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A B S T R A C T

The global population is expected to increase from 7.6 to 9.6 billion people from 2017 to 2050. Increased
demand for livestock production and rising global temperatures have made heat stress (HS) a major challenge for
the dairy industry. HS been shown to have negative effects on production parameters such as dry matter intake,
milk yield, and feed efficiency. In addition to affecting production parameters, HS has also been shown to have
negative effects on the reproductive functions of dairy cows. Mitigation of HS effects on dairy cow productivity
and fertility necessitate the strategic planning of nutrition, and environmental conditions. The current review
will discuss the potential nutriepigenomic strategies to mitigate the effect of HS on bovine embryo.

1. Introduction

The global human population is expected to increase from 7.6 to 9.6
billion people from 2017 to 2050 [1]. In order to meet the nutritional
needs of the growing population, there is a critical demand for more
efficient livestock production, especially in developing countries [1].
Heat stress (HS) is a major challenge to livestock producers in many
countries across the world, especially to those located in desert and
tropical climates. As reported by the United States’ Environmental
Protection Agency (US EPA) [2], the average global temperature is
expected to increase by 0.3 °C to 4.8 °C by the year 2100 which may
have a negative impact on animal production efficiency if effective heat
abatement strategies are not implemented. Together, harsh geo-
graphical climates and rising global temperatures make heat stress a
critical concern for animal production.

The upper critical limit of the thermo-neutral zone for dairy cattle is
approximately 25 °C; thus, dairy cows are at risk of HS when exposed to
temperatures above 25 °C [3]. In addition to ambient temperature alone
as an indicator of HS, the temperature humidity index (THI), which
combines temperature and humidity to create an index score, can also
be used to estimate the effect of environmental conditions on dairy
cattle [4]. As described by Armstrong [5], THI values can be divided
into four categories according to the degree of HS experienced by dairy
cows: no HS (≤71), mild HS (72–79), moderate HS (80–90), and severe
HS (> 90).

2. Heat stress negatively impact animal production

HS has many negative effects on dairy cow welfare and productivity
such as increased rate of respiration, sweating, and peripheral blood
flow. HS has also been shown to cause decreased dry matter intake
which limits nutrient supply to the mammary gland and results in de-
creased milk yield and overall feed efficiency [6–8]. Additionally, in-
creased THI results in imbalanced cooling ability of the cow, resulting
in heat load that negatively affect DMI and milk production [9,10].

In addition to altering production, HS also alters metabolic path-
ways including those involved in acid-base homeostasis. Elevated re-
spiration rate decreases the level of circulating carbon dioxide (CO2),
which disrupts the blood carbonic acid to bicarbonate equilibrium. As a
result, urinary bicarbonate excretion increases and blood pH becomes
unstable which can lead to a number of metabolic issues for the dairy
cow [11].

3. Heat stress and altered maternal nutrition impair reproduction
capacity

In addition to its negative effects on production, HS impairs the
reproductive functions of dairy cows [12]. Elevation of maternal body
temperature negatively affects several aspects related to reproduction
capacity either directly through effects on oocyte quality, success of
fertilization, and/or embryo development [13,14] or indirectly by
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limiting nutrient supply to support reproductive function and/or effects
on reproductive hormones secretion and level [15–17].

3.1. Impairment of reproductive hormones

The gonadotropin releasing hormone (GnRH) released from hy-
pothalamus that stimulates the release of Gonadotropins; Luteinizing
hormone (LH) and Follicle stimulating hormone (FSH); from anterior
pituitary gland are main regulators of ovarian functions [12]. Research
on the effect of HS on peripheral blood LH is not giving a consistent
picture yet, since some studies recorded increase [18], decrease [19,20]
and even no effect [21,22] of HS on LH. However, the decreased LH
level could be more reasonable, since low LH level could result in de-
crease estradiol secreted from the dominant follicle, and thus, decrease
fertility by poor expression of estrus, poor follicle maturation, and
ovarian inactivity [23]. Moreover, steroid production by cultured
granulosa and thecal cells was low when cells were obtained from cows
exposed to heat stress 20–26 days previously [24]. Implantation failure
and early embryonic death resulted from decreased blood progesterone
level during HS condition has been reported in dairy cow [25].Yet,
more research is needed to unravel the mechanism by which heat stress
alters the levels of circulating reproductive hormones.

3.2. Altering oocyte quality and embryonic development

During hot seasons, cows showed a high incidence of early em-
bryonic mortality due to several reasons. One of these reasons is the
direct effect of elevated temperature on follicular development and
oocyte competence [26]. In addition, HS negatively affects the super-
ovulation response of cows and subsequently recovered embryos
number, and quality [27]. A recent study on pigs reported that gilts
exposed to HS during the follicular phase showed a clear induction of
ovarian autophagy, and that HS increases anti-apoptotic signaling in
oocytes and early follicles [28]. Ultrasonography studies revealed that,
the size of the first- and second-wave dominant follicles were reduced
under HS conditions [29,30]. This affects the development of other
follicles and leads to ovulation problems [31]. HS was also correlated
with lower steroid concentrations in the follicular fluid obtained from
large follicles and reduced granulosa cell viability [32]. Deleterious
effect on follicular development and follicular fluid contents directly
reflects on the oocyte quality and affects its developmental competence
[26,33,34]. On the molecular level, HS seems to alter the maternal RNA
stored at the oocyte. This was observed at subsequent developmental
stages before embryonic genome activation which can explain the
lower quality blastocysts obtained from oocytes collected in hot season
than those from oocytes collected in cold season [35]. However, more
researches are still needed to elucidate this point. Embryos are highly
susceptible to maternal HS during the first early stages of development
and this susceptibility reduced as the development proceeds. Exposer of
lactating cows to heat stress at day 1 after oestrus (1–2 cell stage em-
bryos), reduced the proportion of embryos that developed to the blas-
tocyst stage at day 8 after oestrus. However, heat stress in later stages
had no effect on the proportion of embryos that were blastocysts at day
8 [36].

In vitro studies indicated that exposure of cultured oocytes to
physiologically relevant heat shock (41 °C) during the first 12 h of
maturation decreases their cleavage rate and blastocyst rate by 30 to
65% [37–39]. Recently, it has been reported that HS during oocyte
maturation is associated with reduced cytoplasmic events and apoptosis
of the cumulus cells and therefore compromise the survival of the oo-
cyte itself [40]. The mechanisms by which elevated temperature affects
oocyte and embryo physiology are not completely understood. How-
ever, several studies elucidated this effect from different prospective.
Based on the gene expression patterns, it has been reported that HS
stimulates the apoptosis signaling pathway in oocyte by upregulation of
BAX and ITM2B (apoptotic genes) [27] and in early stage embryo by

down-regulate genes associated with embryonic survival, such as CDX2,
a transcription factor involved in the regulation of embryo implantation
and placental development [41]. In another studies, expression of
growth/differentiation factor-9 (GDF9) associated with oocyte ma-
turation was downregulated when oocyte was exposed to HS both in
vivo [42] and in vitro [43]. Furthermore, the apoptotic pathway of
Caspases 2, 3, and 7 were upregulated when bovine oocytes were ex-
posed to HS in in-vitro model leading to mitochondrial damage and
nuclear fragmentation [44]. On the other hand, impaired micro-tubulin
and microfilaments, which are involved in nuclear and organelles
transport have been reported as consequences of oocyte exposure to HS
[45,46]. The sensitivity of these cytoskeletal elements to HS affects
other cytoplasmic organelles including mitochondria, essential element
for oocyte developmental competence. Differences in mitochondrial
distribution and shape have been recorded in oocytes isolated in hot
season compared to cold season [47]. Mitochondrial functions are also
influenced by HS with low membrane potential in association with
apoptotic pathway activation [48].

It is also possible that HS directly affects embryonic development
via epigenetic regulation, or indirectly through decrease DMI and alter
the metabolic status of the animal [49,50]. Dobbs et al. [51] showed
that DNA methylation was low during the early stages of embryonic
development but increased between the six-to-eight-cell-stage to the
blastocyst stage. Additionally, in rat model, low protein diet altered the
de novo methylation process in early stage embryo [50]. However, the
direct effect of HS on bovine embryo DNA methylation- de-methylation
mechanistic is not well established.

3.3. Altering maternal DMI and energy balance

Short term HS has been shown to induce negative energy balance
(NEB) [52,53], and even exacerbate the existing NEB by prolonging the
period of decreased DMI in highly producing dairy cow [12]. Highly
producing dairy cows suffer from NEB which usually occurs after cal-
ving due to the disparity between dry matter intake (DMI) and an in-
crease demand for milk production [54]. During HS, cows mobilize
adipose reserves which results in elevated non-esterified fatty acids
(NEFA) [52,53] that have been shown to decrease oocyte and embryo
quality in in vitro studies [54–57] .

Blood glucose level was reduced during short term (7 days) [52] and
long term (during the hot season) exposure to HS [35]. However, in
another in vivo short term (4 days) study [53] blood glucose was not
affected by HS. This could be due to the short term exposure to HS
which could not predict well the impact of HS on blood glucose level.
Even more, elevated blood NEFA concentration is also associated with
decreased glucose concentration in ovarian follicular fluid [43,54,58].
This reduction of glucose level can significantly impact oocyte devel-
opment because glucose serves as the main energy source and provides
the necessary elements for oocyte maturation including pyruvate, ATP,
and reducing agents such as NADPH and glutathione that neutralize the
reactive oxygen species (ROS) [59]. Therefore, HS can have indirect
negative effects on oocyte and subsequent embryonic development via
this reduction in available glucose [54]. In addition, increased NEFA
concentrations affect the expression of genes involved in lipid meta-
bolism in various tissues, such as the mammary gland [60], oocytes
[54], and the embryo itself [61]. The mRNA abundance of DNMT3A
(regulating embryonic DNA methylation), IGF2R (growth factor), and
SLC2A1 (glucose transporter) were up-regulated in blastocysts resulting
from NEFA exposed oocytes [61,62] resulting in an imbalance em-
bryonic DNA methylation [41].

3.4. Altering anti-oxidant capacity

During HS, maternal total plasma anti-oxidant capacity decreased
[42]. Additionally, ROS such as hydrogen peroxide, superoxide anion,
and hydroxyl radical are elevated when both the bovine oocyte [43]
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and bovine embryo [63] exposed to HS in vitro, which impairs pre-
implantation embryonic development [64]. Nevertheless, maternal HS
resulted in early embryonic mortality and poor embryo quality in dairy
cow model [13,36]. Additionally, in mice model, maternal HS resulted
in early embryonic mortality and decreased the rate of embryo devel-
opment to morula stage and increase level of embryonic hydrogen
peroxide concentration [65]. This impairment could be explained by
the fact that early stage embryo cannot synthesis glutathione [65,66].
Furthermore, elevated blood NEFA during HS is associated with re-
duced embryonic REDOX (intra-cellular oxidation reduction) [62].

On the other side, when embryo development advances (> 8 cells)
the embryo acquires resistance to HS [63], this could be explained, in
part, by improved oxidative status via a reduction in the level of ROS
and an increase in glutathione anti-oxidant activity, and the de novo
synthesis of embryonic cells glutathione [63,66,67]. On the other part,
before activation of embryonic genome, the embryonic cells are fully
dependent on maternal transcripts formerly stored in their growing
oocytes, thus, impairment of maternal transcripts during HS will be
affecting the performance of embryonic cells until EGA (EGA; em-
bryonic genome activation; embryonic genome becomes active and
massive embryonic gene expression begins to take place) [21,51,52].

4. Nutritional strategies to improve reproduction during HS
conditions

4.1. Dietary cation-anion difference

There is insufficient data on the direct effect of dairy cattle nutrition
on bovine embryo quality and development during HS. However, there
are several nutritional strategies that may be implemented to mitigate
the effect of HS on maternal energy balance and thus, embryo quality
and development. One potential dietary modification that may be used
to minimize the negative effects of HS on dairy cows is the manipula-
tion of the dietary cation-anion difference (DCAD; mEq/kg of DM)
[68,69]. DCAD is an index of the acid-base status of the animal as it is
the relative balance between the principle cations (potassium, K; so-
dium, Na) and the principle anions (chloride, Cl; sulfur, S) in the cow’s
diet [70]. Studies suggest that DCAD can be used as a strategy to im-
prove feed efficiency (3.5% fat-corrected milk per unit DMI) through
altering rumen environment and pH [69,71,72] which could stimulate
DMI. Greater DMI could increase the supply of essential nutrients to
support embryonic growth and development. Reduced DMI is asso-
ciated with downregulation of metabolic biomarkers Na+/K+ ATPase
mRNA and sodium/glucose co-transporter1 (SLC5A1) in ewe oocytes
[73], that might indicate the role of DCAD in modulating the nu-
trigenomic mechanism regulating oocyte quality and hence, embryo
quality however, the exact nutri-epi-genomic role of DCAD on embryo
growth is not yet established.

4.2. Epi-nutrients supplementation

Epi-nutrients are a subset of nutrients such as folate, vitamin B-12,
and choline, which are necessary for epigenetic regulation of the
genome, through DNA methylation and histone modifications [74,75].
Proper supplementation of such nutrients during HS may play a role in
regulating embryonic development; however, the extent to which such
epi-nutrients could regulate embryo epigenome during HS is not yet
investigated. These nutrients play a role in peri-conceptional DNA
methylations which affect embryonic development, subsequent growth,
and health status of the offspring [76]. Most epi-nutrients, such as fo-
late, vitamin B-12, methionine, choline, and betaine, can modulate the
1-carbon metabolism pathways responsible for generating the major
methyl donor, S-adenosylmethionine (SAM), which can directly affect
DNA methylation [77]. Additionally, Folate is involved in de novo
nucleotide synthesis [78].

During early embryonic development, the epi-nutrients choline and

folate are essential for DNA methylation re-programming [79]. The
mRNA of folate–methionine cycle enzymes are expressed in mouse heat
stressed pre-implantation embryos, when incubated in folate containing
medium [78]. In in vivo study, [80] folic acid was supplemented in diet
of heat stressed female mice, at the beginning of gestation, and was
successfully reduced the heat stress induced neural tube defects.

Vitamin B-12 is required for the function of methionine synthase, an
enzyme required for the regeneration of methionine from homo-
cysteine, making it an important participant in one-carbon metabolism
[77].

4.3. Long term supplementation of anti-oxidants

As aforementioned HS negatively affects the anti-oxidant scaven-
ging activity of the cow, oocytes and the resulting embryos, therefore
anti-oxidant supplementation might play a role in relieving the oxida-
tive action of HS. Short-term supplementation of anti-oxidants like vi-
tamin A, E, and C could not scavenge either the maternal or embryonic
ROS developed during HS [81–83]. However, long term effect of these
anti-oxidants on the cow and the embryos is not yet investigated. Ad-
ditionally, long term (90 days) supplementation of β-carotene starting
15 d before calving increased the pregnancy rate by 14 percentage units
[84], on the other side, the effect of β-carotene supplementation for
long term on bovine embryo still needs to be investigated.

Another potent anti-oxidant is the green tea flavonoid compound
epigallocatechinhin gallate (EGCG) which was previously investigated
in mouse embryo model [85]. EGCG exerted an anti-oxidant, and anti-
apoptotic action on preimplantation mouse embryos. Further in-
vestigations are needed to investigate if EGCG has similar effects on
bovine embryos during HS.

4.4. Balancing maternal diet for proper protein metabolism

Since HS increased blood urea nitrogen (BUN) and plasma creati-
nine by 71% and 13.2%, respectively in heat stressed lactating dairy
cows [52,86], indicating alteration in protein metabolism and increase
in skeletal muscle protein catabolism [52]. In a recent study by
Kaufman et al. [87], the reduction of rumen degradable protein (RDP)
and rumen un-degradable protein (RUP) levels during hot summer
climate was an efficient strategy to increases the use of amino acids to
limit protein catabolism in heat stressed dairy cow. However, the extent
to which how such an approach can improve bovine gamete and em-
bryo quality is not been yet established, therefore, such area of research
of relating amino acid profile balancing to reproduction performance
during heat stress needs to be investigated.

5. Other non-nutritional approaches

Other environmental measure could be taken into consideration to
alleviate the negative HS effect on reproduction is to provide dairy
farms with proper cooling system during hot summer seasons, however,
poor areas and small scale farms might not be able to provide such an
expensive facilities, therefore, having proper nutritional strategy to
alleviate the deteriorating HS effect on animal reproduction and future
production is essential.

6. Future perspectives

More in-depth studies using genomic and metabolomic technologies
are needed to clearly investigate the genomic and epigenetic me-
chanism of action of HS on bovine embryonic development. Most of the
literature discussing the effect of HS and/ or NEB on bovine embryo are
based on in vitro embryo and oocyte maturation models; however, the in
vivo effects are not well understood. Furthermore, the effect of nu-
trigenomic and nutri-epigenetic diets interaction on bovine embryos
and oocytes during HS is a new area that should be considered for
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future research.
Another future consideration is proper attention for breeding pro-

gram, for selection of HS tolerant breeds, instead of only selection for
high milk production breeds.

7. Conclusions

The rapidly changing climate, global warming, and the parallel ra-
pidly growing population size, ringing the alarm for critical strategies to
manage livestock productivity and reproducibility. As shown in this
current review, the effect of HS on maternal nutritional metabolic, and
anti-oxidant status is reflected on the oocytes, resulting embryos and
the fertility status of the cow. Therefore, long term programming of
maternal nutrition is the key factor to mitigate the HS effect on the
oocytes and the developing embryos. Additionally, proper nutritional
managing of the transition cow to keep the energy balance, could play a
positive effect on the oocytes and the resulting embryo, and hence, the
future progeny and production.
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