1,2

There is no direct evidence of the effect of lignin metabolism on early storage root development in 
sweet potato. In this study, we found that heterologous expression of the maize leaf color (Lc) gene in 
sweet potato increased anthocyanin pigment accumulation in the whole plant and resulted in reduced 
size with an increased length/width ratio, low yield and less starch content in the early storage roots. 
RT-PCR analysis revealed dramatic up-regulation of the genes involved in the lignin biosynthesis 
pathway in developing storage roots, leading to greater lignin content in the Lc transgenic lines, 
compared to the wild type. This was also evidenced by the enhanced lignification of vascular cells 
in the early storage roots. Furthermore, increased expression of the β-amylase gene in leaves and 
storage roots also accelerated starch degradation and increased the sugar use efficiency, providing 
more energy and carbohydrate sources for lignin biosynthesis in the Lc transgenic sweet potato. Lesser 
starch accumulation was observed in the developing storage roots at the initiation stage in the Lc 
plants. Our study provides experimental evidence of the basic carbohydrate metabolism underlying the 
development of storage roots, which is the transformation of lignin biosynthesis to starch biosynthesis.

Sweet potato (Ipomoea batatas [L.] Lam), cassava (Manihot esculenta Crantz) and potato (Solanum tuberosum L.) 
are the major root and tuber crops and an essential component of subsistence agriculture in terms of guaranteeing 
food security and improving nutrition status regionally1. One of the biggest advantages of sweet potato cultivation 
is the production of fleshy storage roots with high yield, a complex process that transforms adventitious roots 
to storage roots and results in the accumulation of a large amount of starch as well as other health-promoting 
components such as anthocyanins and carotenes2–4. Storage root development in sweet potato, as a form of sec-
ondary growth, has been intensively studied since the 1920s by the plant anatomist and morphologist Dr. Ernst 
Artschwager5. Typically, the sweet potato root system consists of three different types of roots (fibrous roots, pencil 
roots and storage roots) that originate from adventitious roots and are distinguishable from each other2 (Fig. 1A). 
The vigorous differentiation of circular vascular cambia derived from both primary vascular cambia and secondary 
cambia formed around secondary xylem elements promotes the cell division and expansion of thin-walled, paren-
chyma cells for storage of starch granules, which leads to rapid bulking and starchy tuberous root formation4–6. 
The pencil roots are thickened but heavily lignified with a diameter less than 2 cm (Fig. 1A), which suggests that 
stele lignification during the early phase/stage of storage root development affects storage root development7–11. 
In addition, storage root initiation was proposed by Togari7 to be influenced by the balance between cambium 
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propagation and lignification, a process that is affected by genetic, physiological, and environmental factors. Under 
stressful conditions, e.g., drought and poor soil fertility, sweet potato shows retarded storage root development 
with more pencil root production12,13, suggesting that sufficient supply of photo-assimilates from the source to the 
sink is important for starch metabolism and storage root development.

Although several morphoanatomical studies have been conducted on storage root development in sweet potato, 
the underlying molecular and physiological mechanisms and their regulation are still unclear2,3,14. Carbon flux, 
the basis of plant growth, is distributed into various branches between the primary and secondary metabolic 
pathways and affects the factors involved in plant growth and development, including starch, cellulose, lignin 
and flavonoids15. Recently, transcription profiling of the initiating storage roots and fibrous roots has revealed the 
down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis, which are considered to be the 
major events involved in storage root initiation4,11. Mobilization of carbon flux toward starch biosynthesis has also 
been suggested in another root crop—cassava16. During storage root formation, the transition of carbon flux, from 
phenylpropanoid biosynthesis to carbohydrate metabolism and starch biosynthesis, is considered an important 
domestication process from wild ancestor to cultivated varieties of cassava17; this is similar to the observations in 
sweet potato11. Recently, key genes regulating storage root formation, such as the Dof zing finger transcriptional 
factor SRF1, MADS-box protein SRD1 and expansins, have been intensively studied18–20. SRF1 regulates carbo-
hydrate metabolism in the storage roots through negative regulation of a vacuolar invertase gene18, while SRD1 
functions in the formation of storage roots by inducing the proliferation of cambium and metaxylem cells19, a 
process that can be negatively regulated by the IbEXP1 gene20. Taken together, recent studies indicate that storage 
root formation may involve the regulation of lignin and starch biosynthesis.

Figure 1. Molecular and phenotypic characterization of wild-type and Lc transgenic sweet potato.  
(A) Classification of sweet potato root developmental stages (S1 to S20). S1-S8, Fibrous roots; S9-S13, Early 
developmental stage of storage roots; S14-S17, Late developmental stage of storage roots; S17–20, Mature 
storage roots. The pencil roots cover the size of stages from S9 to S17 but are uniformly thickened and 
lignified. (B) Southern blot analysis of HindIII-digested genomic DNA using the DIG-labeled hygromycin 
phosphotranferase gene (hpt) probe. M, Molecular marker; Lc1–5, independent Lc transgenic lines; WT, wild 
type. (C,D) Comparison of Lc expression levels in the developing storage root (S16), stem and leaf of three 
2-month-old Lc transgenic lines by RT-PCR (C) and qRT-PCR analysis. (D) The sweet potato ACTIN gene was 
used as a reference for normalization, and the Lc expression levels in Lc1 tissues was used for calibration in 
qRT-PCR assay. (E) Phenotypes of the WT and Lc transgenic plants in the field showing the shoots, the 3rd fully 
expanded leaves from the top, stems and cross-sections of the developing storage roots (S16) after 2 months of 
growth.
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Several important transcription factors that regulate the biosynthesis pathways of primary and secondary 
metabolites and finally affect carbon partitioning in plants have been reported21,22. For example, the expression 
of several NAC family transcription factor that promote the secondary growth of cell walls can up-regulate lignin 
biosynthesis in wood23,24. These factors, however, are observed to be down-regulated during storage root devel-
opment in sweet potato25. Moreover, heterologous expression of the maize leaf color (Lc) transcription factor26, 
basic helix-loop-helix (bHLH) transcription factor which regulates flavonoid pathway genes, caused not only an 
increase in the anthocyanin and proanthocyanidin pigments, but also a reduction in the size of transgenic apple, 
tomato, creeping bentgrass, etc.27–30. Several factors have been found to be involved in storage root initiation and 
development in cassava and sweet potato, but they need further functional validation11,16. Among these factors, 
three bHLH-homologues, exhibiting 7- to 1.4-fold down-regulation following storage root initiation, were iden-
tified in ‘Georgia Jet’ sweet potato11.

In this study, we found that ectopic expression of the maize anthocyanin regulator Lc in sweet potato could 
elevate the expression of the phenylalanine ammonia-lyase (PAL) gene, as well as the downstream genes cinnamate 
4-hydroxylase (C4H) and 4 coumaroyl-CoA synthase (4CL), in the lignin biosynthesis pathway, leading to lignifi-
cation in adventitious roots and in developing storage roots. Increased lignification in Lc-expressing sweet potato 
roots was accompanied by significant yield reduction as well as repression of starch accumulation in the developing 
storage roots. In contrast to the situation in the roots, increased lignification of the canopy did not show a significant 
effect on plant growth. This study thus suggests a cause-and-effect relationship between increased lignification and 
reduced storage root yield. Furthermore, the results suggest that lignification competes with starch accumulation 
for the distribution of photo-assimilates in developing storage roots.

Results
Molecular and phenotypic characterization of Lc transgenic sweet potato. The 1833-bp open 
reading frame of the maize Lc gene driven by the CaMV 35S promoter was introduced into purple sweet potato, 
Ayamurasaki, via Agrobacterium-mediated transformation31. Twelve independent transgenic plant lines (named 
the Lc lines) were regenerated and propagated by in vitro culturing. The integration number of T-DNA was con-
firmed by Southern blot analysis using HindIII-digested genomic DNA hybridized with the digoxygenin (DIG)-
labeled probe of the hygromycin phosphotransferase gene (hpt). Three independent transgenic lines—Lc1, Lc2 
and Lc3—which showed single copy T-DNA integrations (Fig. 1B) were compared for their Lc transcription level 
by RT-PCR (Fig. 1C) and qRT-PCR (Fig. 1D). The three lines showed similar Lc expression in the root, stem and 
leaf, when calibrated with Lc expression in the corresponding tissues of the Lc1 plant (Fig. 1D).

The in vitro cultured (Supplementary Fig. 1A), greenhouse-grown (Supplementary Fig. 1B) and field-grown 
plants (Fig. 1E) showed enhanced anthocyanin pigmentation in leaves, stems, adventitious roots and storage 
roots of Lc transgenic plants, compared to the wild type (WT). When harvested from the field after 5 months of 
growth, all transgenic lines showed dark purple coloration on the whole plant (Fig. 1E; Supplementary Fig. 1C). 
These results show that heterologous expression of the Lc transcription factor could lead to elevated anthocyanin 
production in the purple sweet potato.

Lc promotes flavonoid accumulation and the flavonoid biosynthetic pathway in sweet 
potato. Anthocyanin content and expression of anthocyanin pathway genes were measured in the Lc trans-
genic lines and WT plants. Compared to the WT, the three Lc transgenic lines showed dramatically increased 
anthocyanin content in leaves, stems and developing storage roots (S16) (Fig. 2A). Anthocyanin content in the 
Lc1 leaf was 15.09 mg/100 g, 3.6-fold that of the WT (4.16 mg/100 g). The stem of the Lc transgenic lines showed 
the highest fold-change increase in anthocyanin content, 13.63 times that of the WT (0.82 mg/100 g). Further, 
the anthocyanin content in the storage roots of Lc1, Lc2 and Lc3 was 33.72 mg/100 g to 36.77 mg/100 g, 1.5 times 
that of the WT (22.09 mg/100 g). Only slight variations in the anthocyanin content were observed between the 
three transgenic lines (Fig. 2A); these observations reflect the phenotype changes observed in the leaves, stems 
and storage roots (Fig. 1E).

To investigate the impact of Lc expression on the content of other flavonoids in sweet potato, two flavonols—
quercetin-3-O-hexose-hexoside ([M-H]-625) and quercetin-3-O-hexoside ([M-H]-463)—that were recently 
identified in purple sweet potato32,33 were analyzed by HPLC-MS-MS (Supplementary Fig. S2). The content 
of these flavonols was significantly increased in the leaves, stems and developing storage roots (S16) of the Lc 
transgenic lines compared to the WT (Fig. 2B). The total flavonol content (quercetin-3-O-hexose-hexoside +  
quercetin-3-O-glucoside) in the leaf, stem and root of Lc1 was 83.8 μ g/g, 6.89 μ g/g and 2.91 μ g/g, respectively, 
which is 13.05-fold, 6.75-fold and 4.62-fold higher than that in the WT, respectively. Similar changes were also 
observed in Lc2 and Lc3 (Fig. 2B). These results indicate that the biosynthesis of flavonols was increased in the 
Lc transgenic plants.

To further explore the effect of Lc on the flavonoid metabolic pathways, the expression of structural genes 
involved in the flavonoid pathway was analyzed. The expression of Lc in purple sweet potato led to an increase in 
the transcript levels of most flavonoid biosynthetic genes, which had different expression patterns in the leaves, 
stems and developing storage roots (S16) (Fig. 2C). In the leaves, the transcript levels of the genes CHI, CHS, 
F3H, DFR, ANS, 3GT and FLS were dramatically increased in the Lc lines compared to the WT. In particular, 
more than 100-fold change was observed in the transcript levels of the DFR gene. No significant difference was 
observed in the expression of the PAL gene (Fig. 2C, upper panel). In contrast, expression of the PAL gene as well 
as several other genes such as CHS was dramatically increased in the stems and roots of the Lc transgenic lines. 
Compared to the WT, the Lc lines showed a 4.33-fold and 4.87-fold change in the expression of PAL in the stems 
and developing storage roots (Fig. 2C, middle and bottom panels). These results imply that Lc regulates expression 
of the flavonoid biosynthetic genes differentially between leaves and stems/roots, which means that it possibly 
interacts differently with the other transcription factors in these organs. It cannot be excluded that the differential 
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expression of the pathway genes could be due to involvement of tissue specific regulatory proteins that act coor-
dinately with Lc through protein-protein interaction or concurrent binding of these proteins to their promoters. 
The bHLH factor-binding G-box (CACGTG) or E-box (CANNTG) motifs are present in the promoter regions of 
most flavonoid biosynthetic genes (Supplementary Fig. 3A). The results of a yeast-one-hybrid assay also indicated 
that Lc was able to bind to the G-boxes (CACGTG) of some of the sweet potato genes, such as CHS, DFR, and 
ANS; mutation of the G-boxes (CTATAG) resulted in the loss of its binding capacity (Supplementary Fig. 3B,C).

Lc transgenic sweet potato showed retarded development of storage roots but no changes in 
the photosynthesis capacity of the leaves. After the plants were harvested from the field, clear pheno-
typic changes were observed in the mature storage roots of the 5-month-old Lc plant lines compared to the WT 
plants (Fig. 3A). Under field conditions, the WT plant produced 4–6 round-elliptical storage roots per plant with 
a short root stalk. The Lc transgenic lines produced similar numbers of storage roots per plant, but these storage 
roots were long and irregular or curved in shape and exhibited reduction in storage root ‘bulking’ or growth 
(Fig. 3A,B). The length/width ratio of the storage roots in the Lc transgenic lines was significantly increased, rang-
ing from 3.98 (in Lc1) to 9.80 (in Lc3), much higher than that of the WT (2.15 in average, Fig. 3C). The per plant 
yield was remarkably decreased (0.49 kg in Lc1) compared to the WT (1.86 kg) (Fig. 3D). However, the water 

Figure 2. Quantification of anthocyanins and flavonols and transcription levels of flavonoid biosynthetic 
genes in the leaves, stems and developing storage roots (S16) of 2-month-old wild-type and Lc transgenic 
sweet potato. (A,B) Changes in the anthocyanin content (A) and flavonol (quercetin-3-O-hexose-hexoside and 
quercetin-3-O-glucoside) content. (B) WT, wild type; Lc1–3, independent Lc transgenic lines. (C) Transcription 
levels detected by qRT-PCR analysis. The sweet potato ACTIN gene was used as an internal control. PAL, 
phenylalanine ammonia lyase; CHI, chalcone isomerase; CHS, chalcone synthase; F3H, flavanone 3-hydroxylase; 
FLS, flavonol synthase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; 3GT, UDP-
glucose:flavonoid 3-O-glucosyltransferase. Error bars represent the SE of three replicates. Asterisks indicate a 
significant difference compared to the WT at *P <  0.05 or **P <  0.01 (t-test).
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content was similar among the Lc transgenic lines and the WT (65%, Fig. 3E), indicating that the storage roots in 
all the plants were in the same developmental stages.

In order to identify the cause of the yield reduction, the photosynthesis capacity of the plants was measured. 
No change in the maximal quantum yield of PSII (Fv/Fm) was detected between the Lc transgenic lines and WT 
in leaves from different developmental stages (Supplementary Fig. 4). These results indicate that the increased 
anthocyanin content in the leaves of the Lc transgenic lines has no impact on the primary photochemistry of PSII. 
Thus, Lc might regulate other pathways/metabolisms to affect storage root growth.

Lc up-regulates the lignin biosynthesis pathway and results in an increase in the lignin content 
of storage roots in sweet potato. The up-regulation of PAL in the stem and storage roots of Lc transgenic 
sweet potato (Fig. 2C) indicates that other phenylpropanoid pathway genes might be impacted by overexpression 
of this regulatory protein. PAL gene promoter contains many G/E-box elements that probably bind to MYC tran-
scriptions factors (Supplementary Fig. 3). PAL is involved not only in anthocyanin biosynthesis but also lignin 
biosynthesis. Therefore, we hypothesized that Lc considerably up-regulates lignin biosynthesis in the storage 
root of Lc transgenic lines. Indeed, expression of all tested lignin biosynthetic enzymes C4H, 4CL, and cinnamyl 
alcohol dehydrogenase (CAD) was all greatly increased in the stems and developing storage roots (S16) of the Lc 
transgenic lines (Fig. 4A). Compared to the WT, the three transgenic lines showed 6.1- to 11.1-fold and 3.7- to 
9.4-fold changes in the expression of C4H and 4CL respectively. Expression of the CAD gene was also slightly 
up-regulated in the root and stem of the Lc transgenic lines compared to the WT (Fig. 4A). The expression of 
these genes was unchanged in the leaves of Lc transgenic and WT plants. Further, the G/E-box motifs/elements 
could also be present in their upstream sequences (Supplementary Fig. 3A).

Figure 3. Morphological and physiological analyses of the mature storage roots (>S18) of 5-month-old 
wild-type and Lc transgenic sweet potato plants harvested from the field. (A–C) Shape (A), number per 
plant (B), length/width ratios (C) of the storage roots. WT, wild type; Lc1–3, independent Lc transgenic lines. 
(D,E) The yield (D) and water content (E) of the storage roots. Error bars represent the SE of three replicates. 
Asterisks indicate a significant difference compared to the WT at *P <  0.05 or **P <  0.01 (t-test). Bar =  5 cm.
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Figure 4. Effect of Lc expression on lignin biosynthesis and deposition in wild-type and Lc transgenic sweet 
potato. (A) qRT-PCR analysis of the changes in the transcript levels of major lignin biosynthetic genes in the leaves, 
stems, fibrous roots (S5-S8) and developing storage roots (S16) of 2-month-old wild-type (WT) and Lc transgenic 
sweet potato. Lc1–3, independent Lc transgenic lines. C4H, cinnamic acid 4-hydroxylase; 4CL, 4-coumarate-CoA 
ligase; CCoAOMT, caffeoyl-CoA O-methyltransferase; CCR, hydroxycinnamoyl-CoA reductase; CAD, cinnamyl 
alcohol dehydrogenase; COMT, caffeic acid/5-hydroxyferulic acid O-methyltransferase. (B) Klason lignin contents 
in the fibrous roots (S5-S8), developing storage roots (S10) and mature storage roots (> S18) of 5-month-old field-
grown sweet potato plants. (C) Lignin deposition patterns in the initiating storage roots (S8), early developing 
storage roots (S10 and S12) and late developing storage roots (S14) of 1.5-month-old plants after staining with 
two dyes, phloroglucinol-HCl (P-H) and toluidine blue (TB). Error bars represent the SE of three independent 
replicates. Asterisks indicate a significant difference compared to the WT at *P <  0.05 or **P <  0.01 (t-test).
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To further verify up-regulation of the lignin biosynthetic pathway in the Lc lines, the lignin level of fibrous 
roots (S5-S8), developing storage roots (S10) and mature storage roots (> S18) of field-grown plants was measured. 
Significant increase of Klason lignin was detected in Lc lines, by a minimum of 24.5% in fibrous roots and 28.6% 
in developing storage roots, compared to the WT value (Fig. 4B). In mature storage roots, the total Klason lignin 
content of Lc1, Lc2 and Lc3 ranged from 56.0 to 91.2 mg/g (DW), which was significantly higher than that of the 
WT (48.8 mg/g DW, Fig. 4B). Lc3 had the highest lignin content, 1.78 times that in the WT. Phloroglucinol-HCl 
or toluidine blue staining for lignin in the initiating, early and late stage developing storage roots (S8-S14, diam-
eter <  2 cm ) from plants 45 days after planting also revealed a higher number of lignified cells around xylem 
bundles in Lc1 and Lc3, as indicated by the increased coloration in comparison with the WT (Fig. 4C). Especially 
at the stage of S14, more lignified xylem elements and less starch granules were clearly noticeable in the Lc lines. 
There was no obviously change in lignin deposition patterns and levels in the stems between Lc lines and WT 
(Supplementary Fig. S5). These data showed that the lignification of developing storage roots in the Lc transgenic 
lines is elevated by up-regulation of the lignin biosynthesis pathway, which leads to reduced yield and altered 
shape of the storage roots.

Starch metabolism in the storage roots of Lc sweet potato is promoted by starch degradation 
but not by starch synthesis. Storage root development is strongly associated with starch accumulation. To 
confirm whether starch metabolism is affected by the expression of Lc in sweet potato, the expression profile of 
genes encoding for key enzymes involved in starch biosynthesis (AGPa, AGPb, SBEI, SBEII, SS, and GBBS1) and 
starch degradation (α -amylase and β -amylase) was analyzed by qRT-PCR. In the 2-months-old developing stor-
age roots (S16), no changes were detected in the expression of AGPa, AGPb, SBEI, SBEII, SS, and GBBS1 as well as 
the α -amylase gene. Only the β -amylase gene showed significant up-regulation (Fig. 5A, bottom panel). Similar 
observation was also found in fibrous roots. In the leaves, however, besides the β -amylase gene, the expression 
of SBEI, SBEI and SS was also increased by up to 5-fold compared to the WT (Fig. 5A, upper panel). β -amylase 
expression increased by 20-fold in the leaves and by 2-fold in the storage roots in Lc1, which raises the possibility 
that starch degradation is significantly enhanced for carbohydrate mobilization both in the source and the sink.

With regard to the diurnal rhythms of starch accumulation in leaves, the level of starch accumulation in Lc 
plants was lower than that in the WT during the entire day cycle and the first half of the dark cycle (Fig. 5B, upper 
panel). For example, at the end of the day cycle, the starch content in the WT leaves reached 17.6 mg/g fresh 
weight (FW), which is 2-folds that of the Lc transgenic plants. Consistent with this, the β -amylase activity in the 
leaves of Lc transgenic plants was always higher than that of the WT plants (Fig. 5B, lower panel). The average 
β -amylase activity was 2.41 ±  0.09 U/g at the end of the dark cycle (06:00) and 1.65 ±  0.25 U/g in the middle of 
the dark cycle (24:00) in the Lc lines; these values were much higher than that of the WT plants (1.03 U/g and 
0.94 U/g, respectively; Fig. 5B). The starch content in the mature storage roots (S20) of the Lc transgenic plants was 
significantly lower than that in the WT (Fig. 5C, upper panel), and the β -amylase activity was significantly higher 
(average, 2.29 ±  0.05 U/g), about 23.1% higher than that in the WT (Fig. 5C, lower panel). Iodine staining and 
TEM observation of the early developing storage root (S12) in the WT plants 45 days after planting revealed the 
presence of dark-blue starch granules along the xylem rays (Fig. 5D, upper panel). However, clear starch granule 
clusters (Fig. 5D, lower panel) were not found in the Lc3 transgenic plants, which indicates that starch accumu-
lation was repressed in this transgenic line. Upon the iodine staining of early developing storage roots (S12 to 
S14), the reduced coloration of dark blue further confirmed the observation (Fig. 5D). Together with the previous 
lignin assays, these results suggest that lignification competes with starch accumulation for the distribution of 
photo-assimilates in developing storage roots.

The leaves and storage roots of Lc sweet potato have reduced sugar content. As indicated pre-
viously, the expression and enzymatic activity of β -amylase were all up-regulated in the leaves and storage roots of 
Lc transgenic plants (Fig. 5A,C). In line with this, the fructose and glucose contents in the leaves of Lc transgenic 
plants were lower compared to the WT in the dark cycle. In the Lc plants, fructose levels were similar to those 
of the WT from 12:00 to 18:00, while glucose levels were similar at 12:00 and decreased significantly thereafter 
(Fig. 6A,B). The sucrose content in the WT leaves seemed to be always slightly higher than that of Lc transgenic 
plant leaves (Fig. 6C). The fructose, glucose, sucrose, and maltose contents in the mature storage roots (S20) of the 
Lc transgenic lines were lower than that of the WT. The sucrose content (average, 22.7 ±  3.7 mg/g) in the Lc lines 
was 30% lower than that in the WT. Similarly, the fructose, glucose and maltose levels were also reduced in the 
storage roots of the Lc plant lines, by 66.5%, 72.1% and 42.4%, respectively, in comparison with the WT (Fig. 6D). 
These results suggest that lignification results in greater carbon flux and may reduce the sink strength for starch 
accumulation in Lc transgenic sweet potato.

Discussion
The development of storage roots—from the anatomical features to the molecular regulation mechanisms—has 
received attention of the research community for a long time2,3,11. The fibrous roots, pencil roots and storage roots, 
which comprise the sweet potato root system, are distinguishable from each other by their shape and histochemical 
structures2. The promotion of storage root formation and inhibition of pencil root production with proper field 
management is necessary for ensuring a high yield in sweet potato cultivation12,13,34,35. The development of the 
pencil root, which is a type of stele lignified thick root, is an irreversible process that is affected by various envi-
ronmental and regulatory factors14. Storage root development is strongly associated with the down-regulation of 
lignin biosynthesis and up-regulation of starch biosynthesis11; it has been suggested that the carbon-flux distribu-
tion across the starch and lignin metabolic pathways influences the development of fibrous roots towards pencil 
roots or storage roots. In our study, Lc transgenic purple sweet potato showed up-regulated lignin biosynthesis, in 
addition to flavonoid biosynthesis (including anthocyanins and flavonols), which resulted in a significant increase 
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Figure 5. Starch metabolic gene expression profile, β-amylase activity and starch status in young mature leaves, 
storage roots of wild-type and Lc transgenic sweet potato. (A) Expression levels of the genes involved in starch 
biosynthesis (AGPa, AGPb, GBSSI, SBEI, SBEII, and SS) and starch degradation (α -amylase and β -amylase) in the 
leaf, stem and developing storage root (S16) of 2-month-old plants. WT, wild type; Lc1–3, independent Lc transgenic 
lines; AGPa, ADP-glucose pyrophosphorylase alpha subunit; AGPb, ADP-glucose pyrophosphorylase beta subunit; 
GBSSI, granule-bound starch synthase 1; SBEI, starch branching enzyme I; SBEII, starch branching enzyme II; SS, 
soluble starch synthase. (B) Starch content and β -amylase activity in response to diurnal rhythms in mature leaves. 
(C) Starch content in mature storage roots (S20) of field-grown plants and β -amylase activity of developing storage 
roots (S16). (D) Dark blue starch granules on sections of early developing storage roots (S12) of 2-month-old plants 
as determined using Lugol’s solution and TEM observation. Error bars represent the SE of three independent 
replicates. The asterisks indicate a significant difference compared to the WT at *P <  0.05 or **P <  0.01 (t-test).



www.nature.com/scientificreports/

9Scientific RepoRts | 6:18645 | DOI: 10.1038/srep18645

in lignification during the early stages of storage root formation; these processes led to elongated shape of the 
storage root, reduced root size and yield, and was correlated with less starch accumulation. Our findings indicate 
that the shift in carbon flux towards lignin biosynthesis is associated with increased starch degradation both in 
the sink and source, and retarded starch accumulation in the parenchymal cells of the developing storage roots.

Increased lignin content of purple sweet potato expressing the maize Lc transcription factor is a suitable model 
for studying the relationship between primary metabolism and secondary metabolism in storage root development. 
Many studies have shown that Lc promotes anthocyanin biosynthesis and hence anthocyanin pigmentation and 
production of flavonoids of other classes in various plant species27–29,36–38, but the commitment to lignin deposi-
tion or other functions has seldom been reported39. In Lc-expressing transgenic tomato and petunia plants27,28, 
the level of PAL transcripts did not differ significantly across different tissues, but the level of PAL transcripts was 
up-regulated in apple29. No other genes related to lignin biosynthesis have been studied in Lc-overexpressing 
plants27,29. In our Lc transgenic sweet potato, besides PAL, other genes of the lignin biosynthesis pathway such as 
C4H, 4CL and CAD were significantly up-regulated in stems and storage roots, but no changes in their expression 
were found in leaves. Moreover, increased lignification was observed during early storage root formation and 
increased lignin content in the field-harvested storage roots. Therefore, Lc-mediated up-regulation of lignin bio-
synthesis in purple sweet potato appears to be organ-specific, which is different from the case with Lc-mediated 
regulation of anthocyanin accumulation. This indicates that other regulatory factors interact with Lc directly or 
indirectly to control lignin deposition in different tissues40. In addition, the increased accumulation of flavonols 
(quercetin-3-O-hexose-hexoside and quercetin-3-O-hexoside) in leaf, stem and root of Lc lines is correlated with 
the upregulation of FLS expression (Fig. 2B,C).

As a major branching point between the primary and secondary metabolic pathways in plants, PAL directs up 
to 30% of the fixed carbon source from the Shikimate pathway to the phenylpropanoid metabolic pathways15,41–44. 
Since up-regulation of starch biosynthesis and down-regulation of lignin biosynthesis are associated with storage 
root development11, and starch accumulation occurs even during the initiation stage, and during the early bulking 
stage of storage roots, enhanced lignin deposition may greatly influence starch accumulation and decrease the 
starch content in field-harvested storage roots. Indeed, accumulation of starch granules was dramatically reduced 
in early developing storage roots of Lc transgenic sweet potato according to the findings of the iodine-staining 
assay; however, this reduction was probably not due to changes in the starch biosynthesis capacity, as indicated 
by the unchanged expression of AGPase, SBE, SS and GBBS1. Furthermore, starch degradation was found to be 
augmented both in leaves and storage roots, which indicates that starch mobilization was promoted and can explain 
the reduced transient starch accumulation in leaves during the day cycle. The significant reduction in sugar levels 
in developing storage roots and leaves also confirms that the developing storage roots of Lc transgenic sweet potato 
have altered sink capacity for driving the distribution of photo-assimilates towards lignin deposition.

Figure 6. Sugar content changes in the leaves in response to diurnal rhythms and in the mature storage roots 
(>S18) of wild-type and Lc transgenic lines. (A–C) Changes in the content of fructose (A), glucose (B) and 
sucrose (C) at 6:00, 12:00, 18:00 and 24:00. WT, wild type; Lc1–3, independent Lc transgenic lines. (D) The content 
of individual sugars in the mature storage roots. Error bars represent the SE of three independent replicates. The 
asterisks indicate a significant difference compared to the WT at *P <  0.05 or **P <  0.01 (t-test).
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Reduction in shoot growth has been reported in apple, tomato, petunia hybrids, bentgrass and Arabidopsis 
plants that heterologously express the Lc gene28–30,45. These findings suggest that high levels of anthocyanin accumu-
lation might have detrimental effect on the growth and development of these plants since the flavonoids can act as 
auxin transport inhibitors to negatively regulate polar auxin transport in vivo and disturb the transport of endoge-
nous auxins46–48. Auxin retention by flavonoid action may also affect vascular differentiation49. In our Lc-expressing 
sweet potato, the reduced storage root size and yield seem not to be related with auxins, since the expression levels 
of the polar auxin transport genes AUX1, PIN1a and PIN1b were unchanged (Supplementary Fig. 6). The photo-
synthesis capacity was also unaffected. Undoubtedly, the interaction between Lc and native transcription factors 
related to the regulation of starch and phenylpropanoid metabolism in sweet potato will provide insights into the 
regulation of storage root development. For example, down-regulated expression of the transcription factor SRD1, 
which is essential for propagation of metaxylem in sweet potato, showed increased lignin biosynthesis in storage 
roots19. Using the Lc transgenic sweet potato to study the changes of regulatory component might eventually unveil 
the molecular links between lignification and starch accumulation in developing storage roots.

Based on the findings of our study, a molecular model depicting the regulation of storage root development, by 
the transcription factor Lc, was proposed (Fig. 7). Normally, during the initiation of storage roots, the carbon flux 
derived from the channeling of photo-assilimates (sugars) towards starch biosynthesis is increased. Simultaneously, 
lignin biosynthesis is repressed. The expression of Lc in sweet potato causes not only greater flavonoid accumulation 
but also enhanced lignin biosynthesis, leading to lignification in the initiating storage roots. This process triggers 
an increase in the carbon flux towards phenylpropanoid metabolisms: more photo-assimilates are produced via 
degradation of transient starch from the source (leaf) and storage starch from the sink (the storage roots) by 
β -amylase for partitioning into the sink for lignin deposition. Finally, transgenic sweet potato shows smaller size 
and yield of the storage roots.

In conclusion, ectopic expression of Lc in purple sweet potato up-regulates the phenylpropanoid biosynthesis 
pathway, which favors flavonoid accumulation and lignin deposition; this directly affects starch metabolism by 
causing an increase in starch degradation. The storage roots of Lc transgenic sweet potato showed altered shape 
and reduced size and yield. This provides evidence of how the carbohydrate regulatory mechanism affects sweet 
potato storage root development as well as increases our understanding of the function of transcription factors in 
regulating primary and secondary metabolism. Nevertheless, there are questions that are yet to be answered, such 
as how endogenous transcription factors regulate the developmental process and partitioning of photo-assimilates.

Methods
Plant material. The purple-fleshed sweet potato (Ipomoea batatas Lam.) cultivar Ayamurasaki, developed 
by Kyushu National Agricultural Experiment Station50, was used as a donor for genetic transformation. The cul-
tivar has high anthocyanin content in its storage roots with deep purple skin. Its shoots have green and lobed 
mature leaves. Untransformed and transgenic plants subcultured from in vitro plantlet cultures were transferred 
into plastic pots (18 cm in diameter) containing dark soil and vermiculite in a ratio of 2:1 (v/v) and grown in a 
growth chamber under a 16-h light/8-h dark photoperiod at 25 ±  3 °C. One-month-old shoots were transplanted 
into the field in early May for evaluation of the phenotype and agronomic traits with a 5-month growth period 
at the Wushe experimental station, Songjiang, Shanghai. To better classify the storage root stages, the devel-
opmental process from fibrous root to mature storage roots are divided into 20 stages including Fibrous Root 
(maximum diameter <  2 mm, S1-S8), Initiating Storage Root (2 mm <  maximum diameter <  5 mm, S9-S13), 
Developing Storage Root (5 mm <  maximum diameter <  20 mm, S14-S17) and Mature Storage Root (maximum 
diameter >  5 mm, S18 to S20). The lignified thick pencil roots cover the stages from S9 to S13 in size (Fig. 1A).

Plasmid and Agrobacterium-mediated sweet potato transformation. The expression cassette 
of the maize Lc gene (Genbank accession No. M26227.1) driven by the cauliflower mosaic virus promoter 35S 
(CaMV 35S) was cloned into pCAMBIA1300 to generate the binary vector p35S-Lc. Genetic transformation 
of sweet potato was carried out according to a previously described method by Yang et al. (2011)31. Briefly, 

Figure 7. Schematic illustration of the intrinsic relationship between phenylpropanoid and starch 
metabolisms with regard to the regulation of storage root development in sweet potato mediated by the 
maize Lc transcription factor. Normally, the photo-assimilates (sugars) from leaves are transported to roots 
for the use of starch biosynthesis (black arrows) to support storage root development; during the process, lignin 
biosynthesis as well as starch degradation is down-regulated (dashed black arrows). Up-regulation of flavonoid 
and lignin biosynthesis by Lc increases flavonoid accumulation and lignin deposition in storage roots at the 
initiation stage (red arrows), which results in increased carbon flux by the mobilization of starch degradation 
both in the roots (sink) and leaves (source)(dashed red arrows). As a result, starchy storage root development is 
impacted.
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embryogenic calli induced from the shoot meristem tissues of the cultivar Ayamurasaki were used for establish-
ment of embryogenic suspension cultures. Then, the 1-month-old suspension culture was used as the explant for 
cocultivation with Agrobacterium tumefaciens strain LBA4404 harboring the binary vector p35S-Lc. The trans-
formed calli were selected after culturing on a plant regeneration medium containing 10 mg/l hygromycin for 1 
month and then transferred onto fresh medium for plant regeneration and growth31.

Molecular and phenotypic characterization of the transgenic plants. Genomic DNA was iso-
lated from the leaves of greenhouse-grown WT and PCR-positive transgenic plants as described by Kim and 
Hamada (2005)51. For Southern blot analysis, 15–20 μ g of genomic DNA was digested with HindIII at 37 °C 
overnight and separated by electrophoresis on a 0.8% agarose gel overnight; the gels were blotted on a posi-
tively charged Amersham Hybond N+ nylon membrane (GE Healthcare, Life Sciences, Indianapolis, USA) 
for hybridization with the DIG-labeled PCR product of the transgenes. For establishing the hygromycin phos-
photransferase gene (HPT) probe, 100 pg of plasmid was used as the template to amplify a 500-bp fragment 
with a PCR DIG Probe Synthesis Kit (Roche Applied Science, Manheim, Germany) using the following primer 
pairs: 5′-TTCTACACAGCCATCGGTCC-3′ (forward) and 5′-CCCATGTGTATCACTGGCAA-3′ (reverse). 
Hybridization and detection were performed according to the manufacturer’s instructions, using the DIG-High 
Prime DNA Labeling and Detection Starter Kit II (Roche Diagnostics, Manheim, Germany).

The expression of Lc mRNA was analyzed by reverse transcriptase PCR (RT-PCR). Total RNA was extracted from 
the developing storage root (S16), stem and leaf tissues of 2-month-old greenhouse-grown plants using the RNAprep 
Pure Plant kit (Tiangen, Beijing, China) following the manufacturer’s instructions. The total RNA was digested with 
DNase at 37 °C for 15 min and then reverse transcribed into cDNA using M-MLV Reverse Transcriptase RNaseH 
(Toyobo, Osaka, Japan). For RT-PCR analysis, the Lc primers (forward, 5′-ATGGCGCTTTCAGCTTCCCG-3′; 
reverse, 5′-TGGACGCGCTCTTGGCCAGG-3′) were used to amplify a 520-bp product, and the actin gene primers 
(forward, 5′-CTGGTGTTATGGTTGGGATGG-3′; reverse, 5′-GGGGTGCCTCGGTAAGAAG-3′) were used as 
the internal control. The transcript levels of the Lc gene in the transgenic lines were further analyzed by quanti-
tative RT-PCR (qRT-PCR) using the following primers: 5′-ACGGGAGCAGCACAGGAAAT-3′ (forward) and 
5′-CGACGCTTTGTTCACCCTGT-3′ (reverse).

The phenotype of the Lc transgenic and WT sweet potato was studied under the greenhouse and field conditions. 
The growth features of the above-ground plant shoots, the shape and color of the leaves and stems, the shape and 
size of the storage roots, and the color of a cross-section of the storage root (S18) were recorded. The yield was the 
average weight of mature storage roots of five 5-month-old plants per line.

Expression analysis of key genes involved in the flavonoid, lignin and starch metabolism path-
ways. The transcript level of the biosynthesis genes involved in the flavonoid (PAL, CHI, CHS, F3H, FLS, DFR, 
ANS and 3GT), lignin (C4H, 4CL, CCR, CAD, CoMT and CCoAOMT) and starch (AGPa, AGPb, GBSSI, SBEI, 
SBEII, SS, α -amylase and β -amylase) metabolism pathways was analyzed by qRT-PCR. Total RNA extraction 
from the 3rd leaf, stem, fibrous root and the developing storage root (S16) of greenhouse-grown plants, and cDNA 
synthesis were carried out as previously described in this section. The expression of the genes involved in the 
metabolic pathways was analyzed using qRT-PCR with the SYBR green fluorescent dye in a Bio-Rad CFX96 ther-
mocycler (Bio-Rad, Hercules, CA, USA). The qRT-PCR cycling parameters were as follows: initial denaturation 
at 95 °C for 1 min; 40 cycles at 95 °C for 20 s, 60 °C for 20 s and 72 °C for 20 s; and a final extension step at 72 °C 
for 5 min. The qRT-PCR primers used to amplify the genes (Table S1) were designed using the Primer3.0Plus 
software (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) according to the EST database for 
sweet potato at our laboratory. The gene expression level was calculated using the comparative Ct method52.

Analysis of flavonoid and lignin biosynthesis gene promoters and yeast one hybrid assay. The 
upstream genomic sequences of the anthocyanin biosynthesis genes (CHI, CHS, F3H, DFR, ANS and 3GT) 
and lignin biosynthesis genes (PAL, C4H, 4CL, CCR, CAD, COMT and CCoAOMT) were searched in public 
genome databases (e.g. Genbank) and our own database. The available promoter fragments were analyzed for 
the cis-element using the PlantCARE datebase (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) 
and PLACE (http://www.dna.affrc.go.jp/PLACE/). The G-box (5′-ATCACGTGCT-3′) present in these promot-
ers was verified for the binding capacity with Lc. Briefly, for DNA binding analysis, the open reading frame 
of Lc was amplified by PCR using the primer pair 5′-GCCGAATTCATGGCGCTTTCAGCTTC-3′ (forward) 
and 5′-GCCGTCGACTCACCGCTTCCCTATAGCT-3′ (reverse), and was cloned into pGAD424 to construct 
pGAD424-Lc. The plasmid was then transformed into the yeast strain YM4271, which was co-transformed with 
the reporter vector pHIS-G-BOX containing three copies of the G-box to determine the interaction between Lc 
and G-BOX. The pHIS-mG-BOX (5′-ATCTATAGCT-3′) containing the mutated G-box with a 4-bp substitution 
at the center was used as a negative control. The analysis was carried out according to the manufacturer’s specifi-
cations (Clontech, Palo Alto, CA, USA).

Extraction and quantification of anthocyanins and flavonols. The total anthocyanins in the WT 
and Lc transgenic plants grown in the greenhouse were extracted using a previously described method53. Briefly, 
approximately 100 mg of lyophilized fully expanded 3rd leaves from the top, 100 mg of lyophilized young stem 
and 500 mg of lyophilized developing storage roots (S16) were extracted twice with 10 mL of 5% formic acid to 
fully dissolve the anthocyanins. The suspensions were centrifuged at 4,000 rpm for 10 min, and the supernatants 
were filtered through a 0.22-μ m nylon filter. To determine the total anthocyanin content, absorbance was read 
at 530 nm using a spectrophotometer (DU730UV VIS; Beckman Coulter, USA). The standard curve constructed 
from the cyanidin 3-O-sophoroside concentrations was also measured at OD530. The total anthocyanin content in 
the WT and Lc transgenic lines was quantified as cyanidin 3-O-sophoroside equivalents.

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://www.dna.affrc.go.jp/PLACE/
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The total flavonols in the greenhouse-grown WT and Lc transgenic lines were extracted and analyzed by HPLC 
mass spectrometry using previously described methods with slight modifications54,55. Briefly, approximately 200 mg 
of young leaves, 200 mg of stem and 500 mg of developing storage roots (S16) were extracted twice with 5 mL (leaf 
and stem) or 7 mL (storage root) of acetone/water/acetic acid (70:29.5:0.5, v/v/v). After centrifuged at 4,000 rpm for 
10 min, the supernatant was filtered through a 0.22-μ m nylon filter before it was used for further analysis. Flavonol 
analysis was carried out according to Wang et al. (2013) with the HPLC1200-MSD/Q-TOF 6520 system (Agilent, 
Waldbronn, Germany) on an electrospray ionization (ESI) source, which has dual nebulizers to allow the reference 
mass to be corrected prior to monitoring33. For HPLC separation, a C18 reverse-phase column (Agilent ZORBAX 
Eclipse XDB; 4.6 ×  50 mm; 1.8 μ m) was connected to an autosampler and washed at a flow rate of 0.2 mL/min. 
The mobile phase solvents were composed of 0.5% (v/v) acetic acid in water (solvent A) and acetonitrile (solvent 
B). The flavonols were quantified using external calibration curves of the quercetin-3-O-glucoside standard. The 
flavonol concentration was determined in triplicate.

Lignin content measurement and lignin deposition by histochemical staining of storage 
roots. Analysis of the Klason lignin content was performed with the sulfuric acid digestion method56,57, using 
fibrous roots (S5-S8), developing storage roots (S10) and mature storage roots (> S18) harvested from the field. 
In short, 1 g (W1) dry weight of the storage root of sweet potato was fully digested with 12 M H2SO4 at 30 °C 
overnight and then diluted with water in 0.4 M H2SO4. The sample was autoclaved at 121 °C for 60 min. After 
washing with hot water until the H2SO4 residue was eliminated, the non-hydrolyzed sample was collected by 
filtration through a fibertec P2 crucible and dried for 2 h at 130 °C. After cooling, the sample (W2) was weighed 
in a desiccator. Finally, the sample was ashed at 525 °C for about 3 h in a muffle furnace and the cool residue left 
in the desiccator was weighed (W3) again. The Klason lignin content was calculated using the following formula: 
Klason lignin (%) =  (W2 −  W3) ×  100/W1.

Cross-sections of the initiating roots (S8), early developing storage root (S10 and S12) and late developing 
storage roots (S14) harvested from 1.5-month-old plants in the greenhouse were fixed in 4% neutral-buffered for-
malin for 24 h and then embedded in paraffin wax. The 15-μ m thick sections were cut and placed on silane-coated 
slides to fix the samples. After drying overnight at 37 °C, the sections were dewaxed, rehydrated and stained with 
phloroglucinol-HCl (one volume of concentrated HCl was mixed with two volumes of 0.5% phloroglucinol in 
ethanol) or toluidine blue (0.05%). After incubation with phloroglucinol-HCl for 10 min or toluidine blue for 3 min 
at room temperature, the samples were rinsed with water to get rid of the staining solution until the wash solution 
was clear. The lignin deposition patterns were observed under an Olympus BX51 microscope with the Olympus 
DP controller software (Olympus, Japan).

Starch content analysis and iodine staining of storage roots. The total starch content of leaves and 
mature storage roots (> S18) from 5-month-old field-grown WT and transgenic sweet potato was determined 
using the Megazyme kit (Megazyme International Ireland Ltd. Co., Wicklow, Ireland) with slight modifications. 
Since the kit measures the reducing sugar content using a spectrophotometer at a wavelength of 510 nm, the 
measurement can be affected by the presence of anthocyanins that have the same absorbance wavelengths at 
510 nm; therefore, the method was modified by using HPLC instead of measuring the absorbance wavelength at 
510 nm. The amount of starch present in the leaf (100 mg) and storage root (100 mg) was determined from the 
pellets obtained after the soluble sugars were extracted. In brief, the pellet was suspended in 0.2 mL of aqueous 
ethanol (80% v/v). After the tubes were shaken on a vortex, 3 mL of thermostable α -amylase solution (100 U/mL) 
was immediately added. The tubes were incubated in a boiling water bath for 6 min by vigorous stirring every 
2 min. Then, the tubes were placed in a bath at 50 °C and 100 μ L amyloglucosidase (330 U) was added with stirring 
on a vortex mixer before incubation at 50 °C for 30 min. The final volume was adjusted to 10 mL with distilled 
water, after which the tubes were centrifuged at 3,000 rpm for 10 min. The glucose content of the supernatants 
was determined by the HPLC method using Agilent ZORBAX Carbohydrate Column (Agilent Technologies, 
4.6 ×  150 mm, 5 μ m) according to the manufacturer’s protocol. The total starch content was determined from 
the glucose content according to the following formula: Starch content (mg/g FW) =  glucose content ×  162/180 
(adjustment from free D-glucose to anhydro-D-glucose, as occurs in starch).

To investigate starch accumulation in storage roots, sections of the early developing storage roots (S12) of WT 
and transgenic plants of the same size were immersed in iodine staining solution (3.75 g KI and 1.25 g I2 in 500 mL 
of distilled water) for 10 min at room temperature. After washing with distilled water, the sections were observed 
under an Olympus BX51 microscope and imaged with the Olympus DP controller software (Olympus, Japan).

Measurement of water and sugar content. Five-month-old Lc transgenic lines and WT plants were 
harvested, and the FW of the mature storage roots was measured. Chips of the fresh storage roots were dried 
at 80 °C for two days until a constant dry weight (DW) was attained. The water content in the storage roots was 
calculated using the following formula: water content (%) =  (FW −  DW)/FW ×  100%.

Analyses and quantification of glucose, fructose, sucrose and maltose were performed as previously described 
with slight modifications58. Briefly, 100 mg of fresh leaves and storage roots ground in liquid nitrogen was dissolved 
in 0.7 mL of 80% methanol to extract the sugars. The sample was thoroughly vortexed and incubated for 45 min at 
70 °C. Aliquots of 0.7 mL of HPLC-grade water and 0.7 mL chloroform were added to the sample. After shaking 
several times, the mixtures were centrifuged at 12000 g for 10 min. Then, 0.7 mL of the aqueous supernatant was 
transferred into 1.5-mL Eppendorf tubes and resuspended in 0.7 mL of chloroform. After centrifugation at 12000 g 
for 10 min, 0.5 mL of the supernatant was transferred to a glass tube for HPLC analysis of each sugar component. 
The sugar-separation method used was that described by the manufacturer but with slight modifications; the 
Agilent technologies HPLC column (ZORBAX Carbohydrate; 4.6 ×  150 mm, 5 μ m) with a differential refraction 
detector was used. The mobile phase consisted of 75% acetonitrile with a flow rate of 0.8 mL/min; the temperature 
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of the column was maintained at 45 °C. The sugars were identified based on the retention time of the standards, 
and sample concentrations were calculated from the external standard curve.

Measurement of β-amylase activity. β -Amylase activity in the greenhouse-grown leaves and developing 
storage roots (S16) of sweet potato was determined by the Betamyl-3® method using commercial kits (Megazyme 
International Ireland Ltd. Co., Wicklow, Ireland), according to the manufacturer’s instructions. One gram of 
the ground fresh material was used for analysis. The β -amylase present in the samples hydrolyzes the substrate 
p-nitrophenyl-β -D-maltotrioside (PNPβ -G3) in the presence of thermostable β -glucosidase and stabilizers to 
produce maltose and p-nitrophenyl-β -D-glucose, which then immediately release d-glucose and p-nitrophenol in 
the presence of β -glucosidase. The liberated p-nitrophenol in the amylase assays was detected spectrophotometri-
cally at 400 nm by a DU730UV VIS spectrophotometer (Beckman Coulter, Indianapolis, IN, USA).

Determination of the photosynthetic activity of the leaves. Chlorophyll fluorescence was deter-
mined in young, mature and old leaves of the purple sweet potato collected from the greenhouse, using a chloro-
phyll fluorometer (Walz Imaging PAM; Walz GmbH, Effeltrich, Germany) after dark adaptation for about 30 min, 
according to the manufacturer’s instructions and previous reports59. Photosynthetic activity was recorded via 
chlorophyll fluorescence measurement of the Fv/Fm photochemical yield, which indicated the maximum quan-
tum yield of PSII. The analysis was carried out at room temperature (25 °C) using saturated light flashes.

Statistical analysis. All data are presented as mean ±  SD from at least three independent experiments with 
three replicates each. The statistical significance of the differences was determined using the Student’s t-test. 
Differences between treatments were considered significant when P <  0.05 or 0.01 in a two-tailed analysis.
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