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ABSTRACT
In this review, we summarize the current status of nucleic acid and antigen testing required for 
diagnosing SARS-CoV-2 infection and COVID-19 disease. Nucleic acid amplification (NAAT) and 
antigen-detection (Ag) tests occupy a critically important frontline of defense against SARS-CoV-2 
in clinical and public health settings. In early stages of this outbreak, we observed that identifying 
the causative agent of a new illness of unknown origin was greatly accelerated by characterizing 
the nucleic acid signature of the novel coronavirus. Results from nucleic acid sequencing led to the 
development of highly sensitive RT-PCR testing for use in clinical settings and to informing best 
practices for patient care, and in public health settings to the development of strategies for protect-
ing populations. As the current COVID-19 pandemic has evolved, we have seen how NAAT per-
formance has been used to guide and optimize specimen collection, inform patient triage decisions, 
reveal unexpected clinical symptoms, clarify risks of transmission within patient care facilities, 
and guide appropriate treatment strategies. For public health settings during the earliest stages of 
the pandemic, NAATs served as the only tool available for studying the epidemiology of this new 
disease by identifying infected individuals, studying transmission patterns, modeling population 
impacts, and enabling disease control organizations and governments to make challenging disease 
mitigation recommendations to protect the expanding breadth of populations at risk. With time, the 
nucleic acid signature has provided the information necessary to understand SARS-CoV-2 protein 
expression for further development of antigen-based point-of-care (POC) diagnostic tests. The ad-
vent of massive parallel sequencing (ie, next generation sequencing) has afforded the characteriza-
tion of this novel pathogen, informed the sequences best adapted for RT-PCR assays, guided vaccine 
production, and is currently used for tracking and monitoring SARS-CoV-2 variants. 

IDENTIFYING THE CAUSATIVE AGENT 
The first publications reporting patients with a novel pneumonia of unknown etiology from Wuhan, 
Hubei Province, China, appeared in early January 2020 [1, 2], and used bronchoalveolar lavage (BAL) 
fluid from 10 adult patients experiencing illness to identify and characterize the causative agent. Patient 
specimens tested negative by the RespiFinderSmart22kit [3]; this strongly suggested a novel pathogen. 
From the BAL fluid, transmission electron microscopy captured unmistakable images of a coronavirus. 
Nucleic acid sequencing technologies demonstrated consistent findings of a novel coronavirus and 
concordance across hospitalized patients experiencing this novel disease [4], showing 79% sequence 
homology with SARS-CoV-1 (2003) [5] and an 85% sequence homology with a bat SARS-like CoV 
(2018) [6]. With this basic clinical and virologic information, development of molecular diagnostic 
strategies was enabled, including nucleic acid amplification technologies (NAAT) and antigen (Ag) 
detection and antibody (Ab) analysis. In the sections provided below, we discuss the specimens, collec-
tion methods, diagnostic strategies, and the interpretation and significance of test positivity in relation 
to the prevalence of disease and onset of symptoms. This latter point has become the central concern 
for diagnosis of SARS-Cov-2 infection and associated COVID-19 illness because of the challenges 
posed to limiting transmission within and outside clinical settings. 

During the earliest days of SARS-CoV-2 emergence (December 2019 to January 2020), studies 
quickly evolved to document transmission characteristics. Observation of asymptomatic in-
fections (infection without symptoms), human-to-human transmission within multiple family 
clusters, city-to-city spread (national and international), and detection of transmission from both 
symptomatic and asymptomatic individuals was described by the end of January 2020 [7–9]. 
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Additional early studies in small cohorts of symptomatic patients showed that viral RNA-posi-
tive specimens from the upper and lower respiratory tract (URT and LRT) correlated with onset 
of symptoms (and viable virus) with URT positivity declining more rapidly than LRT positivity 
[10–15]. Studies conducted in larger populations including a Chinese pediatric population [16], a 
uniquely quarantined South Korean religious group [17], and in congregate or other close-quar-
ter living conditions [18, 19] provided insight into some of the idiosyncrasies of diagnostic assay 
results and COVID-19 symptoms. From studies of this nature, the basic reproductive number 
(Ro, R-naught - estimated 2° infections from a single 1° infection) was estimated to range from 
1.0-6.95 consistent with continuous human-to-human transmission across sustained transmis-
sion chains [20–23]. The convergence of SARS-CoV-2 epidemiology and pathogenesis greatly 
impacted development of front-line diagnostic tests from methods of specimen collection to virus 
detection and requires further discussion to understand the challenges of interpretation of results.

DIAGNOSTIC TEST EFFICACY AND IDENTIFICATION OF INFECTED INDIVIDUALS
The central challenge of SARS-CoV-2 infection is the occurrence of asymptomatic infection. The incu-
bation or prodromal phase is characteristic of infectious diseases. Two features of SARS-CoV-2 natural 
history of infection to disease have driven the COVID-19 pandemic (Figure 1). Firstly, pre-symptom-
atic people are found to be most highly infectious 1 to 2 days before experiencing symptoms. Secondly, 
a large percentage of people do not experience symptoms and so are (a) unaware of their infection and 
never tested, and (b) there is little understanding of if, when, or how long they may be infectious. 

Figure 1. Timeline of viral RNA shedding and development of an immune response.
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Also, as more is learned about the biology of SARS-CoV-2, required components of viral-host cell 
interaction provide further considerations for optimal specimen collection, observed and unex-
pected diagnostic outcomes, and association with clinical symptoms. 

The 3 most important factors in determining the efficacy of a test are (1) specimen collection/ 
storage/processing, (2) the analytical performance of the test (ie, the sensitivity and specificity, 
and (3) the nature of the individuals being tested (ie, symptomatic versus asymptomatic). Despite 
the mundane appearance of this list, it is important to acknowledge that response to the outbreak 
of this new coronavirus infection required application of diagnostic strategies in a very fluid mi-
lieu, simultaneously developing controls for benchmarking the diagnostic assays. As optimization 
of various diagnostic assays continues, a system for monitoring the resilience of the diagnostic as-
says in the face of SARS-CoV-2 evolution has not yet been developed. Given the rapid emergence 
of COVID-19, it has not been surprising that intense scrutiny has been focused on diagnostic test 
performance and validity, and that measures of these metrics vary across studies.

The greatest likelihood for detecting SARS-CoV-2 relies on specimen collection from the site of 
viral replication. This practice has been vetted as part of public health testing for influenza and 
other respiratory pathogen measures and adapted to the COVID-19 pandemic [24–27]. In this 
regard, specimen collection and NAAT performance have undergone simultaneous development 
in becoming the standard for SARS-CoV-2 diagnosis. 

Biological materials used for SARS-CoV-2 clinical and research diagnostics have included URT 
(nasopharyngeal swab, oropharyngeal swab, nasal mid-turbinate swab, anterior nares swab, naso-
pharyngeal/nasal wash, saliva), LRT (sputum, BAL fluid), and urine, serum and feces. Guidance 
for these specimen collection procedures are provided by the CDC [27]. In a systematic review of 
SARS-CoV-2 RNA detection across specimens collected from different anatomical locations, Mal-
let et al found that RT-PCR test sensitivity varied with timing of specimen collection in proximity 
to a patient’s exposure [28]. Additionally, detection of viral RNA was more successful and for 
greater duration from LRT than URT sampling, albeit studies performed early in the pandemic 
were often undertaken in more seriously ill patients. More specifically, virus detection from na-
sopharyngeal swab was 89% (95% CI 83-93%) when sampled between 0 to 4 days post-symptom 
onset and 54% (95% CI 47-61%) when sampled between 10 to 14 days post-symptom onset [28]. 
When comparing detection of viral RNA between specimens collected from patients undergoing 
both URT and LRT collections, URT sites cleared faster than LRT sites (UTR—median 12 days, 
95% CI 8 to 15 days; LRT—median 28 days, 95% CI 20 to not estimable). While virus was de-
tectable in fecal samples for over 45 days, detection varied greatly within individual participants. 
Additional factors that could contribute to diagnostic test outcome variability include different 
expression patterns of host proteins known to be receptors for SARS-CoV-2 endothelial cell inva-
sion (reviews on molecular interactions [29–31].

Because of increased ease of collection, significantly reduced patient discomfort, and short-
ages of nasopharyngeal swabs or personal protective equipment, significant attention was 
focused on saliva testing as an alternate specimen type for COVID-19 detection [32]. Interest 
in saliva sampling further increased when researchers from Yale reported a higher viral load 
in first-morning saliva specimens compared with the traditional nasopharyngeal swab speci-
men [33]. For context, both Chen et al [34] and Fernández-Pittol et al [35] found saliva to be 
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less sensitive than nasopharyngeal swab (NPS) specimens, while Procop et al found saliva to 
be an acceptable alternate specimen type to diagnose COVID-19 in the ambulatory setting, 
with the warning that they reported overall lower median viral load in saliva compared to NPS 
specimens [36]. Similarly, Pasomsub et al [37] reported a sensitivity and specificity for saliva 
compared with NPS of 84.2% and 98.9%, respectively, with a 97.5% agreement. Sensitivity of 
saliva collection is improved with instructional coaching. Kojima et al observed that saliva 
from the coached group gave more sensitive results than the NPS specimens (90% versus 79%, 
respectively), but less sensitive in the non-coached group (66%). The investigators reported that 
several members of the non-coached group failing to elicit a cough (part of their instructions) 
may have contributed to lower sensitivity results [38].

Despite differences in study outcomes, many have suggested that the testing of saliva could be 
used to screen asymptomatic, as well as symptomatic individuals with a high degree of efficacy 
[33, 39]. Yokota et al studied 2 cohorts of asymptomatic individuals. The first cohort had close 
contact with individuals with confirmed COVID-19, whereas the second cohort required testing 
for airline travel; together, 1,940 consented individuals were included in this study [39]. Among 
those in the close-contact group (n=177), SARS-CoV-2 was detected in 44 saliva specimens and 
41 NPS specimens. In the asymptomatic travelers (n=1,763), SARS-CoV-2 was detected in 4 
saliva and 5 NPS specimens. Their overall analysis reported a sensitivity for saliva and NPS swab 
testing of 92% (90% CI: 83%-97%) and 85% (90% CI: 77%-93%), respectively, with both collec-
tion approaches achieving close to 100% specificity. These studies concluded that saliva collection 
was straightforward, non-invasive, and minimized the risk to healthcare workers [33, 39].

After appropriate specimen collection, most of the laboratory tests for SARS-CoV-2 employ some 
type of nucleic acid extraction by one of numerous methods [40–42]. This step removes amplifi-
cation inhibitors from a concentrated nucleic acid substrate. Some of the rapid RT-PCR and iso-
thermal amplification assays do not include a nucleic extraction step, which may slightly decrease 
the sensitivity of these assays. 

MOLECULAR DIAGNOSTIC TESTS (RT-PCR AND OTHER NAATS)
In general, highly sensitive tests (requires nucleic acid extraction, amplification, and often manual 
reporting) can be completed within 10-16 hours, meeting a 24-hour turnaround time unless the 
diagnostic laboratory is backlogged. Some platforms offer highly sensitive assays that are also rap-
id (eg, SARS-CoV-2 Xpress [Cepheid] [43]). Molecular diagnostic tests include RT-PCR assays, 
as well as other methods of nucleic acid amplification. A critical first step requires in silico and 
laboratory testing to evaluate oligonucleotide primer and probe hybridization sites prior to com-
mitting a SARS-CoV-2 assay into use; target regions of the SARS-CoV-2 genome have included 
the RdRP, N (N1 and N2), S, E and ORF1ab genes. With primers and probes optimized, tests can 
then be performed as highly sensitive and moderately sensitive NAATs. Moderately sensitive as-
says usually attain a more rapid time-to-result by the exclusion of the nucleic acid extraction step. 
Approaches that skip this step cannot compete with the extraction/RT-PCR assay with respect to 
assay sensitivity, as disclosed in the comparative data provided by the FDA (see above) and by nu-
merous independent studies [43, 44]. Extraction-free, rapid tests are best reserved, in the opinion 
of these authors, for symptomatic individuals who are early in the course of disease and expected 
to have a higher viral load in their clinical specimens compared to asymptomatic individuals. Of 
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note, FDA Emergency Use Authorization clearance for SARS-CoV-2 assays is focused on testing 
of symptomatic individuals for the vast majority of assays with this clearance. FDA guidance ad-
vises that if a patient is symptomatic and the test result is negative by a moderate sensitivity test, 
the provider should consider a follow-up with an RT-PCR assay.

Test sensitivity naturally considers the lower limit of detection (LOD), which is the target con-
centration at which a test will be positive 95% of the time. The target nucleic acid concentration is 
implied to correspond to the amount of virus in the collected specimen. The LODs of many com-
monly used SARS-CoV-2 assays have been compared against an FDA reference panel to generate 
comparative data. [45, 46]. The specificity of the tests addresses the accuracy of the detection. This 
is largely accomplished in RT-PCR assays by selecting probe hybridization sites that are unique to 
the microorganisms of interest; selective PCR primers can also influence specificity. For example, 
it is mandatory that SARS-CoV-2 RT-PCR diagnostic assays do not detect normally circulating 
coronaviruses (ie, common cold; CoV-229E [a], NA63 [a], OC43 [b], HKU1 [b] [47]), human 
genes, or genetic elements from other microorganisms that may be present in the specimen mate-
rials collected. 

More recently, SARS-CoV-2 has been incorporated into multiplex assays that detect other respi-
ratory viruses. Two different classes of multiplex assays have been produced. One of these targets 
select viral pathogens that are more likely to produce severe disease (ie, SARS-CoV-2 with influ-
enza or SARS-CoV-2 with influenza and respiratory syncytial virus [RSV]). These assays, some 
of which produce rapid results, will be critically important if SARS-CoV-2 co-circulates with 
influenza and/or RSV in future respiratory viral seasons. Others have included SARS-CoV-2 with 
much larger multiplex panels that include the majority of respiratory viruses important in human 
disease (eg, parainfluenza, adenovirus, etc.). These panels are most commonly used for immuno-
compromised patients or children requiring hospitalization. The large multiplex panels are con-
siderably more expensive than individual RT-PCR assays, and are not recommended for routine 
screening for COVID-19. 

The impact of the nature of the patient being tested on the ultimate performance of the test is 
often overlooked or underappreciated, although its affect is considerable. When assessing test per-
formance, it is also critically important to distinguish whether a test is being used as a diagnostic 
test or a screening test. Applied as a diagnostic test, there should be a high pre-test probability that 
the patient is infected. This would most commonly occur because the patient is demonstrating the 
signs and symptoms of infection. In this instance, the high-performing test will have a high pos-
itive predictive value (PPV). This same test with excellent sensitivity and specificity will perform 
very differently if it is used as a screening test, as in testing asymptomatic patients prior to surgery 
or another medical procedure, who have not had exposure to a person with COVID-19. In this 
scenario, the PPV decreases significantly, which means that there will be an increased num-
ber of false positive results. As an example, the PPV (ie, the likelihood that a positive test result 
represents actual disease in the patient) of a very good test (ie, 95% sensitivity/95% specificity) 
diminishes from 95% when there is a prevalence of 50% (eg, in the context of a diagnostic test) to 
16% when the prevalence is 1% (eg, in the context of a screening test). To state it otherwise: at a 
prevalence of 1%, only 16 out of 100 positive results are correct, the remainder (84 out of 100) are 
wrong (ie, false positives) [48].
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CONSIDERATIONS ON CROSSING THRESHOLD (CTS)
Rapid cycle or real-time PCR is inherently quantitative. Specimens that contain a large amount of 
target organism become positive early during testing, whereas those with few organisms become 
positive in later reaction cycles. For example, if a PCR test consists of 45 reaction cycles, then 
specimens that became positive at cycle 15 would contain significantly more target in the orig-
inal specimen than a specimen that became positive at cycle 35. When PCR or RT-PCR is used 
with quantitative standards, these assays can produce highly accurate viral loads, which is done 
for HIV, CMV, and other viruses. There is a 10-fold difference in target concentration for every 3 
PCR cycles. Therefore, the point at which the specimen becomes positive (ie, crosses the thresh-
old or Ct) has been used as an approximate surrogate for the viral load or viral burden in the 
specimen. Although useful in some situations, there are a number of hazards that must be con-
sidered and avoided. Foremost, quantitative standards are not available for SARS-CoV-2, which 
means a highly accurate determination of the amount of virus present in a specimen cannot be 
determined. Additionally, specimens from the upper respiratory tract are more heterogeneous, in 
contrast to a plasma specimen (used in diagnosis of virus populations circulating in the blood). 
Upper respiratory tract specimens vary from deep nasopharyngeal collection that thoroughly 
sample respiratory epithelium to sampling of the superficial anterior nares, with specimens vary-
ing from thick and viscous to watery. Furthermore, considering the large number of different tests 
available for which Ct values can be derived, the RT-PCR assays will likely perform with different 
amplification efficiencies, and are therefore not comparable one to another, without optimized 
quantitative standards. 

Therefore, at best, Ct values at present may be separated into early, mid, and late categories, which 
correspond to high, medium, and low viral loads, respectively. Although these values have been 
correlated with outcome in patients with COVID-19 [49–51], the variability of Ct values between 
different assays and the heterogeneity of specimen collection makes it impractical to attempt to 
use this metric in any more than a semi-quantitative manner. Crossing threshold (Ct) values have 
been most effectively used in the experience of the authors to clarify or confirm clinical findings. 
The RT-PCR results from a patient with acute, symptomatic COVID-19 illness, will usually have 
an early or mid-range Ct value (ie, a high or medium viral load). Conversely, patients with remote 
disease who are asymptomatic may still test positive with the highly sensitive RT-PCR assays, but 
their test results disclose a late Ct or a low viral load. 

Crossing threshold values have been very useful in the evaluation of individuals who test positive 
with asymptomatic screening prior to surgery. Most instances, in our experiences, have disclosed 
a late Ct value, and the patient has been found to have remote or convalescent disease. In far rarer 
instances wherein the patient was serendipitously detected in the pre-symptomatic phase, the Ct 
value was low indicating a higher viral load. 

The issue of persistently positive post-infection test results warrants special mention. The residual 
positivity that is detected by the highly sensitive RT-PCR likely represents the shedding of non-in-
fectious fragments of virus and/or very low levels of virus. Attempts to culture the virus from 
specimens of this nature have only rarely been successful [52, 53]. Furthermore, although there 
is epidemiologic evidence that these individuals do not transmit the virus effectively, this finding 
does not afford the relaxation of mitigation strategies. The residual positivity that occurs poses a 
significant challenge in obtaining 2 negative tests for back-to-work policies [15]. The CDC, there-

https://www.paijournal.com/index.php/paijournal


www.PaiJournal.com

Pathogens and Immunity - Vol 6, No 1 142

fore, no longer requires 2 negative tests to return to work, but rather provides a symptoms-based 
approach [54].

To summarize, while there has been a desire to identify a Ct value after which a patient can be 
designated as non-infectious, it is not possible at the present time [52]. The absence of absolute 
quantitation, the heterogeneity of the specimens received, and the differences in the amplification 
efficiencies of the various SARS-CoV-2 assays all influence the Ct value that is generated. 

SARS-COV-2 GENOME SEQUENCE VARIATION AND ITS IMPACT ON DIAGNOSIS AND DISEASE
A review of essential factors influencing the performance of diagnostic tests must acknowl-
edge the potential for valid and optimally functioning tests to be impacted and/or fail because 
of sequence variation in the SARS-CoV-2 genome. Since the emergence of SARS-CoV-2, the 
Global Initiative on Sharing Avian Influenza Data (GISAID), Nextstrain, the National Center 
for Biotechnology Information (NCBI), and the China National Center for Bioinformation 
(CNCB) have been aggregating full and partial SARS-CoV-2 genome sequence from infections 
around the world. These data repositories have been providing the ability to track how the virus 
is changing over time and space, allowing a basic assessment of the virus’ mutation rate and the 
capacity to monitor priority segments of the viral genome (eg, RT-PCR primer and probe an-
nealing sites, antibody binding sites, receptor binding sites, and viral proteins targeted for vac-
cine development). 

As we have passed the 1-year anniversary of SARS-CoV-2 emergence, recent manuscripts (with 
over 46,000 sequences [55, 56] and counting) have identified more than 12,700 mutations across 
the 30,000 bp genome, where the occurrence of non-synonymous compared to synonymous mu-
tations were almost 2-fold greater (NS:S = 1.88) [55]. Phylogenetic analysis has revealed 7 distinct 
clades shown below using the naming strategy put forth by GISAID in association with gene-spe-
cific mutations, Clade L (original Wuhan strain; NC_045512.2); Clade S (NSP4 [Non-Structural 
Protein]:S76S, ORF8 [Open Reading Frame]:L84S); Clade V (NSP6:L37F, ORF3a:G251V); Clade 
G (S [Spike]:D614G); Clade GH (S:D614G, ORF3a:Q57H); Clade GR (S:D614G, N [Nucleocap-
sid]:RG203KR); Clade GV (S:D614G, S:A222V), and one additional cluster of numerous low 
frequency mutations (Clade O = other) [56]. Basic research articles that have reported and con-
tinue to monitor viral sequence variation examine the geographical distribution and temporal 
stability of the SARS-CoV-2 clades [57, 58], emergence [59], and phenotypic associations [60, 
61] of the spike protein, and preliminary association of disease severity and within-patient viral 
diversity [62]; the most recent updates on naming strategies have been written by Trevor Bedford 
and Nextstrain colleagues [63]. Germane to this review are the following observations linked to 
SARS-CoV-2 genome evolution.

A number of reports have performed assessments of nucleotide sequence variation within the 
RT-PCR primers and probes creating mismatches and potentially contributing to false-negative 
outcomes [47, 64–66]. The B.1.1.7 or United Kingdom (UK) variant (now referred to as the Alpha 
variant), which until recently was the dominant strain in the United States, is associated with S 
gene target failure (SGTF) in some RT-PCR assays [67]. Similarly, others have described nucleo-
capsid (N) gene and envelope (E) gene target failures associated with different variants [68, 69]. 
The hybridization characteristics of  the primers and probes of current SARS-CoV-2 RT-PCR 
assays should be assessed against the rapidly spreading B.1.617.2 or Delta variant, and any sub-
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sequent emerging variants to assure assay efficacy. A summary of the information focused on 
primer and probe sequences has found a higher risk of mismatch (more susceptible to RT-PCR 
failure) in the N gene, whereas sequence in the E and RNA-dependent RNA polymerase (RdRP) 
genes have a lower risk of mismatch (less susceptible to RT-PCR failure) [47, 64–66]. As most of 
the primers and probes used in current diagnostic tests have been observed to hybridize to altered 
sequence that would result in mismatch, concerns arise regarding potential for false-negative 
results. The FDA has provided guidance concerning nucleic acid sequence alterations in SARS-
CoV-2 variants and the impact on diagnostic testing [70]. 

Emergence of the spike protein D614G substitution in February 2020 has caused significant 
further investigation [71]. Further diversification of SARS-CoV-2 strains carrying this amino acid 
change (Strains G, GH, GR, and GV) has received special attention because spike protein 614G 
strains now predominate throughout most of the world [56, 72]. Of particular interest, 614G 
(compared to 614D) is observed to be more open to binding the angiotensin-converting enzyme 
2 (hACE2), the primary receptor for infection of human endothelial cells and has been associated 
with higher SARS-CoV-2 viral loads [61].

Because vaccine development commenced very shortly after the SARS-CoV-2 genome was se-
quenced, these efforts were committed to the sequences available in January 2020. Since this pre-
ceded emergence of the D614G sequence variation, vaccine development has been based on the 
D614 spike protein sequence. Therefore, it is important to determine whether 614G would reduce 
effectiveness of spike protein recognition by vaccine-induced antibodies. With the whole spike 
protein gene provided in the Pfizer and Moderna mRNA vaccines, the human immune response 
and resulting antibodies would be expected to bind to multiple epitopes of the SARS-CoV-2 spike 
protein. Early studies suggested that the D614G sequence variation is not likely to affect the effec-
tiveness of these vaccines [73]. More recently, studies have shown that continuing emergence of 
new spike protein variation (K417N, or E484K, or N501Y mutations) is associated with decreased 
effectiveness of potent neutralizing monoclonal antibodies against recombinant viral strains [74], 
or predict spike protein mutations that may lead to strains that could escape immune response 
stimulated by the recently released vaccines [75].

It is critical, therefore, that whole viral genome sequencing is supported on a national level to 
monitor strain variation, determine the impact on diagnostic tests and viral transmissibility, and 
assess monoclonal antibody therapy and vaccine efficacy. The CDC maintains an updated website 
on Variants of Interest, Variants of Concern, and Variants of High Consequence, as well as their 
proportional distribution across the United States [76].

ANTIGEN DETECTION TESTS [77]
Antigen detection tests, in general, rely on 2 independent reactions. The first of these is the anti-
gen-antibody interaction. This is the portion of the assay that directly affects the specificity of the 
reaction. Antibodies directed against particular antigens are raised and harvested from an animal 
or an immortalized cell line. These antibodies are immobilized on a surface, such as a nitrocellu-
lose strip or in the wells of a testing plate. The processed clinical specimen is then allowed to react 
with the antibody. If the antigen of interest is present, then an antigen-antibody complex will 
form. The second portion of the reaction is a signal amplification reaction designed to visualize or 
detect the presence of the antigen-antibody complex. The reaction may be colorimetric or fluo-
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rescent and may be detected visually or with instrumentation. This test method has been used in 
clinical laboratory medicine and physician offices for many years. 

The performance of antigen testing in microbiology is well understood as there is abundant litera-
ture and years of experience. The principles, advantages, and limitations that have been described 
for Group A Streptococcus, respiratory viral antigen testing, and other antigen tests for infectious 
agents hold true for antigen tests for COVID-19 tests [78, 79]. Critical to the performance and 
PPV of these or any tests are the analytic test performance characteristics of the test (ie, sensitivity 
and specificity) and the population that is being tested.

Antigen tests for respiratory viral pathogens are less sensitive than RT-PCR assays. Unfortunately, 
the LOD of antigen tests are not included within the current FDA diagnostic assay development 
guidelines. The FDA should include the LOD of these assays for comparative purposes, as a public 
service to patients and providers alike. Antigen tests are most useful to confirm clinically suspect-
ed infections (ie, in a symptomatic patient). The PPV (ie, the likelihood that a positive test result 
is a true positive) is high when the test is used in this setting. Additional advantages include ease 
of test performance, a quick time to diagnosis, and a low cost.

When the antigen test is negative on a symptomatic patient (ie, a test result/clinical mismatch), 
then the patient should be retested with an RT-PCR assay. Occasional false-negative test results 
are expected to occur due to the limited sensitivity of antigen tests compared with RT-PCR. This 
recommendation is consistent with CDC guidance, which has stated: “…it may be necessary to 
confirm a rapid antigen test result with a nucleic acid test, especially if the result of the antigen 
test is inconsistent with the clinical context” [80], To state it otherwise: If there is a mismatch be-
tween the clinical findings and the test result, then an RT-PCR should be performed. 

As previously indicated in the comparison between diagnostic test (likely all symptomatic indi-
viduals with high viral load) and the screening test (likely more asymptomatic individuals with 
low-to-no viral load) setting, the likelihood of false positives increases (see example, below). 
Application of tests outside populations intended for use has contributed to numerous examples 
of false positive SARS-CoV-2 antigen tests reported in the lay press. Not surprisingly, these occur-
rences cause excitement in the general public and uncertainty in the validity of the diagnostic test 
arsenal. 

Additionally, there is a significant patient safety issue if these tests are used to triage or cohort 
patients. As an example, if uninfected patients with false-positive results were placed in close 
proximity with patients who were truly infected, these false-positive patients would encounter in-
appropriate risk and increased possibility of becoming infected. If antigen tests are used to screen 
asymptomatic patients, then positive results should be considered presumptive positives, until 
confirmed by an RT-PCR test. In an epidemiological / public health context, there is also a danger 
of artificially inflating infection rates if positive results from asymptomatic patients are reported 
without RT-PCR confirmation. A comparison of the benefits and limitation of antigen testing and 
RT-PCR for SARS-CoV-2 is provided (Table).
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Table. The Benefits and Limitations of Antigen and RT-PCR Testing1 for SARS-CoV-22

Parameter Antigen Testing RT-PCR Comments
Sensitivity Moderate High Nucleic acid amplification tests are 

generally more sensitive than antigen 
detection tests. Early infection (ie, 
lower viral loads) would be expected 
to be missed more frequently with 
tests with lower sensitivity. 

Specificity High High Specificity depends on assay design 
(eg, the antigen-antibody interaction 
for antigen tests, and primer/probe 
selection for RT-PCR, among a vari-
ety of other factors). 

Cost Low Moderate to High Cost will vary based on platform and 
the inclusion of nucleic acid ex-
traction step prior to RT-PCR.

Time-to-Result Fast Fast-to-Slow Antigen test results are generally 
available in 30 minutes or less. There 
are some isothermal and one RT-PCR 
platform that offer quick time-to-re-
sults (ie, an hour or less), but general-
ly testing with in-laboratory RT-PCR 
can be completed within a day. Time 
to result varies significantly by plat-
form, transport time, and specimen 
backlog.

PPV3 in a High 
Pretest Likeli-
hood Setting4

High High When there is a high pretest likeli-
hood of infection/disease, antigen 
tests perform very well, despite a sen-
sitivity that is not as great as RT-PCR.

PPV3 in a Low 
Pretest Likeli-
hood Setting5

Low-to-Moderate Moderate All tests produce false positive reac-
tions when used in low prevalence 
settings, but generally antigen detec-
tion tests suffer from this to a greater 
degree than RT-PCR assays.6

1. The RT-PCR assays considered here include a nucleic acid extraction prior to amplification and 
are performed in a laboratory, unless otherwise noted. 

2. This comparison assumes well-designed assays that are performed according to the manufac-
turer’s instructions or current Emergency Use Authorization (EUA) guidance.

3. PPV = Positive Predictive Value of the test result (ie, a positive test truly represents the presence 
of SARS-CoV-2).
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4. A high pretest likelihood setting would consist of a patient demonstrating signs and symptoms 
consistent with COVID-19 and/or testing occurring in the setting of a high prevalence of dis-
ease in the community. 

5. A low pretest likelihood setting would consist of a patient without the signs and symptoms 
consistent with COVID-19 (eg, asymptomatic screening) and a low prevalence of disease in the 
community.

6. The higher rate of false-positive reactions for antigen detection tests is likely because only a 
single aberrant reaction (ie, an antigen-antibody reaction) is necessary for a false positive test 
result, whereas for traditional RT-PCR several aberrant reactions (eg, 2 primers and a probe 
mis-hybridization) must occur to produce an erroneously positive test result. Specimen mis-
handling (eg, splashing, mix ups) can occur with any test and are not considered here.

SPECIMEN POOLING
There has been much interest in pool testing, given the limitations in reagents and other materials 
required for testing. In pooled testing, aliquots of multiple specimens (eg, 8-10) are combined and 
tested together rather than being tested individually. 

The advantage of this approach is the preservation of testing reagents. For example, if a pool of 
10 samples tested negative using a single test-worth of reagents, all of the negative results would 
have been generated at a 10-fold savings. If a pool of specimens tested positive, the pool would be 
“deconstructed” and each specimen would be tested individually to determine which specimen or 
specimens were the cause of the positive reaction. Pooling has been used to detect HIV and HBV 
in donated blood or in resource limited settings [81, 82], but has not been used in clinical labora-
tories, until now [83].

When specimens are pooled there is a dilution effect. If a specimen is pooled wherein the target 
analyte is at or near the LOD, then that specimen may be mischaracterized as negative. We stud-
ied pooling in asymptomatic patients with COVID-19 and demonstrated an 85% correlation 
between direct testing and those pooled 10:1, which meets the FDA criteria for pooling [84]. The 
only specimens missed after pooling were those with low viral loads (ie, late Cts). The impact of a 
false negative differs depending on the phase of disease (ie, early versus late), immunologic status 
of the patient, the clinical (eg, admission of a patient into an ICU vs ambulatory testing) or public 
health circumstances. These and similar factors should be considered to determine which patients 
are eligible for pooling. 

Pooling specimens also requires significant handling and pipetting of potentially infectious clin-
ical specimens with numerous opportunities for human error (eg, mislabeling to contamination 
events) which would impact quality assurance of a certified clinical laboratory. Additionally, as 
the prevalence of infections rise, more and more pools will test positive, and necessitate decon-
struction of the pools and re-testing of the component specimens. This has a significant impact 
on both labor and reagents, with a diminishing return on savings. 
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CONCLUSION
In this brief summary we present the current state of the art regarding nucleic acid amplification 
testing and antigen testing. We hasten to add that this is a continually evolving field and that vari-
ants are likely to be more common as we apply comprehensive genome sequencing to different 
isolates. Sequence variability is predictable, as is the possibility of escape variants emerging in the 
clinic. At this point, efforts to detect COVID-19 by multiple methods should still be pursued. As 
the genetic landscape becomes more complicated, we will need multiple tools to assist us in the 
implementation of appropriate diagnosis, the administration of therapy, and the execution of in-
fection control. We remain entirely optimistic that we will find the appropriate testing algorithms 
and technologies that will help us overcome this global threat. 
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