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Abstract

When dissimilar images are presented one to each eye, we do not see both images;

rather, we see one at a time, alternating unpredictably. This is called binocular rivalry, and

it has recently been used to study brain processes that correlate with visual conscious-

ness, because perception changes without any change in the sensory input. Such studies

have used various types of images, but the most popular have been gratings: sets of

bright and dark lines of orthogonal orientations presented one to each eye. We studied

whether using cardinal rival gratings (vertical, 0˚, and horizontal, 90˚) versus oblique rival

gratings (left-oblique, –45˚, and right-oblique, 45˚) influences early neural correlates of

visual consciousness, because of the oblique effect: the tendency for visual performance

to be greater for cardinal gratings than for oblique gratings. Participants viewed rival grat-

ings and pressed keys indicating which of the two gratings they perceived, was dominant.

Next, we changed one of the gratings to match the grating shown to the other eye, yield-

ing binocular fusion. Participants perceived the rivalry-to-fusion change to the dominant

grating and not to the other, suppressed grating. Using event-related potentials (ERPs),

we found neural correlates of visual consciousness at the P1 for both sets of gratings, as

well as at the P1-N1 for oblique gratings, and we found a neural correlate of the oblique

effect at the N1, but only for perceived changes. These results show that the P1 is the ear-

liest neural activity associated with visual consciousness and that visual consciousness

might be necessary to elicit the oblique effect.

Introduction

One part of the neuroscience of consciousness is the quest to identify neural processes that cor-

relate with phenomenal consciousness [1]. We set out to study those processes using binocular

rivalry and the oblique effect.
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Binocular rivalry

What happens when the two eyes view dissimilar images? A remarkable phenomenon, binocu-

lar rivalry, ensues in which one of the images is dominant—it reaches visual consciousness and

is perceived—whereas the other is suppressed—it does not reach visual consciousness and is

not perceived—and visual consciousness of one or the other image alternates unpredictably

between the two images [2–7]. For example, when one eye views a horizontal grating—a set of

bright and dark horizontal lines—and the other eye views a vertical grating—a set of bright

and dark vertical lines—an observer usually perceives one grating, say, horizontal, for a few

seconds, then the other, vertical grating for a few seconds, then the horizontal grating again,

and so on, for as long as one cares to look. Binocular rivalry is a powerful tool for studying

neural activity associated with visual consciousness, because perception of one or the other

image changes without any change in the physical properties of those images [1,8,9].

Binocular rivalry can occur between any two images, provided that they are sufficiently

dissimilar such that they cannot be combined via binocular fusion—the process yielding sin-

gleness of vision of some combination of the images in the two eyes [7,10]. For example, binoc-

ular rivalry can be experienced with simple stimuli, such as gratings (contour rivalry; [5]) or

colours (colour rivalry; [11]), or with more complex stimuli, such as pictures of faces and

houses (complex rivalry; [12]). Gratings are the most popular type of stimuli used to instigate

binocular rivalry, possibly because they stimulate simple cells in V1 that are tuned for orienta-

tion [13–15], allowing one to study low-level processing [16] free from higher-level influences

[17], such as semantics and emotion.

Binocular rivalry is typically explained via neural adaptation and reciprocal inhibition [18].

According to this explanation, the neurons processing each image are involved in reciprocal

inhibition such that those tuned for the dominant image are active while those tuned for the

suppressed image are inhibited. Because the neurons processing the dominant image are

adapting whereas the neurons processing the suppressed image are recovering from adapta-

tion, eventually a tipping point is reached whereby the activity of the two sets of neurons is

about equal, requiring only a small nudge, such as from internal noise or from an eye move-

ment, to reverse the balance of inhibition. This leads to an abrupt increase in the activity of the

neurons processing the suppressed image as well as a sudden decrease in the activity of the

neurons processing the dominant image, forcing a change in visual consciousness. The general

principles of this explanation exist in most models of binocular rivalry [19–36].

Early neural correlates of visual consciousness

Our interest in binocular rivalry is to use it to study early neural correlates of visual conscious-

ness. By this, we mean neural processes that occur in the first 250 ms after the onset of a visual

stimulus that differ between conditions in which observers can perceive a visual stimulus ver-

sus conditions in which observers cannot perceive a visual stimulus, even though it is projected

onto the retina [1,8,9]. To accomplish this, we used the excellent temporal resolution of the

electroencephalogram (EEG) and event-related potentials (ERPs), which are in the order of

milliseconds, we identified the P1 and N1 components of ERPs, both of which are thought to

index early sensory and perceptual processes [37–39], and we used an ERP paradigm pio-

neered by Kaernbach et al. [40].

Kaernbach et al. [40] presented a left-oblique (–45˚ from vertical) grating to one eye and a

right-oblique (45˚ from vertical) grating to the other eye, yielding binocular rivalry. They

asked their participants to press keys indicating which of the two gratings was dominant. After

doing so for at least 10–15 seconds, Kaernbach et al. [40] changed one of the gratings to match

the grating shown to the other eye, yielding binocular fusion. We call this event a rivalry-to-

Cardinal versus oblique ERPs
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fusion change. Because of binocular rivalry, if the change was to the dominant grating, then the

rivalry-to-fusion change was perceived—we call this a perceived change—whereas if the change

was to the suppressed grating, then the rivalry-to-fusion change was not-perceived—we call

this a not-perceived change.

Kaernbach et al. [40] found two neural correlates of visual consciousness: a bigger N1 and a

bigger P3 from a perceived change than from an identical not-perceived change. The P3 occurs

between 300 and 600 ms and is thought to index task-relevant change-detection and response

preparation and execution [41], so it is not a surprising finding, because participants’ task was

to release the key when they saw a change. The N1, however, qualifies as an early neural pro-

cess, because it occurs between 140 and 200 ms and is thought to index sensory, perceptual,

and attentional processes [37–39]. The N1 and P3 correlates of visual consciousness have been

found with steady rival gratings [42], flickering rival gratings [42], and coloured rival gratings

[43].

Roeber and Schröger [42] extended the basic finding to include an earlier neural correlate

of visual consciousness: a bigger P1 from a perceived change than from a not-perceived

change. The P1 is an early neural correlate of visual consciousness, because it occurs at about

100 ms and is thought to index sensory and perceptual processes [37–39]. The basic P1 finding

has since been found by Veser et al. [43] and Roeber et al., [44,45], as well as in the reanalysed

data of Kaernbach et al. [40] by Veser et al. [43]. Furthermore, Roeber et al. [45] localised their

P1 correlate of visual consciousness to the ventrolateral occipito-temporal cortex, an area of

the brain thought to amplify the processing of visual information for visual consciousness

[46,47].

Oblique effect

The oblique effect refers to the relative decrease in perceptual performance for oblique stimuli

(i.e., stimuli having orientations that are diagonal; e.g., left-oblique, –45˚, and right-oblique,

45˚) than for cardinal stimuli (i.e., stimuli having orientations that are vertical, 0˚, or horizon-

tal, 90˚; [48]). The classical finding is that participants perform better on spatial acuity tasks

when the stimuli are aligned to cardinal orientations than to oblique orientations [49–54]. As

summarised by Appelle [48] and Li et al., [55], the oblique effect has been found in humans

and animals, including the cat, monkey, rabbit, pigeon, goldfish, rat, squirrel, and octopus, for

a range of perceptual tasks, including contrast sensitivity, orientation discrimination, and ver-

nier acuity.

Converging evidence suggests that the oblique effect has its neural basis in visual cortex

[48,55]. For instance, physical properties of the visual system, such as asymmetric optics and

sparser photoreceptor packing in the retina along oblique angles, do not significantly contrib-

ute to the oblique effect [52,56], suggesting that the oblique effect arises after the retina. More-

over, single-cell recordings of V1 from the cat [15,57–61] and the monkey [62–64] show that

fewer neurons are tuned to oblique stimuli than to cardinal stimuli, suggesting that the oblique

effect is a function of the number of cells tuned for specific orientations. In humans, the blood

oxygen level-dependent (BOLD) signal in V1 is higher [65] and the amplitudes of ERPs over

occipital regions of the brain are bigger [66–72] when observers view cardinal stimuli than

when they view oblique stimuli. Thus, the oblique effect has its neural basis in visual cortex.

Present study

In the experiment we report here, we set out to answer two questions:

Cardinal versus oblique ERPs
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1. To date, all of the experiments that have used Kaernbach et al.’s [40] paradigm have used

left- and right-oblique gratings as stimuli. Do the results of Kaernbach et al. [40] apply to

experiments that use cardinal gratings? Indeed, this question highlights a much larger prob-

lem in the literature: most psychophysical studies of binocular rivalry have tended to use

cardinal gratings [73–85], whereas most electrophysiological studies have tended to use

oblique gratings [40,42–45,86–90]. This is problematic, because using only one set of sti-

muli for one methodology and a different set of stimuli for a different methodology leaves

open the question as to whether conclusions can be generalised across methodologies. We

sought to address this.

2. Does the oblique effect require visual consciousness? Recently, Takács et al. [91] found that

infrequent and unpredictable changes in the orientation of task-irrelevant gratings elicited

a bigger visual mismatch negativity (vMMN), an ERP component thought to index pre-

attentive visual change detection [92–94], from cardinal gratings than from oblique grat-

ings. They concluded that the oblique effect does not require attention. Although attention

and visual consciousness are different processes that perform separate functions in the

brain [1,95–99], the results of Takács et al. [91] prompted us to consider the possibility that

the oblique effect may not require visual consciousness. To the best of our knowledge, this

has never been tested. We sought to address this.

In summary, we have two purposes: First, we set out to determine whether the results of

Kaernbach et al. [40] apply to experiments that use cardinal gratings. Second, we set out to

determine whether the oblique effect influences early neural correlates of visual consciousness.

To accomplish this, we used an ERP paradigm similar to that of Kaernbach et al. [40], and we

compared ERPs from cardinal gratings with ERPs from oblique gratings, and ERPs from per-

ceived changes with ERPs from not-perceived changes.

Materials and methods

Ethics statement

The study was approved by Southern Cross University’s Human Research Ethics Committee

(ECN-11-149) and was conducted in accordance with the ethical standards laid down in the

Declaration of Helsinki [100]. All participants gave written informed consent prior to the

experiment.

Participants

Seventeen volunteers participated in our study. There was no reward or financial incentive

offered to participate. All participants had normal or corrected-to-normal visual acuity in

both eyes and showed normal binocular rivalry in a 12-minute pre-test session. Data of two

participants were excluded from further analyses, because fewer than 50 epochs for any ERP

remained after data pre-processing. Mean (SD) age of the remaining 15 participants, of

whom five were male, was 23 (5) years. We conducted a power analysis of the oblique effect

prior to collecting any data based on the effect size reported in Takács et al. [91] of η2 = .23:

to find a power of 0.8 with α = .05, we needed a sample size of 10.

Apparatus

The experiment was conducted in the EEG Research Laboratory at Southern Cross University,

Coffs Harbour, Australia, in a sound-attenuated (42 dB) room with the display of the stimuli

providing the only light. During the experiment, each participant sat in a chair at a desk with

Cardinal versus oblique ERPs
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his or her head stabilized by a chin-and-forehead rest. Stimuli were presented on a Samsung

2233RZ monitor (1024 × 768 pixels at 60 Hz) at a viewing distance of 57 cm when viewed

through a mirror stereoscope (Screenscope-SA-200-Monitor-Type). The experiment was con-

trolled by a Macintosh Mini running specially written Matlab scripts using the Psychophysics

Toolbox [101–103]. Participants responded using two keys on a response keypad.

The EEG was recorded from 58 Ag/AgCl active electrodes placed according to the extended

10–20 system (AF7, AF3, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1,

FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4,

CP6, TP8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO9, PO7, PO3, POz, PO4, PO8, PO10, O1, Oz,

O2) and referenced to FCz, with the ground at AFz. A vertical electrooculogram (EOG) was

recorded by placing an electrode above (we used FP2) and below the right eye; a horizontal

EOG was recorded by placing an electrode on the outer canthi of each eye. We also placed an

electrode on each earlobe. The sampling rate of the EEG was 500 Hz and the online filtering

was 1,000 Hz.

Stimuli

Binocular-rivalry stimuli were annulus-shaped patches of black (0.40 cd/m2) and white (86.67

cd/m2) sine-wave gratings on a mean-luminance (43.54 cd/m2) grey background. The grating

presented to one eye could be vertical (0˚), in which case the grating presented to the other eye

was horizontal (90˚), or left-oblique (–45˚), in which case the grating presented to the other

eye was right-oblique (45˚). The gratings had a spatial frequency of 1.6 cycles per degree, a

mean luminance of 43.54 cd/m2, and a Michelson contrast of .99. The outer diameter of the

gratings was 3.2˚ of visual angle; the inner diameter was 0.67˚. The central area contained a

central red fixation cross of 0.3˚ with a line width of 0.1˚. The gratings were surrounded by

three white fusion rings; these served to lock vergence. The outer diameter of the largest ring

was 6.4˚. Each ring had a line width of 0.05˚ and was 0.3˚ from its neighbour.

Design and procedure

The experiment consisted of 20 blocks of about 4 minutes each. In half of them, participants

were presented with cardinal stimuli—a horizontal grating to one eye and a vertical grating to

the other eye; in the other half, participants were presented with oblique stimuli—a left-oblique

grating to one eye and a right-oblique grating to the other eye. The order of the blocks was

approximately counterbalanced over participants. Each block contained 24 trials comprising

six repetitions of the factorial combination of two eye-orientation arrangements (e.g., left-eye

vertical and right-eye horizontal versus left-eye horizontal and right-eye vertical) and two eye-

change arrangements (e.g., left-eye grating changed versus right-eye grating changed). The

order of trials was random and different within each block, as well as different for each

participant.

A trial comprised a display of binocular-rivalry gratings for at least 6.25–6.75 s and until the

participant’s next key press. The display then continued for a further 300–600 ms before one

of the gratings changed to match the grating shown to the other eye, yielding binocular fusion.

We call this event a rivalry-to-fusion change. Because of binocular rivalry, if the change was to

the dominant grating, then the rivalry-to-fusion change was perceived—we call this a per-

ceived change—whereas as if the change was to the suppressed grating, then the rivalry-to-

fusion change was not-perceived—we call this a not-perceived change. The binocular fusion

display lasted for 1.75–2.25 s, at which point one of the gratings changed, yielding binocular

rivalry. This event signalled the end of one trial and the beginning of the next (see Fig 1).

Cardinal versus oblique ERPs
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The participant’s task was to look at the fixation cross in the centre of the grating stimuli, to

report binocular rivalry dominance of one or the other grating by pressing down one or another

key on the response keypad, to release that key as soon as dominance changed, and to refrain

from pressing either key if any combination of the two gratings was perceived. This yielded two

events: key presses—when a key was pressed—and key releases—when a key stopped being

pressed. We used key presses and releases to determine participants’ mean binocular rivalry

dominance duration and to classify rivalry-to-fusion changes as perceived or not-perceived.

ERP analysis

For data analyses, we re-referenced the EEG data offline to the average of the earlobes, and we

filtered the data using a half-amplitude 0.1 to 35 Hz phase-shift free Butterworth filter (48 dB/

Fig 1. Schematic illustration of one trial of our experimental procedure, based on that described in Kaernbach et al. [40]. (a) A trial

comprised a display of binocular-rivalry gratings—in this case, a horizontal grating to the left-eye and a vertical grating to the right-eye—for at least

6.25–6.75 s and until the participant’s next key press. The display then continued for a further 300–600 ms before one of the gratings changed to

match the grating shown to the other eye, yielding binocular fusion—in this case, the left-eye grating changed from horizontal to vertical. We call this

event a rivalry-to-fusion change. This display lasted for 1.75–2.25 s, at which point one of the gratings changed, yielding binocular rivalry—in this

case, the right-eye grating changed from vertical to horizontal. We call this event a fusion-to-rivalry change. This event signalled the end of one trial

and the beginning of the next. We also ran counterbalancing trials in which the orientations of the gratings were shown to the opposite eye than that

illustrated and the rivalry-to-fusion and fusion-to-rivalry changes were to the opposite eye than that illustrated, as well as trials in which the

orientations of the gratings were oblique rather than cardinal. (b) Because of binocular rivalry, if the grating that changed was dominant—in this case,

the horizontal grating—the observer perceived the change—we call this a perceived change, (c) whereas if the grating that changed was

suppressed—in this case, the vertical grating—the observer did not perceive the change—we call this a not-perceived change.

https://doi.org/10.1371/journal.pone.0188979.g001

Cardinal versus oblique ERPs

PLOS ONE | https://doi.org/10.1371/journal.pone.0188979 December 12, 2017 6 / 18

https://doi.org/10.1371/journal.pone.0188979.g001
https://doi.org/10.1371/journal.pone.0188979


Oct slope). We extracted the epochs from -100 to 600 ms, and we baseline corrected all epochs

to their mean voltage from -100 to 0 ms. We excluded all epochs with signals exceeding peak-

to-peak amplitudes of 200 μV at any EEG channel, or of 60 μV at any EOG channel. We com-

puted ERPs separately for each axis (cardinal, oblique) and for each rivalry-to-fusion change

(perceived change, not-perceived change) for each participant, and excluded any data sets con-

taining fewer than 50 epochs for any ERP.

We used participants’ key presses and releases to classify rivalry-to-fusion changes as per-

ceived or not-perceived: if the change was to the dominant grating, we classified it as a per-

ceived change; if the change was to the suppressed grating, we classified it as a not-perceived

change. Because binocular rivalry alternations are about 450 ms ahead of a key press or release

[3], we classified rivalry-to-fusion changes as perceived or not-perceived only if the key contin-

ued to be pressed until at least 150 ms after the rivalry-to-fusion change. We chose this time to

be consistent with previous studies using this paradigm [40,42–45].

We defined a spatio-temporal region-of-interest (ROI) according to the literature: Roeber

and Schröger [42], Veser et al. [43], and Roeber et al. [44,45] reported the P1 correlate of visual

consciousness at right occipital electrodes (PO4, PO8, O2) at about 100 ms, and Kaernbach

et al. [40] and Roeber and Schröger [42] reported the N1 correlate of visual consciousness at

right occipital electrodes between 150 and 250 ms. From here, we inspected the grand-aver-

aged ERPs at right occipital electrodes, and we identified the P1 between 94 and 114 ms and

the N1 between 160 and 190 ms. We analysed the mean amplitudes of the ERPs for the spatio-

temporal ROIs using repeated-measures ANOVA with factors axis (cardinal, oblique) and per-

cept (perceived change, not-perceived change). We also calculated voltage maps for the tempo-

ral ROIs. Finally, we conducted a series of point-by-point t-tests to search for effects outside of

the temporal ROIs. To correct for multiple comparisons, we only analysed times between 0

and 250 ms, and we required that at least five consecutive data points have an alpha level equal

to or less than .025 in order to be considered significant, as suggested by Guthrie and Buch-

wald [104]. All t-tests were two-tailed.

Results

Behavioural results

The time between a key press and its subsequent release yielded the time of one episode of bin-

ocular rivalry dominance. As expected, the distribution of these times had the typical gamma-

like shape [82,105,106]. Mean (SD) binocular rivalry dominance duration was 2.02 (0.67) sec-

onds for cardinal gratings and 1.95 (0.65) seconds for oblique gratings; according to a one-way

ANOVA on log-transformed data, these times were not significantly different, F(1, 14) = 2.12,

p = .168, ηp
2 = .13 (see S1 Dataset–Worksheet 1). This result suggests that our rival gratings

produced the hallmarks of binocular rivalry—exclusivity, inevitability, and randomness [2,4,6]

—and that our participants’ experiences of binocular rivalry did not differ between cardinal

and oblique gratings, meaning that we did not find any evidence for the oblique effect (for sim-

ilar findings, see [107–113]).

ERP results

Fig 2A shows the grand-averaged ERPs at the spatial ROI (to see ERPs outside of the spatial

ROI, see S1 Fig). What we see is the P1 at about 100 ms and the N1 at about 170 ms. We also

see the P3 from about 350 ms onwards. Note that we do not analyse the P3, because it does not

index early sensory and perceptual processing [37–39,41]. In general, the ERP waveforms are

similar to previous studies using this paradigm [40,42–45]. Fig 2B shows that there were posi-

tive voltages at right occipital electrodes for the P1, whereas for the N1, there were negative

Cardinal versus oblique ERPs
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voltages at right occipital electrodes and positive voltages at fronto-central electrodes. We con-

sistently see this right-hemisphere bias in many of our binocular rivalry and ERP studies

[43,45,92,110].

P1. Repeated-measures ANOVA for the P1 time window found a significant main effect

of percept, with perceived changes yielding bigger voltages than not-perceived changes, F(1,

14) = 7.54, p = .016, ηp
2 = .35—this is a neural correlate of visual consciousness—and is consis-

tent with that found by Roeber and Schröger [42], Veser et al. [43], and Roeber et al., [44,45],

as well as in the reanalysed data of Kaernbach et al. [40] by Veser et al. [43]. However, there

was no difference between cardinal and oblique gratings, F(1, 14) = 0.12, p = .731, ηp
2 = .01,

and the interaction between axis and percept was not significant, F(1, 14) < 0.01, p = .988,

ηp
2 < .01 (see S1 Dataset and S1 Table). These results suggest that the P1 does not index the

oblique effect.

N1. Repeated-measures ANOVA for the N1 time window failed to find any significant

differences. In particular, there was no difference between cardinal and oblique gratings, F(1,

14) = 2.47, p = .138, ηp
2 = .15, or between perceived and not-perceived changes, F(1, 14) =

0.02, p = .888, ηp
2 < .01. Furthermore, the interaction between axis and percept was not signifi-

cant, F(1, 14) = 2.49, p = .137, ηp
2 = .15 (see S1 Dataset and S1 Table). These results suggest

that the N1 does not index visual consciousness (for similar findings, see [43–45]) or the obli-

que effect.

Point-by-point t-tests. Fig 2C shows the results of the point-by-point t-tests. We found

that there were differences between perceived and not-perceived changes for cardinal gratings

from 96 to 108 ms, t(14) = 2.76, p = .015, and for oblique gratings from 122 to 132 ms, t(14) =

2.60, p = .021—these are neural correlates of visual consciousness at the P1 and P1-N1. We

also found that there were differences between cardinal and oblique gratings for perceived

changes from 164 to 184 ms, t(14) = 3.76, p = .002—this is a neural correlate of the oblique

effect at the N1. There were no differences between cardinal and oblique gratings for not-per-

ceived changes (see S1 Dataset). These results suggest that the oblique effect does not influence

early neural correlates of visual consciousness, but that visual consciousness might be neces-

sary to elicit the oblique effect.

Discussion

We set out to determine whether the results of Kaernbach et al. [40] apply to experiments that

use cardinal gratings, and to determine whether the oblique effect influences early neural cor-

relates of visual consciousness. To accomplish this, we used an ERP paradigm similar to that of

Kaernbach et al. [40], and we compared ERPs from cardinal gratings with ERPs from oblique

gratings, and ERPs from perceived changes with ERPs from not-perceived changes. We found

neural correlates of visual consciousness at the P1 for both sets of gratings, as well as at the

P1-N1 for oblique gratings, and we found a neural correlate of the oblique effect at the N1, but

only for perceived changes. These results show that the P1 is the earliest neural activity associ-

ated with visual consciousness and that visual consciousness might be necessary to elicit the

oblique effect.

We found the P1 correlate of visual consciousness for both cardinal and oblique gratings,

and we found that the P1 correlate of visual consciousness does not index the oblique effect.

Fig 2. ERPs and voltage maps. (a) ERPs for the spatial ROI. The graph shows time (ms) on the x-axis, with 0 indicating the onset of the

rivalry-to-fusion change, and voltage (μV) on the y-axis, with positive voltages plotted upward. The waveforms show the P1 at about 100

ms, the N1 at about 170 ms, and the P3 from about 350 ms onwards. The grey bars show the P1 and N1 time windows (see text). (b)

Voltage maps for the temporal ROIs. (c) Results of the point-by-point t-tests outside of the temporal ROIs. The traces are identical to those

shown in (a), except that the cyan bars show the time points for which the ERP traces differed significantly (see text).

https://doi.org/10.1371/journal.pone.0188979.g002
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This finding confirms and extends upon those of Roeber and Schröger [42], Veser et al. [43],

and Roeber et al., [44,45], as well as the reanalysed data of Kaernbach et al. [40] by Veser et al.

[43]. Furthermore, the timing of our P1 correlate of visual consciousness agrees with that esti-

mated using other techniques that have manipulated visual consciousness, such as backward

masking and bistable images [114–122]. These results provide converging evidence for the

conclusion that the P1 is the earliest neural activity associated with visual consciousness.

However, Railo et al. [123] have argued that the P1 correlate of visual consciousness might

be confounded with attention, because the P1 is enhanced by both spatial [124] and feature-

based attention [125]. They argue that when a rivalry-to-fusion change is made to the domi-

nant grating, it is the attended and perceived grating that changes, whereas when an identical

change is made to the suppressed grating, it is the unattended and not-perceived grating that

changes. We disagree with Railo et al. [123] for at least three reasons:

1. The suppressed grating is attended during binocular rivalry. Because the gratings were per-

ceptually overlaid, spatial attention did not differ between the perceived and not-perceived

conditions, and because participants were instructed to press down one key when one grat-

ing was dominant and a different key when a different grating was dominant, feature-based

attention also did not differ between the perceived and not-perceived conditions. In this,

binocular rivalry dominance is “attention with consciousness” [96], whereas binocular

rivalry suppression is “attention without consciousness” [96]. Therefore, visual conscious-

ness, not attention, alternates back and forth during binocular rivalry.

2. Recently, Roeber et al. [44] showed that the amplitude of the P1 elicited by a rivalry-to-

fusion change is essentially the same whether or not attention is on the gratings. This

means that even if Railo et al. [123] are correct in assuming that attention is present for a

perceived change and absent for a not-perceived change, attention’s influence on the P1

during binocular rivalry is not statistically significant.

3. Railo et al. [123] argued that Veser et al.’s [43] failure to find a P1 for not-perceived changes

is consistent with their claim that this paradigm confounds attention and visual conscious-

ness. Although they are correct, their argument ignores the reanalysis of the results of

Kaernbach et al. [40] by Veser et al. [43], as well as the results of Roeber and Schröger [42]

and Roeber et al., [45], all of which show a P1 from not-perceived changes. Since Railo et al.

[123] published their review, two more studies using this paradigm have shown a P1 to not-

perceived changes: Roeber et al. [44] and the present study.

Railo et al. [123] have also argued that the P1 is too early to be the neural process that gives

rise to visual consciousness. Instead, they argued that the P1 reflects preconscious processes,

such as sensory processing, and that visual consciousness emerges at the N1, which they call

the “visual awareness negativity” (VAN) [123]. However, our results are problematic for Railo

et al.’s [123] argument, because we found that the N1 correlate of visual consciousness may

not be particularly robust. Specifically, we failed to find the N1 correlate of visual conscious-

ness for both sets of gratings. It is also worth mentioning that Veser et al. [43] and Roeber

et al., [44,45] failed to find the N1 correlate of visual consciousness to orientation changes

(they did not analyse the N1, but visual inspection of their figures suggests that a difference

between perceived and not-perceived changes is unlikely). Perhaps a different way to think

about all of this is that either the P1 or the N1/VAN can precede the emergence of visual con-

sciousness, and that one or the other (or both [40,42]) is a necessary condition for such visual

consciousness.

We found a neural correlate of the oblique effect at the N1, around 170 ms, but only when

the rivalry-to-fusion change was perceived. This is noteworthy for at least two reasons:
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1. Our results suggest that visual consciousness might be necessary to elicit the oblique effect.

This is a curious finding, because it goes against the notion that the oblique effect is a basic

phenomenon of the visual system [48,55], independent of psychological constructs such as

visual consciousness. However, because we have provided rather limited evidence for this

conclusion, before we believe it, we would like to see further evidence for it. Specifically, we

would like to see a replication of our results, and we would like to see this research

extended, such as by using other techniques to manipulate visual consciousness. We look

forward to reading about this research in the future.

2. Takács et al. [91] found that the oblique effect (also around 170 ms) does not require atten-

tion. This might seem to contradict our conclusion that the oblique effect might require

visual consciousness. But attention and visual consciousness are different processes that

perform separate functions in the brain [1,95–99], and it is possible that these different pro-

cesses and functions have opposing effects on the neural correlates of the oblique effect. Of

course, the only way to show this beyond reasonable doubt is to conduct another experi-

ment that doubly dissociates attention and visual consciousness, similar to those conducted

by van Boxtel et al. [98] and Watanabe et al. [99]. We look forward to conducting this

experiment in the future.

Consistent with previous research [107–113], we found that our participants’ experiences of

binocular rivalry did not differ between cardinal and oblique gratings. That is, we found that

our rival gratings produced the hallmarks of binocular rivalry—exclusivity, inevitability, and

randomness [2,4,6]. This is an important result because it means that findings and conclusions

of psychophysical studies of binocular rivalry, which have tended to use cardinal gratings [73–

85], can be generalised to electrophysiological studies, which have tended to use oblique grat-

ings [40,42–45,86–90]. Furthermore, because our ERP results show that the oblique effect is

rather subtle, we are confident that findings and conclusions of electrophysiological studies of

binocular rivalry can be generalised to psychophysical studies.

However, this prompts the following questions: why did we find weak (as opposed to

strong) evidence for the oblique effect? One possible explanation is that the oblique effect can

only occur after the inputs from each eye are combined—binocular fusion—and that the obli-

que effect cannot occur when the inputs do not combine—binocular rivalry [126]. Neverthe-

less, in the present study, we recorded ERPs from the onset of binocular fusion. So, why did we

still find weak evidence? Some studies [12,127,128] have shown that the effects of binocular

rivalry can continue to be observed in V1, the neural site of both binocular fusion [129] and

the oblique effect [55], for a short time after the offset of binocular rivalry stimuli. Indeed, this

assumption lies at the heart of all the studies that use this paradigm [40,42–45]; otherwise, why

would the P1 (which is thought to have its neural sources in V1 [130–132]) differ between per-

ceived and not-perceived changes from stimuli yielding binocular fusion? All of this is to say

that we suspect that it is difficult to elicit the oblique effect during binocular rivalry, simply

because binocular rivalry weakens the oblique effect; however, we concede that this is

speculation.

In conclusion, we set out to determine whether the results of Kaernbach et al. [40] apply to

experiments that use cardinal gratings, and to determine whether the oblique effect influences

early neural correlates of visual consciousness. To accomplish this, we used an ERP paradigm

similar to that used by Kaernbach et al. [40], and we compared ERPs from cardinal gratings

with ERPs from oblique gratings, and ERPs from perceived changes with ERPs from not-per-

ceived changes. We found neural correlates of visual consciousness at the P1 for both sets of

gratings, as well as at the P1-N1 for oblique gratings, and we found a neural correlate of the

oblique effect at the N1, but only for perceived changes. We conclude that the results of
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Kaernbach et al. [40] apply to experiments that use cardinal gratings, that the P1 is the earliest

neural activity associated with visual consciousness, and that visual consciousness might be

necessary to elicit the oblique effect.

Supporting information

S1 Dataset. Behavioural and ERP data. The dataset contains four worksheets: the first shows

the mean binocular rivalry dominance durations, the second and third show the mean ampli-
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S1 Table. Statistical analyses. Results of the statistical analysis of the mean amplitudes of the
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