The Transcription Factor Interferon Regulatory Factor 1 (IRF-1) Is Important during the Maturation of Natural Killer 1.1⁺ T Cell Receptor $-\alpha/\beta^+$ (NK1⁺ T) Cells, Natural Killer Cells, and Intestinal Intraepithelial T Cells

By Toshiaki Ohteki,* Hiroki Yoshida,[‡] Toshifumi Matsuyama,[‡] Gordon S. Duncan,[‡] Tak W. Mak,^{*‡} and Pamela S. Ohashi*

From the *Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada, M5G 2M9; and the [‡]Amgen Institute, Toronto, Ontario, Canada, M5G 2C1

Summary

In contrast to conventional T cells, natural killer (NK) 1.1^+ T cell receptor (TCR)- α/β^+ (NK1⁺T) cells, NK cells, and intestinal intraepithelial lymphocytes (IELs) bearing CD8- α/α chains constitutively express the interleukin (IL)-2 receptor (R) $\beta/15R\beta$ chain. Recent studies have indicated that IL-2R $\beta/15R\beta$ chain is required for the development of these lymphocyte subsets, outlining the importance of IL-15. In this study, we investigated the development of these lymphocyte subsets in interferon regulatory factor 1–deficient (IRF-1^{-/-}) mice. Surprisingly, all of these lymphocyte subsets were severely reduced in IRF-1^{-/-} mice. Within CD8- α/α^+ intestinal IEL subset, TCR- γ/δ^+ cells and TCR- α/β^+ cells were equally affected by IRF gene disruption. In contrast to intestinal TCR- γ/δ^+ cells, thymic TCR- γ/δ^+ cells developed normally in IRF-1^{-/-} mice. Northern blot analysis further revealed that the induction of IL-15 messenger RNA was impaired in IRF-1^{-/-} cells were cultured with IL-15 in vitro. These data indicate that IRF-1 regulates IL-15 gene expression, which may control the development of NK1⁺T cells, NK cells, and CD8- α/α^+ IELs.

n addition to the conventional lymphocyte subsets, other lineages have been identified as NK1.1⁺TCR- α/β^+ (NK1+T) cells, NK cells, and intestinal intraepithelial lymphocytes (IELs). NK1⁺T cells have been recently classified as a lymphocyte subset that shares common features with both NK cells and conventional T cells. This lineage expresses NK markers including NKR-P1, Ly-49, and IL-2RB/15RB as well as an invariant V α 14J281TCR- α chain in combination with V β 8, V β 7, or V β 2 (1, 2). Expression of these TCRs is required for NK1⁺ T cell development (3, 4). They are positively selected by MHC class I-related CD1 or thymic leukemia (TL) molecules (5–7). The majority of TCR- α/β^+ or TCR- γ/δ^+ intestinal IEL expresses CD8- α/α homodimers. Both NK1⁺T cells and CD8- α/α^+ intestinal IELs can develop through either extrathymic or alternative thymic pathways (1, 2, 8). Notably, the IL- $2R\beta/15R\beta$ chain is required for the development of NK1+T cells, NK cells, and CD8- α/α^+ intestinal IELs (9, 10), and IL-15 preferentially promotes the proliferation of these lymphocyte subsets (10–12).

IFN regulatory factor 1 (IRF-1), an IFN-inducible transcriptional activator, was initially identified as a protein that binds *cis*-acting DNA elements in the IFN- β promoter (13–15) and the IFN-stimulated response element of IFN- α/β -stimulated genes (16, 17). Recent studies with IRFdeficient (IRF-1^{-/-}) mice demonstrated a reduction of CD8⁺TCR- α/β^+ cells and decreased MHC class I levels as a consequence of reduced expression of transporter associated with antigen processing 1 (TAP-1) and low molecular weight protein 2 (LMP-2; 18, 19).

Since IRF-1 deficiency has been related to T cell maturation, we examined the development of NK1⁺T cells, NK cells, and IELs in IRF-1^{-/-} mice. Data indicated that these lymphocyte subsets were selectively reduced and IL-15 messenger RNA (mRNA) was barely detectable in IRF-1^{-/-} mice. Therefore, IRF-1 regulates the IL-15 gene that is required for survival and/or expansion of these lymphocyte subsets in vivo.

Materials and Methods

Mice. Mice deficient in IRF-1 (18) were backcrossed five times with C57BL/6 mice. Homozygous $IRF-1^{-/-}$ mice were bred and identified by staining blood with anti-CD8 and -CD4 mAb. Wild-type or heterozygous mice were used as controls. All mice were maintained in our animal facility according to institutional guidelines, and experiments were done between 8 and 14 wk of age.

967 J. Exp. Med. © The Rockefeller University Press • 0022-1007/98/03/967/06 \$2.00 Volume 187, Number 6, March 16, 1998 967–972 http://www.jem.org *Cell Preparation and Culture.* Liver mononuclear cells (MNCs) and IELs were prepared as previously described (20). In some experiments, liver MNCs or IELs obtained from IRF- $1^{-/-}$ mice were cultured with 100 ng/ml mouse IL-15 (provided by Immunex Co., Seattle, WA) for 7 d.

Antibodies and Flow Cytometric Analysis. The following mAb conjugates were purchased from PharMingen (San Diego, CA) and used in this study: M1/69-FITC (anti-HSA), 53-5.8-FITC (anti-CD8 β), H57-597-FITC and -PE (anti-TCR- β), TM- β 1-PE (anti-IL-2R β), GL-3-PE (anti-TCR- δ), 53-6.7-PE (anti-CD8), PK136-PE and -biotin (anti-NK1.1), 1B1-PE (anti-CD1), 27D-biotin (anti-LFA-1), IM7-biotin (anti-CD44), and KJ16-bio-tin (anti-V β 8.1,8.2). B22-purified mAb (anti-H-2D^b) was prepared in our laboratory. Biotinylated mAbs were detected with streptavidin red 670 (GIBCO BRL, Gaithersburg, MD) and purified mAbs were detected with goat anti-mouse IgG-FITC or goat anti-rat IgM-FITC; 10⁶ cells were stained in 2% FCS PBS, washed, and analyzed by FACScan[®] using the Lysis II program (Becton Dickinson, Mountain View, CA).

Analysis for IL-15 mRNA Expression. Bone marrow (BM) cells were isolated and stimulated by 30 μ g/ml LPS and 100 U/ml IFN- γ for 6 h. Total cellular RNA was isolated with TRIZOL (GIBCO BRL) according to the manufacturer's protocol. 10 μ g of total RNA were subjected to electrophoresis in a denaturing 1.0% agarose gel containing 2% formaldehyde and transferred to Hybond N+ nylon membrane (Amersham Corp., Arlington Heights, IL). The filter was hybridized with mouse IL-15 cDNA probe radioactively labeled with [³²P]dCTP. The mouse IL-15 cDNA used as a probe was obtained by polymerase chain reaction using specific primers: sense primer 5'-GCC AGC TCA TCT TCA ACA-3' and antisense primer 5'-TAA GTC TGA GAC GAG CTC TTT-3'. Radioactivity was assessed using phosphorimager (Molecular Dynamics, Sunnyvale, CA). The filter was stripped and rehybridized with a β -actin cDNA probe.

NK1.1

Figure 1. IRF-1 is important for NK1⁺T cell and NK cell maturation. Thymocytes, liver, and spleen MNCs from indicated strains were stained with M1/69-FITC (anti-HSA), H57-597-PE (anti-TCR- β), and PK136-biotin (anti-NK1.1) plus streptavidin 670. HSA⁻ cells are shown.

Results and Discussion

Impaired NK1⁺T Cell and NK Cell Development in IRF- $1^{-/-}$ Mice. Mouse NK1⁺T cells are generally either CD4⁺8⁻ or CD4⁻8⁻ cells that are primarily found in the thymus, liver, and BM (1, 2). We examined the NK1⁺T cell subset in mice deficient for IRF- $1^{-/-}$. Surprisingly, the percentages of thymic and liver NK1+T cells were decreased by 4-5 fold and 8-10 fold, respectively, in IRF-1^{-/-} mice. The total number of thymic NK1+T cells obtained from IRF- $1^{-/-}$ mice was 10-fold lower than in wild-type control mice. Interestingly, a partial reduction of NK1⁺T cells was also seen in $IRF^{-1+/-}$ mice (Fig. 1, Table 1). The IL-2R β /15R β ⁺TCR- α / β ⁺ cells were also decreased, suggesting that the pronounced reduction of NK1⁺T cells detected in IRF- $1^{-/-}$ mice was not simply due to the loss of NK1.1 molecules from the cell surface (data not shown). The small number of NK1⁺T cells detected in IRF-1^{-/-} mice expressed the IL- $2R\beta/15R\beta$ chain and preferentially expressed V β 8⁺ TCR as seen in control mice (data not shown). In addition, analysis of the thymus, liver, and spleen using IRF-1^{+/+}, IRF-1^{+/-}, and IRF-1^{-/-} mice clearly demonstrated a reduction of NK cells (TCR- $\beta^{-}NK1.1^{+}$) in IRF-1^{-/-} mice (Fig. 1). This is consistent with the lack of NK cell function previously reported in IRF-1^{-/-} mice (21). Interestingly, $IRF-1^{+/-}$ mice consistently showed an intermediate phenotype, reflecting the dose-dependent requirement for genes regulated by IRF-1. These analysis showed that IRF-1 is important for NK cell and NK1⁺T cell development.

Previous reports have shown that $CD4^-8^+TCR\alpha/\beta^+$ cells were selectively reduced in thymus and periphery of IRF-1^{-/-} mice (18). The data demonstrated a crucial role for IRF-1 in T cell development for the first time. A recent paper suggested that IRF-1 controls MHC class I expression through the regulation of transporter associated with antigen 1 and low molecular weight protein (19). Since mouse NK1⁺T cells require β 2-microgloblin–associated CD1 and TL molecules for development (5–7, 20, 22, 23),

Table 1. Impaired Maturation of Thymic NK1+T Cells in IRF-
 $1^{-/-}$ Mice

Mice	Total thymocytes (× 10 ⁶)	HSA- cell	NK1+T cell	Total NK1+T cell (× 10 ⁴)	
		%	%		
IRF-1 ^{+/+} IRF-1 ^{+/-} IRF-1 ^{-/-}	$\begin{array}{l} 81.7\pm4.7\\ 87.3\pm10.8\\ 86.0\pm11.8\end{array}$	$\begin{array}{c} 3.4\pm0.4\ 3.2\pm0.6\ 1.6\pm0.4 \end{array}$	$\begin{array}{c} 11.9\pm1.4\\ 8.1\pm0.6\\ 2.4\pm0.4 \end{array}$	39.5 ± 8.8 22.6 ± 7.5 3.3 ± 0.6	

Four to six mice from each group were individually analyzed. Thymocytes were stained with M1/69-FITC (anti-HSA), H57-PE (anti-TCR- β), and PK136-biotin (anti-NK1.1) plus streptavidin 670. The percentage of NK1⁺T cells was calculated in the HSA⁻ thymocyte population.

Figure 2. Normal CD1 expression on IRF-1^{-/-} thymocytes. Thymocytes from the indicated strains were stained with 1B1-FITC (anti-CD1), 57.6.7-PE (anti-CD8), and L3T4-biotin (anti-CD4) plus streptavidin 670, and double-positive CD4⁺8⁺ thymocytes were analyzed for CD1 expression. For H-2D^b expression, total thymocytes were stained with B22 (anti-H-2D^b) plus goat anti-mouse Ig-FITC.

we examined CD1 expression on thymocytes from IRF- $1^{-/-}$ mice. Consistent with a recent paper (19), Fig. 2 showed that the lack of the IRF-1 gene clearly resulted in reduced H-2D^b expression. However, the mean intensities of CD1 on IRF- $1^{-/-}$ thymocytes was comparable to littermate controls, suggesting that the IRF-1 gene does not control NK1⁺T cell development through CD1 expression. In addition, we can further exclude the role of the TL antigen in NK1⁺T cell development, since both IRF- $1^{-/-}$ and control mice are of the C57B1/6 background and do not express TL.

Maturation of Intestinal IELs Is Reduced in IRF-1-/-Mice. The majority of IELs express CD8 and can be divided into two subsets. One population bears CD8- α/β^+ heterodimers and expresses $T\hat{C}\hat{R}$ - α/β^+ , whereas the other expresses CD8- α/α^+ homodimers consisting of TCR- α/β^+ and TCR- γ/δ^+ cells. Using thymectomized recombinase activating gene (RAG)-deficient mice reconstituted with BM cells from athymic (nude) mice, thymus-independent development of CD8- α/α^+ IELs has been clearly demonstrated to occur (8). Surprisingly, in IRF-1^{-/-} mice, the percentage of intestinal CD8- α/α^+ IELs was approximately eight- to ninefold less than in wild-type control mice. As seen with NK1⁺T cells, mice heterozygous for IRF-1^{+/-} showed altered CD8- α/α^+ IEL development. TCR- γ/δ^+ IELs were profoundly reduced by IRF gene disruption (Fig. 3 A, Table 2). In addition, CD8- α/β^+T cells were also reduced as seen in periphery. The total cell numbers of IELs from IRF-1^{-/-} mice (0.4 \pm 0.1 \times 10⁶) were three- to fourfold lower than those from littermate controls (1.5 \pm 0.3 \times 10⁶). Therefore, IRF-1 controls the expression of genes important for IEL T cell development. It is likely that the reduced development of intestinal $\gamma/$ δ^+T cells is controlled by other mechanisms unrelated to MHC class I expression in IRF-1^{-/-} mice. Previous studies

Figure 3. IRF-1 controls intestinal IEL development. (*A*) Intestinal IELs were obtained from either IRF-1^{+/+} mice, IRF-1^{+/-} mice, or IRF-1^{-/-} mice and stained with H57-597 (anti–TCR- β) and GL-3-PE (anti–TCR- δ), or 53.6.7-FITC (anti–CD8 α) and Lyt3-PE (anti–CD8 β). (*B*) Thymocytes were stained with L3T4-FITC (anti–CD4), GL-3-PE (anti–TCR- δ), and 53.6.7-FITC (anti–CD8 α). Histograms are gated on double-negative CD4⁻8⁻ thymocytes and TCR- δ expression is shown.

using β 2-microglobulin–deficient (MHC class I^{-/-}) mice showed a reduction in TCR- α/β^+ IELs, but not TCR- γ/δ^+ IELs (24), demonstrating that TCR- α/β^+ and TCR- γ/δ^+ IELs have differential requirements for β 2-microglobulin dependent selection.

Since the majority of thymus-independent intestinal TCR- γ/δ^+ cells were absent in IRF-1^{-/-} mice, we also examined whether thymic TCR- γ/δ^+ cells were present in these mice. Although the number of intestinal TCR- γ/δ^+ cells were decreased by 10-fold in IRF-1^{-/-} mice, thymic TCR- γ/δ^+ cells were normal (Fig. 3 *B*, Table 2). Thus, IRF-1 selectively affected the development of intestinal TCR- γ/δ^+ cells.

IL-15 mRNA Expression Is Impaired in IRF- $1^{-/-}$ BM Cells. As certain cytokines are crucial for lymphocyte development, it is possible that a reduction in the expression of cytokine receptors or cytokines may result in poor selection, survival, or expansion of NK1⁺T cells, NK cells, and

		Intestine				
Mice	$CD8-\alpha/\alpha^+$	CD8- α/β^+	$TCR-\alpha/\beta^+$	$TCR-\gamma/\delta^+$	$TCR-\gamma/\delta^+$	
IRF-1 ^{+/+}	42.5 ± 4.3	7.5 ± 3.0	26.7 ± 2.6	34.7 ± 4.0	9.3 ± 0.5	
IRF-1+/-	27.0 ± 2.6	10.5 ± 2.3	29.5 ± 3.6	21.0 ± 4.4	10.7 ± 1.8	
IRF-1 ^{-/-}	5.0 ± 3.4	3.2 ± 1.7	15.8 ± 8.9	4.6 ± 2.8	9.6 ± 0.8	

Table 2. Intestinal and Thymic T Cell Subsets in $IRF-1^{-/-}$ Mice

Four mice in each group were individually analyzed.

*Total thymocytes were stained with GK1.5-FITC (anti-CD4), GL-3-PE (anti-TCR- γ/δ), and 53.6.7-biotin (anti-CD8) plus streptavidin 670. TCR- γ/δ^+ cells were analyzed on gated double-negative (CD4⁻8⁻) thymocytes.

intestinal IEL subsets in IRF-1^{-/-} mice. IL-15 is one of the most likely targets because NK1⁺T cells, NK cells and intestinal IEL subsets are severely reduced in IL-2R β / 15R $\beta^{-/-}$ mice (9, 10), while present in normal numbers in IL-2, IL-7R α , or IL-7-deficient mice (10, 25–27). Interestingly, IL-15 preferentially promotes the proliferation of these T cell subsets (10–12). Thus, we examined IL-15 mRNA expression by Northern blot analysis (Fig. 4 *A*). Wild-type BM cells cultured in the presence of LPS and IFN- γ for 6 h, clearly increased IL-15 mRNA levels. In contrast, IL-15 mRNA remained undetectable in IRF-1^{-/-} BM cells, even after induction with LPS and IFN- γ . These data demonstrate that IRF-1 regulates the expression of IL-15.

 $NK1^+T$ Cells, NK Cells, and Intestinal IELs were Recovered by IL-15 In Vitro. To further examine the importance of IL-15 for maturation of NK1⁺T cells, NK cells, and intestinal IEL subsets in IRF-1^{-/-} mice, liver MNCs and intestinal IELs were isolated from these mice and cultured with 100 ng/ml mouse IL-15 for 7 d (Fig. 4 *B*). Recovery of these lymphocyte subsets was observed. This suggested that IL-15 is essential for the survival or expansion of NK1⁺T cells, NK cells, and intestinal IELs, and not early development or commitment.

NK1⁺T cells, NK cells, and intestinal IELs share cell surface markers and other common features during development. In addition to the expression and developmental requirement of IL-2R β /15R β chain, they also express the NK complex that encompasses NKR-P1 and Ly-49 (1, 2, 28, 29). In contrast, conventional T cells do not express these products. Although the majority of T cells develops in the thymus, NK cells develop normally in athymic nude mice. The developmental origin of NK1+T cells can be either thymus dependent or independent (2, 30, 31). Thymusindependent development of intestinal CD8- α/α^+ T cells has been clearly demonstrated to occur (8). Thus, NK1+T cells and intestinal CD8- α/α^+ T cells are related to the NK lineage and can be distinguished from mainstream T cells. Our results demonstrate that IRF-1 controls the expression of IL-15, which is likely to be important for the maturation of the related NK1⁺T cell, NK cell, and CD8- α/α^+ IEL lineages.

Figure 4. Impaired lineage development correlates with the

absence of IL-15. (*A*) Limited IL-15 expression in the absence of IRF-1. BM cells were isolated

from IRF-1 $^{-/-}$ mice or control

wild-type (WT) mice. Total

RNA was extracted from un-

treated BM cells or BM cells cul-

tured for 6 h in the presence of

LPS (30 μ g/ml) and IFN- γ (100 U/ml). Northern blot analysis

was performed using IL-15 cDNA and β -actin probes. (*B*)

IL-15 induces the expansion of NK1⁺T cells, NK cells, and IEL subsets. Liver MNCs and intesti-

nal IELs were isolated from IRF- $1^{-/-}$ mice and cultured with 100

ng/ml mouse IL-15 for 7 d.

970 IRF-1 Regulates IL-15-mediated Lymphocyte Maturation

We wish to thank Dr. Hans-Willi Mittrucker (Amgen Institute, Toronto, Ontario, Canada) for providing the C57BL/6 background IRF-1^{-/-} mice, Dr. Yutaka Tagaya (National Cancer Institute, Bethesda, MD) for help-ful discussion, and Arsen Zakarian (Ontario Cancer Institute, Toronto, Ontario, Canada) for technical assistance.

This work was supported by the Medical Research Council of Canada. P.S. Ohashi is a recipient of a Medical Research Council scholarship.

Address correspondence to Toshiaki Ohteki, Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, 610 University Ave., Toronto, Ontario, Canada, M5G 2M9. Phone: 416-946-2000; Fax: 416-946-2086; E-mail: tohteki@oci.utoronto.ca

Received for publication 7 July 1997 and in revised form 18 December 1997.

References

- Bendelac, A. 1995. Mouse NK1⁺ T cells. Curr. Opin. Immunol. 7:367–374.
- MacDonald, H.R. 1995. NK1.1⁺ T cell receptor-α/β⁺ cells: new clues to their origin, specificity, and function. *J. Exp. Med.* 182:633–638.
- Taniguchi, M., H. Koseki, T. Tokuhisa, K. Masuda, H. Sato, E. Kondo, T. Kawano, J. Cui, A. Perkes, S. Koyasu, and Y. Makino. 1996. Essential requirement of an invariant Vα14 T cell antigen receptor expression in the development of natural killer T cells. *Proc. Natl. Acad. Sci. USA*. 93:11025–11028.
- Ohteki, T., and H.R. MacDonald. 1996. Stringent Vβ requirement for the development of NK1.1⁺ T cell receptorα/β⁺ cells in mouse liver. *J. Exp. Med.* 183:1277–1282.
- Bendelac, A., O. Lantz, M.E. Quimby, J.W. Yewdell, J.R. Bennink, and R.R. Brutkiewicz. 1995. CD1 recognition by mouse NK1⁺ T lymphocytes. *Science*. 268:863–865.
- Smiley, S.T., M.H. Kaplan, and M.J. Grusby. 1997. Immunoglobulin E production in the absence of interleukin-4– secreting CD1-dependent cells. *Science*. 275:977–979.
- 7. Joyce, S., I. Negishi, A. Boesteanu, A.D. DeSilva, P. Sharma, M.J. Chorney, D.Y. Loh, and L.V. Kaer. 1996. Expansion of natural (NK1⁺) T cells that express $\alpha\beta$ T cell receptors in transporters associated with antigen presentation–1 null and thymic leukemia antigen positive mice. *J. Exp. Med.* 184: 1579–1584.
- 8. Guy-Grand, D., and P. Vassalli. 1993. Gut intraepithelial T lymphocytes. *Curr. Opin. Immunol.* 5:247-252.
- Suzuki, H., G.S. Duncan, H. Takimoto, and T.W. Mak. 1997. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor β chain. *J. Exp. Med.* 185:499–505.
- Ohteki, T., H. Shirley, H. Suzuki, T.W. Mak, and P.S. Ohashi. 1997. Role for IL-15/IL-15Rβ chain in NK1.1⁺ T cell receptor-αβ⁺ cell development. *J. Immunol.* 159:5931– 5935.
- 11. Inagaki-Ohara, K., H. Nishimura, A. Mitani, and Y. Yoshikai. 1997. Interleukin-15 preferentially promotes the growth of intestinal intraepithelial lymphocytes bearing $\gamma\delta$ T cell receptor in mice. *Eur. J. Immunol.* 27:2885–2891.
- Mrozek, E., P. Anderson, and M.A. Caliguiri. 1996. Role of interleukin-15 in the development of human CD56⁺ natural killer cells from CD34⁺ hematopoietic progenitor cells. *Blood.* 87:2632–2640.
- 13. Pine, R., T. Decker, D.S. Kessler, D.E. Levy, and J.E. Darnell, Jr. 1990. Purification and cloning of interferon-stimulated gene factor 2 (ISGF2): ISGF2 (IRF-1) can bind to the promoters of both β interferon- and interferon-stimulated genes but is not a primary transcriptional activator of either.

Mol. Cell. Biol. 10:2448-2457.

- 14. Miyamoto, M., T. Fujita, Y. Kimura, M. Maruyama, H. Harada, Y. Sudo, T. Miyata, and T. Taniguchi. 1988. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-β gene regulatory elements. *Cell.* 54:903–913.
- Fujita, T., J. Sakakibara, Y. Sudo, M. Miyamoto, Y. Kimura, and T. Taniguchi. 1988. Evidence for a nuclear factor(s), IRF-1, mediating induction and slicing properties to human IFN-β gene regulatory elements. *EMBO (Eur. Mol. Biol. Organ.) J.* 7:3397–3405.
- Parrington, J., N.C. Rogers, D.R. Gewert, R. Pine, S.A. Veals, D.E. Levy, G.R. Stark, and I.M. Kerr. 1993. The interferon-stimulable response elements of two human genes detect overlapping sets of transcription factors. *Eur. J. Biochem.* 214:617–626.
- Levy, D.E., D.S. Kessler, R. Pine, N. Reich, and J.E. Darnell, Jr. 1988. Interferon-induced nuclear factors that bind a shared promotor element correlate with positive and negative transcriptional control. *Genes Dev.* 2:383–393.
- Matsuyama, T., T. Kimura, M. Kitagawa, K. Pfeffer, T. Kawakami, N. Watanabe, T.M. Kundig, R. Amakawa, K. Kishihara, A. Wakeham, et al. 1993. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrent lymphocyte development. *Cell.* 75:83–97.
- White, L.C., K.L. Wright, N.J. Felix, H. Ruffner, L.F. Reis, R. Pine, and J.P.-Y. Ting. 1996. Regulation of LMP2 and TAP1 genes by IRF-1 explains the paucity of CD8⁺ T cells in IRF-1^{-/-} mice. *Immunity*. 5:365–376.
- Ohteki, T., and H.R. MacDonald. 1994. Major histocompatibility complex class I related molecules control the development of CD4⁺8⁻ and CD4⁻8⁻ subsets of natural killer 1.1⁺ T cell receptor-α/β⁺ cells in the liver of mice. *J. Exp. Med.* 180:699–704.
- Gordon S.D., H.-W. Mittrucker, D. Kagi, T. Matsuyama, and T.W. Mak. 1996. The transcriptional factor interferon regulatory factor-1 is essential for natural killer cell function in vivo. *J. Exp. Med.* 184:2043–2048.
- Bendelac, A., N. Killeen, D.R. Littman, and R.H. Schwartz. 1994. A subset of CD4⁺ thymocytes selected by MHC class I molecules. *Science*. 263:1774–1778.
- Coles, M.C., and D. Raulet. 1994. Class I dependence of the development of CD4⁺CD8⁻NK1.1⁺ thymocytes. J. Exp. Med. 180:395–399.
- Correa, I., M. Bix, N.-S. Liao, M. Zijlstra, R. Jaenisch, and D. Raulet. 1992. Most γδ T cells develop normally in β2microglobulin-deficient mice. *Proc. Natl. Acad. Sci. USA.* 89: 653–657.

- 25. He, Y.-W., and T.R. Malek. 1996. Interleukin-7 receptor α is essential for the development of $\gamma\delta^+$ T cells, but not natural killer cells. *J. Exp. Med.* 184:289–293.
- Sadlack, B., H. Merz, H. Schorle, A. Schimpl, A.C. Feller, and I. Horak. 1993. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. *Cell.* 75:253–261.
- Vicari, A.P., A. Herbelin, M.D.C. Leite-de-Moraes, U. von Freeden-Jeffry, R. Murray, and A. Zlotnik. 1996. NK1.1⁺ T cells from IL-7–deficient mice have a normal distribution and selection but exhibit impaired cytokine production. *Int. Immunol.* 8:1759–1766.
- Yokoyama, W.M., and W.E. Seamen. 1993. The Ly-49 and NKR-P1 gene families encoding lectin-like receptors on natural killer cells: the NK gene complex. *Annu. Rev. Immunol.*

11:613-635.

- Guy-Grand, D., B. Cuenod-Jabri, M. Malassis-Seris, F. Selz, and P. Vassalli. 1996. Complexity of the mouse gut T cell immune system: identification of two distinct natural killer T cell intraepithelial lineages. *Eur. J. Immunol.* 26:2248–2256.
- Hashimoto, W., K. Takeda, R. Anzai, K. Ogasawara, H. Sakihara, K. Sugiura, S. Seki, and K. Kumagai. 1995. Cytotoxic NK1.1 Ag⁺αβ T cells with intermediate TCR induced in the liver of mice by IL-12. *J. Immunol.* 154:4333–4340.
- Shimamura, M., T. Ohteki, P. Launois, A.-M. Garcia, and H.R. MacDonald. 1997. Thymus-independent generation of NK1⁺ T cells *in vitro* from fetal liver precursors. *J. Immunol.* 158:3682–3689.