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Abstract

Most candidate anti-bacterials are identified on the basis of their whole cell anti-bacterial activity. A critical bottleneck in the
early discovery of novel anti-bacterials is tracking the structure activity relationship (SAR) of the novel compounds
synthesized during the hit to lead and lead optimization stage. It is often very difficult for medicinal chemists to visualize if
the novel compounds synthesized for understanding SAR of a particular scaffold have similar molecular mechanism of
action (MoA) as that of the initial hit. The elucidation of the molecular MoA of bioactive inhibitors is critical. Here, a new
strategy and routine assay for MoA de-convolution, using a microfluidic platform for transcriptional profiling of bacterial
response to inhibitors with whole cell activity has been presented. First a reference transcriptome compendium of
Mycobacterial response to various clinical and investigational drugs was built. Using feature reduction, it was demonstrated
that subsets of biomarker genes representative of the whole genome are sufficient for MoA classification and deconvolution
in a medium-throughput microfluidic format ultimately leading to a cost effective and rapid tool for routine antibacterial
drug-discovery programs.
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Introduction

Since the early 20th century, bioactive inhibitors used for anti-

infective chemotherapy have been identified by phenotypic screens

and further examined in complex biological systems [1]. Advances

in genome sequencing, molecular biology and biochemistry led to

an evolution from the traditional phenotypic screens to a more

‘reductionist’ target-based approach, which was thought to be

more rational and efficient [2]. Despite the rapid identification of

diverse, novel drug targets characterized by genetic tools [3],

target-based anti-bacterial lead discovery has been less successful

[4–6]. In many cases, these target-based screens reveal small

molecules with potent activity against the purified target in vitro but

fail to render anti-bacterial activity in both in vitro and in vivo

models [4,7].

The large-scale failure of genomics driven anti-bacterial lead

discovery programs has led to the renaissance of empirical

phenotypic screens for the identification of new chemotypes

[6,8,9]. In contrast to target-based screening, molecules identified

using this approach have the advantage of not only possessing

desirable physicochemical properties from the beginning (such as

cell penetration), but are also active against the relevant target in

its intracellular context, under physiological conditions. Despite

this key advantage, success in defining the target, mechanism of

action (MoA), and the final lead optimization of hits derived from

phenotypic screens has been low [4,6].

One of the daunting tasks for medicinal chemists during hit to

lead and lead optimization of hits, and scaffolds derived from

whole cell screen, is to make sure that the compounds they are

synthesizing also have similar MoA as that of the parent molecule.

In order to understand the structure activity and property

relationship (SAR and SPR) medicinal chemists synthesize

multiple compounds in and around the parent molecule. It is

very critical that the new molecules are acting in a similar way as

that of the parent in order to get desired final effect. Currently,

lead optimization of hits from phenotypic screens can only be best

done with a known target. Although various approaches for MoA

and target deconvolution have been established, including
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characterization of resistant mutants, biochemical affinity-based

methods, genetic complementation, protein and DNA microarrays

[10], target identification is still a challenging and inefficient task

to support the early discovery process [6].

Until the last decade, MoA deconvolution was largely limited to

model organisms whose metabolic pathways have been well

characterized. Transcriptional profiling by microarray analysis has

been used to analyze the MoA of early anti-bacterial [11,12], anti-

fungal [13], and anti-malarial compounds [14]. Despite the

elegance of this approach for MoA deconvolution, it is not

practical for use as a routine assay [15–17]. To benefit from the

transcriptional profiling body of evidence we have established a

miniaturized gene expression assay for efficient MoA deconvolu-

tion and discovery chemistry based on microfluidics. The

microfluidic integrated fluidic circuits (IFC) contain tens of

thousands of microfluidic-controlled valves and interconnected

channels for transporting and combining cDNA molecules and

qPCR reagents in complex patterns [18]. As a result of the

miniaturization inherent in this approach, a single assay is capable

of increasing the throughput of traditional qPCR by 2 orders

magnitude using nanolitre reaction volumes compared to the

standard techniques [19]. Here we report the application of this

tool as a routine assay for MoA deconvolution, and its help in hit

to lead and lead optimization of novel compounds obtained by

phenotypic screens. We demonstrate that a minimal number of

differentially expressed genes are sufficient to classify the MoA of

novel chemical entities (NCE).

Materials and Methods

Bacterial cultures and RNA extraction
Mycobacterium tuberculosis (ATCC 27294) and M. bovis BCG

(Pasteur) were grown with aeration at 37uC in Middlebrook 7H9

(Difco) liquid culture medium supplemented with 0.5% (w/v)

bovine serum albumin fraction V, 0.2% dextrose, 0.08% sodium

chloride, 0.5% glycerol, and 0.05%. tween 80 to mid-log phase.

The mid log phase culture was concentrated and re-suspended to

A600 nm of 0.3 (Amersham Ultrospec 3300). Antimicrobial

compounds were added at either 0.56, 16, or 56 minimum

inhibitory concentration (MIC) determined using a turbidimetric

microplate assay. For microarray experiments M. tuberculosis

H37Rv strain was anti-tubercular compounds were treated at

different concentrations for 6 hours prior to isolation of RNA for

analysis. All the details are provided in GEO accession #
GSE46212. For real time qPCR experiments, M. bovis BCG cells

were treated at 0.56MIC50 of various anti-tubercular agents for

3 hours prior to isolation of RNA. For microfluidics experiments,

M. bovis BCG cells were treated at 56 MIC50 of various anti-

tubercular agents for 3 hours prior to isolation of RNA. Dimethyl

sulfoxide (DMSO, drug vehicle) treated mycobacterial cultures

were used as untreated controls in all experiments. The culture of

cells treated/untreated with the inhibitor were pelleted in

RNAlater (Qiagen) and bacterial RNA were extracted using the

GTC/TrizolH method [20].

Figure 1. Cellular transcriptional responses of differentially-expressed genes clustered by inhibitor mechanism of action. A two-way
clustering heat map of chemically perturbed expression profiles using the data from whole genome microarray is shown. Agglomerative clustering
was performed on the 1860 genes differentially expressed in response to the given drug treatments. Profiles were clustered using Euclidean distance
in the similarity matrix. The individual genes are represented on the x- axis and the different drug treatments are indicated on the y-axis (columns).
Red, up-regulation; Blue, down-regulation; White, no change relative to the control. All expression values were transformed to log base 2.
doi:10.1371/journal.pone.0069191.g001

Microfluidics as Tool to Study Antimycobacterials
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Table 1. List of investigational and FDA approved anti-tubercular drugs and their mode of action.

Compounds Mode of action BCG MIC50 (mM)

NITD101 Unknown -

NITD102 Unknown -

NCE1a (AD841) Unknown 0.02

NCE1b (AD1015) Unknown 0.04

NCE1c (AD842) Unknown 0.2

NCE2a (AD1158) Unknown 0.38

NCE2b (AD1441) Unknown 1.28

NCE2c (AD1259) Unknown 2.06

NCE2d (AD1260) Unknown 2.04

NCE2e (AD1534) Unknown 7.2

NCE2f (AD1540) Unknown 0.44

NCE3a (NITD_TB034) Unknown 10

NCE3b (ATP425) Unknown 1.6

NCE3c (ATP359) Unknown 6

NCE3d (ATP435) Unknown 2

NCE3e (ATP355) Unknown 10

Cyclomarin- Series Targets the ClpC1 subunit of the Caseinolytic Protease

Liparmycin- Series DNA-dependent RNA polymerase inhibitor

PA-824 Possibly acts via generation of radicals having nonspecific toxic effects. Might possibly target enzymes
in mycolic acid & protein biosynthesis.

0.44

Linezolid Binds to the A site of the 50S subunit, and prevents the assembly of the ribosome initiation complex. 1.52

Ethambutol Cell wall inhibitor, inhibits arabinosyl transferases involved in cell wall biosynthesis. 2.96

Isoniazid Cell wall Inhibitor, Isoniazid inhibits inhA, a NADH-specific enoyl-ACP coA reductase involved in mycolic
acid biosynthesis

0.28

Ethionamide Cell wall inhibitor, disrupts of mycolic acid biosynthesis 2.04

Prothionamide Cell wall inhibitor 0.9

Amikacin Aminoglycosides: Inhibit translocation of the peptidyl-tRNA from the conserved A-site to the P-site
in the 30S ribosomal Subunit.

0.38

Capreomycin 1

Streptomycin 0.16

Kanamycin 1.56

Clofazimine Binds to guanine bases of bacterial DNA, causing steric hindrance in the template function of the DNA.
Causes the accumulation of toxic lysophospholipids which inhibit bacterial growth.

0.26

Ampicillin Penicillin: Beta lactam antibiotic. Penicillins bind to transpetidase enzymes (which are involved in the
continuous remodelling of the peptidoglycan layer by cross linking peptides chains). [Note
transpeptidase catalyses the terminal step of cell wall biosynthesis by cross linking the peptidoglycan].
By inhibiting this enzyme, penicillin prevents the formation of peptide bonds, weakens the cell wall,
which subsequently cause lysis of the cell membrane.

Moxifloxacin Quinolones: Inhibit the bacterial ATP-dependent enzyme DNA gyrase and topoisomerase
IV, preventing DNA unwinding during bacterial replication, transcription and bacterial DNA repair.

0.28

Ofloxacin 1.56

Levofloxacin 0.84

Gatifloxacin 0.2

Sparfloxacin 0.22

Valnemulin Pleuromutilin: Binds to the peptidyl transferase component of the 50S subunit of ribosomes. 6.76

Vancomycin Glycopeptide: Vancomycin binds with high affinity to the D-Ala-D-Ala C-terminus of the pentapeptide,
thereby blocking the addition of late precursors by transglycosylation to the nascent peptidoglycan chain
and preventing subsequent cross-linking by transpeptidation

Rifampicin Inhibits the essential rpoB gene product a subunit of DNA-dependent RNA polymerase activity 0.02

Rifabutin 0.02

Rifapentine 0.02

Thioridazine A phenothiazine interfering with NADH dehydrogenase 14.08

TMC207 Diarylquinoline which inhibits the proton pump of ATP synthase. 0.32

Microfluidics as Tool to Study Antimycobacterials
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Quantitative reverse transcription qPCR assay
The expression of genes selected as probes to represent the

whole genome was quantified using real time qPCR, after

normalizing the RNA expression levels to SigA as previously

described [11].

Microarray gene expression
Microarray analysis was performed as described [11]. The

microarray data obtained for the compounds has been submitted

to NCBI (GEO accession # GSE46212 and GPL1343). Expres-

sion ratios were calculated as the feature pixel median minus

background pixel median for one color channel divided by the

same for the other channel. In cases where more than 10% of the

feature pixels were saturated, the feature pixel mean was used

instead of the median. When the feature pixel mean did not

exceed the background pixel mean by more than two standard

deviation values (calculated from the background pixel distribu-

tion), the feature pixel median was used in the ratio without

background subtraction. In cases where both color channels were

near background (same criterion), the ratio value was set to

‘‘missing.’’ Expression ratios were transformed to the log base 2 for

all further calculations.

Microfluidic gene expression analysis
Using the previously described BioMark Fluidigm 96.96

microfluidic chip (Fluidigm, South San Francisco, Calif., USA)

[19], we analyzed bacterial transcriptional response in the

antibiotic or vehicle treated cells. Total RNA was isolated using

Trizol and RNA was quantified using a Nanodrop and adjusted to

150 ng for reverse transcription using High-Capacity RT Kit

(Applied Biosystems, 4368813), as per the manufacture’s recom-

mendations. Pre-amplification of the cDNA was performed using a

Taqman PreAmp Master Mix Kit (Applied Biosystems, 4391128)

as per the manufacture’s recommendations, and the preamplified

product was diluted at 1:20. The pre-amplified product was used

for the BioMark 96.96 Real-time PCR assay (Fluidigm) according

to the manufacture’s recommendations using Eva green DNA

binding dye (Biotium). Fluidigm uses integrated fluidic circuits to

generate a medium throughput for real-time PCR. In the BioMark

platform 96 primer sets and 96 samples can be loaded and via the

on-chip network of microfluidic channels, chambers and valves

individual PCR reactions will be assembled simultaneously (a

maximum of 9,216 reactions can be evaluated at one time). The

complete mechanism of how microfluidic circuit and valve system

technology work have been well described elsewhere (http://www.

fluidigm.com/technology.html).

Data processing and analysis
To identify differentially regulated genes, a measure of

significance t-test was applied to the normalized data set. To

discriminate genes that significantly deviated from the 1:1 ratio

(treated:vehicle), a minimum p-value of 0.05 was used. Differen-

tially expressed genes were subsequently subjected to Benjamini

and Hochberg correction to account for multiple experimental

testing.

Feature reduction
Feature reduction is the process of reducing the number of

variables (in this case genes) defining a condition. Feature

reduction often attempts to identify a minimum set of non-

redundant features that are useful for classification. Microarray

data of mycobacteria treated with a variety of antibacterial

compounds were hierarchically clustered using Euclidian distance

as a distance matrix and a minimal variance method (Ward

linkage) to join adjacent clusters [21]. It can be summarized by the

following five steps: a) Distances between all gene pairs are

calculated, using Euclidean distance, b) The resulting distance

matrix is thoroughly inspected to find the smallest distance

between expression profiles, c) The corresponding genes are joined

together in the tree and form a new cluster, d) The distances

between the newly formed cluster and the other genes are

recalculated, e) Steps b, c and d are iteratively repeated until all

genes and clusters are linked in a final tree.

Table 1. Cont.

Compounds Mode of action BCG MIC50 (mM)

Tetracycline Bind to the 30S ribosomal subunit in the mRNA translation complex thus,
inhibiting binding of aminoacyl-tRNA to the mRNA-ribosome complex.

p-aminosalicylic acid (PAS) Inhibitor of folic acid biosynthesis pathway 0.56

MIC50 listed for anti-tubercular investigational and SAR compounds, when available.
doi:10.1371/journal.pone.0069191.t001

Figure 2. Transcriptional profile of gene clusters in response to antibiotics. X-axis denotes different drugs, and the y-axis denotes relative
expression of the gene in response to the particular drug on the x-axis. Whole genome microarray data were used for this analysis. (A) A cluster
replete with genes in respiratory metabolic pathway as well as subunits of the secretion system. The ESX section associated protein EspC was
selected as the gene best representing the cluster transcription profile. (B) Genes of a related metabolic pathway cluster together in response to
antibiotics. All three genes are from one metabolic pathway. NadB involved in quinolone biosynthesis served as the representative of the cluster.
doi:10.1371/journal.pone.0069191.g002

Microfluidics as Tool to Study Antimycobacterials
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A hierarchical cut off was selected that gave 90 gene clusters. A

single biomarker gene to represent each cluster was identified by

finding the gene in the cluster with the best Pearson correlation

against the cluster mean. In total, 90 genes were selected

optimizing the number of biomarkers measured in the 96 probe

fluidigm format while allowing for up to 6 control probes. The

reduction method included following steps; a) computation of

the mean expression of genes in a cluster in all conditions,

b) computation of Pearson product moment correlation co-

efficient to the cluster mean for each gene, and c) the selection

of gene with the best correlation co-efficient in each cluster as the

feature to represent the cluster.

Figure 3. Transcriptional responses to drug treatment reveal that a single gene representing logically associated gene clusters is
sufficient for MoA diagnosis in Mycobacterium tuberculosis. Groups of drugs clustered separately based on the known mechanism of action,
while SAR series of compounds with novel MoA (cyclomarin) showed a fingerprint distinct from any of the compounds tested. Periods following drug
names represent duplicates. X-axis represents the 90 genes that were chosen from the microarray as representative of 90 clusters, y-axis lists the
different drug treatments. i, ii, and iii, represent 3 clusters namely, cell wall inhibitor, RNA polymerase inhibitor and Cyclomarin series, respectively.
doi:10.1371/journal.pone.0069191.g003

Table 2. Pathway enrichment of functional classes of genes on PCR array.

Class ID Functional Class PCR array Genome (H37Rv)

0 Virulence, detoxification & adaptation 10.59% 5.22%

1 Lipid metabolism 5.88% 5.84%

2 Information pathways 7.06% 5.17%

3 Cell wall and cell processes 20% 18.49%

5 Insertion sequences & phages 2.35% 3.62%

6 PPE/PE 3.53% 4.14%

7 Intermediary metabolism & respiration 15.29% 22.11%

9 Regulatory proteins 4.08% 4.78%

10 Conserved hypotheticals 15.29% 22.06%

16 Conserved hypotheticals with an orthologue in M.bovis (BCG) 8.24% 6.43%

- Not annotated on H37Rv 7.06% -

doi:10.1371/journal.pone.0069191.t002

Microfluidics as Tool to Study Antimycobacterials
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The robustness of experimental set up was evaluated using

Pearson correlation coefficient of expression values between two

independent biological duplicates. Similarities in the expression

profiles were analyzed by generating heat maps using R [22].

Correlation similarity matrix comparing different compounds, or

SAR analogues was evaluated using both R and the Pearson

product moment correlation coefficient.

Results

A feature reduced compendium of chemical-genetic
profiles

We established the transcriptional response of M. tuberculosis to

12 different inhibitors. Included in this collection were 5 synthetic

compounds and natural products derived from phenotypic

screens, the rest were FDA approved drugs with anti-tubercular

activity. The list of inhibitors used for perturbing bacteria and

MoA diagnosis are included in Table 1. Microarray results showed

differential expression for 1860 genes out of 4734 genes that were

used in the array. (GEO accession # GSE46212 and GPL1343).

The hierarchical heat map of bacterial transcriptional response of

1860 genes to the list of antibacterials showed that groups of drugs

clustered separately based on their known mechanism of action

(Fig. 1). Thus, protein synthesis inhibitors, transcriptional inhib-

itors, cell wall synthesis inhibitors and novel antibacterials fell into

distinct groups. Boshoff and co-workers had previously described

the application of transcriptional profiling using microarrays for

MoA diagnosis of a natural product extract with no known mode

of action [11]. However, the approach is not easily scalable and

suitable for routine MoA diagnosis for hundreds of compounds

from phenotypic screening. To exploit this property amenable for

phenotypic screening, we limited the number of genes defining a

condition to 90 using feature reduction.

Feature reduction and real-time qPCR for MoA
deconvolution

Feature reduction attempts to identify a set of non-redundant

genes that are useful for MoA classification. To reduce the features

amenable to a robust 96 well format, a total of 90 genes from 90

clusters derived from agglomerative hierarchical clustering were

selected. Briefly, the expression profiles of single genes was

successfully joined to form nodes, which in turn were joined

further until a total of ninety clusters were obtained. At the finest

level, redundant gene representations across all perturbations

clustered together with genes in each cluster showing similar

expression profile. Two representative pattern of transcriptional

profile of gene clusters in response to various antibiotics are shown

in Fig. 2A & B. However despite the similar expression patterns,

individual genes could be distinguished from each other with

subtle differences in their expression profiles (Fig. 2A). To reduce

the number of features a single gene was selected from each cluster

that best represented the cluster expression profile by finding the

gene most correlated with the mean expression profile of the

cluster. The 90 genes selected with their known function are listed

in Table S1.

To validate the functionality of the selected gene probes for

MoA diagnosis, we analyzed bacterial transcriptional response to

the chemical perturbation from microarrays. Hierarchical cluster-

ing analysis of the transcription reference compendium revealed

that 90 genes are sufficient to define the MoA of hits derived from

phenotypic screens (Fig. 3). We found that compounds with similar

cellular effects showed similar transcription fingerprints and

thereby cluster together on the vertical axis in revealing both

anticipated and novel insights into their mode-of-action. In

particular there were a couple of examples where the cluster

analysis grouped inhibitors targeting the same pathway or target

(Fig. 3). Individual clusters are annotated by roman numbers: (i)

Cell wall inhibitors: Ampicillin (peptidoglycan) and Isoniazid

Figure 4. Transcriptional responses of M. bovis BCG to anti-tubercular drugs profiled using qPCR. A compendium of qPCR results can
show differences in the MOA of anti-tubercular drugs. (A) Spatial grouping of drug expression profiles on a dendrogram after qPCR profiling using
hierarchical clustering. From the list of drugs tested, two major clusters emerge cell wall inhibitors, and those that inhibit DNA/protein synthesis. (B)
Similarity matrix of expression profiles for chemical inhibitors using qPCR profiling. The blue-red color scale shows the degree of correlation of drugs
expression profiles ranging from 21 to 1 respectively. 6- depicts transcriptional responses at 26 or 0.56 the MIC50, while those that have no 6
designation were done 16 the MIC50.
doi:10.1371/journal.pone.0069191.g004
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(Mycolic acids); (ii) RNA polymerase inhibitors: Rifampicin and

Lipiarmycin [23], and (iii) a series of ClpC1 caseinolytic

proteasome inhibitors cyclomarin whose mode of action is novel

[24]. The quality of the data was tested using Pearson rank

correlation and Euclidean Distance, which verified that the

expression fingerprint within each compound perturbation was

tightly correlated (Fig. S1).

MoA deconvolution of a natural product with anti-
bacterial activity identified by chemical genetics

Given that, transcriptional profiling is applicable to any

molecule that impairs bacterial growth, we evaluated the MoA

of the natural product cyclomarin. To test whether chemical-

genetic profiling may be particularly useful in driving the SAR for

a molecule whose MoA was distinct from the compendium, we

analyzed the transcriptional fingerprint of different derivatives of

the natural product. All derivatives had a tight correlation,

showing a similar fingerprint suggesting that they all had the same

mode of action, and were probably targeting the same target (Fig. 3

& S1, Fig. 1). A detailed study on the elucidation of the MoA of the

natural product cyclomarin is described elsewhere [24].

To validate the functional representation of the selected

biomarker genes using qPCR, we evaluated the functional

enrichment of genes. Table 2 summarizes the gene function

enrichment of biomarker genes. Functional classes were defined

according to Cole et al [25]. Gene function enrichment revealed

that the dominant feature was a large percentage of virulence,

detoxification and adaptation genes more than twice the expected

number by chance. Genes from this functional class include; a heat

shock protein groES, some conserved hypothetical proteins with

PIN domains, a sub unit of the alkyl-hydrogen peroxide reductase

ahpC involved in the oxidative stress response and genes in toxin-

anti toxin operons. This demonstrates that the feature reduction

can successfully enrich for genes involved in stress responses [26]

as well as central pathways targeted by antibiotics [27].

One of the challenges of working with microarrays for MoA

deconvolution is large sample volume, the need for multiple

replicates, further compounded by the noise inherent in these

systems. As a proof of concept to circumvent these properties,

application of using oligos to PCR amplify the 90 selected genes as

biomarkers to represent the whole genome was evaluated. A small

collection of anti-tubercular drugs were analyzed by qPCR arrays

using M. bovis BCG bacterial RNA. Analysis of the qPCR arrays

showed that expression profiles from this platform were able to

distinguish the MoA between anti-bacterial drugs (Fig. 4A & B).

The minimal gene list to decipher the antibiotic mechanism of

action on a PCR array has been summarized in Table S1.

Figure 5. Hierarchical clustering and correlations of anti-tubercular drugs. Transcriptional responses data obtained from microfluidic
experiment are used for the analysis. The detailed descriptions for genes represented in this figure are provided in Table S1. (A) Hierarchical
clustering via average linkage of Pearson correlations for FDA approved drugs. The individual genes are represented in y-axis and the compound
treatment is in the x-axis. (B) Pearson correlations for 23 anti-tubercular drugs. Correlations were calculated between 2 independent microfluidic
experiments, following median normalization to account for plate effects.
doi:10.1371/journal.pone.0069191.g005

Microfluidics as Tool to Study Antimycobacterials
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A medium throughput assay: Microfluidic platform
Despite the excellent dynamic range, sensitivity and reproduc-

ibility of data using real time qPCR, this technique is a low

throughput and expensive method to analyze a limited number of

genes. Microfluidic digital PCR is able to generate higher

throughput data technically identical in quality to the standard

qPCR [19]. We explored the use of microfluidic chips to study the

bacterial transcriptional response to a collection of anti-tubercular

Figure 6. Transcriptional response of selected 90 genes to novel chemical entities. The heatmap was drawn using Pearson correlations
through single linkage for both genes and compound treatments. The individual genes are represented in y-axis and the compound treatment is in
the x-axis. Compounds from the same SAR library (designated as NCE1and NCE2) show a similar expression fingerprint, while NCE3 SAR compound
series displays more variability in expression. The detailed descriptions for genes represented in this figure are provided in Table S1.
doi:10.1371/journal.pone.0069191.g006

Microfluidics as Tool to Study Antimycobacterials
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investigational and 23 FDA approved drugs (Table 1). As

expected, drugs with similar mode of action, targeting the same

cellular organelles clustered together (Fig. 5A). For example the

fluoroquinolines clustered together, which inhibit the bacterial

ATP-dependent enzyme DNA gyrase and topoisomerase IV,

preventing DNA unwinding during bacterial replication, tran-

scription and bacterial DNA repair. To validate the dynamic

microfluidic PCR as a platform for routine gene expression

analysis, the variation between and within measurement platforms

for all genes under investigation using a subset of drugs was

analyzed. The correlation between independent biological assays

was as good as qPCR readouts (Fig. 5B).

Driving SAR of a chemical genetics hits using microfluidic
arrays

The principal advantage of a cell-based screen is that it

represents an unbiased picture of both known and unknown

cellular pathways that a molecule can modulate. The disadvantage

of this empirical approach is that the target remains unknown. Hit

to lead and lead optimization is generally more efficient when the

target is known, thus target deconvolution is essential despite being

time consuming and tedious. During SAR expansion, derivative

molecules of the primary compound are made with a greater

potency than the starting hit molecule (parent hit). It is imperative

to monitor that these derivatives inhibit the same target or similar

MoA, meaning that they have a similar transcription fingerprint as

the parent hit molecule. In order to evaluate if SAR analyses can

be improved for a compound with anti-tubercular activity, we

evaluated the transcription fingerprint of a series of derivatives

around particular pharmacophores. We hypothesized that a

change in the transcription profile would indicate a change of

target or MoA. To investigate this, a subset of an SAR expansion

of NCE1, NCE2, and NCE3 were analyzed. SAR groups NCE1

and NCE2 showed a similar transcription fingerprint, indicating

that they probably were still ‘‘on target’’ (Fig. 6 & S2). The NCE3

series displayed more variability in expression in our feature

reduction microfluidic experiment; this is evident in both the

heatmap and the correlation matrix (Figure 6& S2). All derivatives

had anti-bacterial activity (Table 1).

Discussion

There is an urgent need for new therapeutic approaches to

antibiotic discovery as a result of the rapid emergence of multi-

resistance to existing drugs, which is further exacerbated by the

current gap in the development of new molecules. Phenotypic

screening has re-emerged as the standard anti-bacterial drug

discovery approach to avoid some of the attrition in target-based

lead identification. When successful, it provides lead compounds

with proven in vivo activity against the organism of interest [8,9].

This approach has produced a large set of starting chemical points

for anti-bacterial & anti-parasitic lead discovery [14,28–32].

However, the cost of not having a biochemical assay for whole

cell activity is that hit to lead and lead optimization becomes more

challenging.

It is more difficult to establish consistent structure-activity

relationships from phenotypic screens because whole-cell potency

is a composite result of several compound properties, such as

target affinity, cell permeability, efflux, and or intracellular

modifications. Nonetheless, evidence supports the effectiveness of

this approach in the identification of novel chemical classes with

anti-bacterial or anti-malarial activity [23,24,28–32]. The key to

success is a good chemical starting point and an adequate

progression path to identify the potential to become a drug as

quickly as possible.

The current study describes a more efficient tool for MoA

deconvolution by transcriptional profiling of compounds derived

from phenotypic screens using a microfluidic platform with

integrated fluidic circuits. We show that the approach is indeed

feasible from both a conceptual and practical point of view. A

major goal was to identify a minimal set of genes that can be used

as biomarkers for MoA deconvolution on an amenable miniatur-

ized assay. Analysis of the whole genome bacterial transcriptional

responses to these compounds helped in selecting a set of

biomarker genes important in the general bacterial response to

antibiotics, which was utilized in the development of a routine

assay. Unsupervised grouping by hierarchical clustering revealed

gene clusters whose expression profile for these inhibitors was

consistent with previous studies on the MoA of these agents. More

importantly, the clustering grouped together inhibitors with a

similar mode of action.

A common theme, in all compound expression fingerprints was

the remarkable over representation of the genes in bacterial

defense, detoxification adaptation and virulence systems. Interest-

ingly, a majority of the functionally characterized biomarkers

appeared to be only indirectly related to the primary molecular

targets of most of the inhibitors used. These were largely identified

owing to their consistent expression pattern when exposed to

antibiotic stress. Some of the biomarkers included heat shock

proteins, toxin anti-toxin regulons, and detoxification systems

against reactive oxygen species. These findings are in line with an

increasingly more acknowledged mechanism of anti-bacterial

action where the accumulation of broadly toxic intermediates

and a suicidal derailing of central homeostatic system result in

bacterial death [4,7,8,27].

Hit to lead and lead optimization programs characteristically

result in the generation of multiple compound series. Whilst it is

important that cellular penetration, physiochemical profiles, and

target inhibition are maintained or improved during SAR

expansion, the gathering of this information is critical for good

lead selection. Biomarker gene expression fingerprinting revealed

that hit to lead and lead optimization could be guided in part by

transcriptional profiling of the SAR series using the biomarker

genes (Fig. 6). Derivatives of NCE1 and NCE2 showed similar

fingerprints to the primary hit molecules, suggesting that they

retained the same MoA. The tools described enable MoA

diagnosis whilst prioritizing compounds from an SAR library of

phenotypic screen derived leads. This will help in distinguishing

the new series from other compound classes based on the

transcriptional outcomes reflected in the gene expression by the

chemical perturbations. Although the microfluidics, helped in

tracking whether the novel compounds perturbed similar genes, it

fails to give more details regarding the exact mode of action. Once

the final compound has been identified, other techniques such as

spontaneous mutant generation followed by whole genome

sequencing and or affinity based target pull down studies need

to be employed to identify the actual target.

The low number of biomarker genes required for MoA

deconvolution and the establishment of a simple, robust and

routine assay highlights the value of this technology in anti-

infective drug discovery programs. As evidence to the potential

application of this diagnostic platform, Barczak and co-workers

recently underscored the application of drug RNA signatures for

rapid clinical diagnosis of antibiotic susceptibilities in a broad

range of bacterial pathogens [33]. The continued expansion of the

drug transcriptome (collection of transcriptional fingerprints

profiles generated by different chemical entities) using microfluidic
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arrays will generate a more composite resource for highly detailed

functional cataloguing of compounds; such as grouping com-

pounds that perturb similar sets of genes, as well as identifying sets

of deletion mutants that show sensitivity to similar sets of

compounds. Such tools can be used to augment phenotypic

screens and are likely to lead to a wider application of MoA

diagnostic assays in phenotypic screen campaigns. Although the

present study presents evidence from anti-bacterial compounds,

the vital components of this approach are not prokaryote specific.

Analogous approaches can be applied in eukaryotes for other

important medical indications such as the development of anti-

malarial and anti-parasitic drugs.

Supporting Information

Figure S1 A prediction correlation matrix using feature-
reduced data to validate the classification of individual
inhibitors. A heat map representation of gene expression

similarity matrix of chemical inhibitors using selected features.

The blue-red color scale shows the degree of correlation of drugs

expression profiles ranging from 21 to 1 respectively. All

expression values were transformed to log base 2. Periods

following drug names represent duplicates.

(TIF)

Figure S2 A correlation matrix based on Pearson
correlations of compounds from the same SAR library.

Note high levels of correlation as evident by the SAR clustering.

NCE1 SAR compounds and NCE2 SAR compounds form tight

clusters while NCE3 SAR compounds form two clusters. Red

blocks indicate correlations greater than 0.98, blue blocks indicate

correlations between 0.9–0.98, and white blocks are lower than

0.9.

(TIF)

Table S1 Minimal number of biomarker genes for MoA
deconvolution on a PCR array. Note the gene function were

as depicted in ,http://genolist.pasteur.fr/TubercuList/..

(DOCX)
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