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Abstract

Nearly 50% of individuals with long-term HIV infection are affected by the onset of progres-

sive HIV-associated neurocognitive disorders (HAND). HIV infiltrates the central nervous

system (CNS) early during primary infection where it establishes persistent infection in

microglia (resident macrophages) and astrocytes that in turn release inflammatory cyto-

kines, small neurotoxic mediators, and viral proteins. While the molecular mechanisms

underlying pathology in HAND remain poorly understood, synaptodendritic damage has

emerged as a hallmark of HIV infection of the CNS. Here, we report that the HIV viral enve-

lope glycoprotein gp120 induces the formation of aberrant, rod-shaped cofilin-actin inclu-

sions (rods) in cultured mouse hippocampal neurons via a signaling pathway common to

other neurodegenerative stimuli including oligomeric, soluble amyloid-β and proinflamma-

tory cytokines. Previous studies showed that synaptic function is impaired preferentially in

the distal proximity of rods within dendrites. Our studies demonstrate gp120 binding to either

chemokine co-receptor CCR5 or CXCR4 is capable of inducing rod formation, and signaling

through this pathway requires active NADPH oxidase presumably through the formation of

superoxide (O2-) and the expression of cellular prion protein (PrPC). These findings link

gp120-mediated oxidative stress to the generation of rods, which may underlie early synap-

tic dysfunction observed in HAND.

Introduction

HIV infection of the CNS is characterized by the induction of inflammatory and neurotoxic

insults, including the activation of microglia and astrocytes, suspected to stimulate a progres-

sive synaptic degeneration manifested in cognitive decline. Despite the prevalence of HIV-

associated neurocognitive disorders (HAND), the underlying molecular and cellular mecha-

nisms promoting pathogenesis remain poorly understood but are thought to consist of a
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combination of direct viral infection of non-neuronal cells of the central nervous system

(CNS) and indirect neurotoxicity mediated by released inflammatory cytokines, metabolites,

and viral proteins including the envelope glycoprotein gp120. Gp120 is a potent neurotoxin

with roles in a number of indirect and direct neurotoxic pathways. The indirect pathways

include the release of excitatory molecules, proinflammatory cytokines, and production of

reactive oxygen species (ROS) from activated microglia and astrocytes. Direct effects on neu-

rons arise from NMDAR mediated excitotoxicity and co-receptor mediated neuronal apopto-

sis from the interaction of gp120 with receptors expressed on the neuronal membrane [1–6].

Gp120 facilitates viral entry to host cells via its interaction with primary host-cell receptor

CD4 and chemokine co-receptors CCR5 and CXCR4 at host-cell lipid raft domains [7]. Gp120

co-receptor preference categorizes distinct strains of HIV on the basis of cellular tropism, with

macrophage or R5-tropic strains binding CCR5 receptors, T-cell or X4-tropic strains preferen-

tially binding CXCR4 receptors, and dual-tropic strains binding both co-receptors [8]. Coales-

cence of lipid raft domains into large, stable platforms supports clustering of receptors and

components of receptor-activated signaling cascades observed in a number of CNS dysfunc-

tions, including CNS aging and trauma, as well as Alzheimer’s disease (AD) [9–12]. Indeed,

gp120 was found to enlarge and stabilize raft domains in a CXCR4-dependent pathway involv-

ing the redox-sensitive translocation of neutral sphingomyelinase 2 (nSmase2) to the mem-

brane and the forward trafficking, surface expression, and clustering of NMDA receptors to

enlarged raft domains [13–16]. These studies are consistent with macrodomain formation pro-

moted by the release of ceramide from nSmase2-mediated hydrolysis of sphingomyelin to acti-

vate signaling in response to various agonists and stress signals. Specifically, a redox-sensitive

translocation of nSmase2 is mediated by gp120 stimulating a lipid-raft localized NADPH-oxi-

dase 2 (NOX2) with a subsequent production of superoxide (O2
-) radicals in neurons [13].

The interaction of proteins with lipid-raft localized receptors as a mechanism of regulating

pathologic signaling has been observed for a number of neurodegenerative diseases, most

notably in AD where soluble, stable amyloid-β dimers and trimers (Aβd/t) interact with the

lipid raft-anchored cellular prion protein PrPC to stimulate a pathway mediated by activated

NOX leading to the formation of rod-shaped bundles of filaments composed of a 1:1 complex

of cofilin-actin [17–19]. These rod-like inclusions are generated in response to oxidative stress

conditions and arise from the oxidation of active (dephospho) cofilin in stressed neurons to

form intermolecular disulfide cross-linked cofilin [20]. Rods have been described during the

progression of AD and other neurodegenerative diseases where they contribute to cytoskeletal

abnormalities and synaptic dysfunction through the disruption of normal actin dynamics, the

blocking of neuronal transport, and the sequestration of cofilin [21–24].

Given the similarities in the neuronal response to HIV gp120 and that of Aβd/t it is feasible

that gp120-sensitive production of O2
- mediated by NOX2 is similarly inducing the down-

stream formation of cofilin-actin rods. Here, we present evidence that gp120 signaling through

chemokine co-receptors CCR5 and CXCR4 induces the formation of cofilin-actin rods via a

pathway comprised of PrPC and NOX2 common to Aβd/t and proinflammatory cytokines.

Methods

Ethics statement

All animals were handled according to the guidelines provided by the National Research

Council for the Care and Use of Laboratory Animals as approved by the Colorado State Uni-

versity Institutional Animal Care and Use Committee (IACUC approved protocol #17-

7411A).
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Reagents

All chemical reagents were obtained from Sigma-Aldrich Co. (St. Louis, MO) unless indicated

otherwise. Tissue culture reagents and immunocytochemistry reagents were from Thermo-

Fisher (Waltham, MA). Primary antibodies included an affinity purified, rabbit anti-cofilin

antibody (1 ng/ml, rabbit 1439) [25], a mouse monoclonal actin antibody (C4, 1:1000, Ther-

moFisher ICN691002); a rabbit anti-CXCR4 (1:250, NIH Aids Reagent Bank #11232), a rabbit

anti-CCR5 (1:250, NIH AIDS Reagent Bank #11236), a rabbit monoclonal antibody (Iba-1,

#178846, Abcam, Cambridge, MA) as a microglia marker generously gifted from Dr. R.A.

Swanson, Univ. California, San Francisco, a mouse monoclonal antibody 2G13 (Abcam

#7762) as growth cone marker, and a mouse monoclonal antibody to glial fibrillary acidic pro-

tein (GFAP) (Fisher Sci., MA5-15086). All secondary antibodies (Alexa dye-labeled) were

from ThermoFisher (used at 1:500 to 1:1000). HIV1 envelope gp120 glycoproteins, gp120MN

and gp120IIIB, were obtained from ImmunoDX (Woburn, MA), gp120CM and gp120LAV from

ProSpec Proteins (East Brunswick, NJ), and gp120BAL from NIH AIDS Reagent Bank

(NIH#4961).

Neuronal cell culture

Mouse neurons were obtained from the following lines: wildtype C57BL/6, PrPC null (C57BL/

6J-Prnp−/−; Talen), and p47PHOX null (B6N.129S2-Ncf1tm1Shl/J p47 phox -/-; JAX 027331).

Rat neurons were from Sprague-Dawley rats. Dissociated hippocampal and cortical neuron

cultures were prepared either from freshly dissected E16.5 fetal mouse or E18 fetal rat brains

according to the method of Bartlett and Banker [26] or from cell stocks of these dissociated

neurons slow frozen at 106 cells/ml (hippocampal neurons) or 107 cells/ml (cortical neurons)

in 50% fetal bovine serum (FBS), 10% DMSO and self-made Neurobasal medium (see below).

Briefly, round glass coverslips (12 mm diameter, #1 German, Carolina Biologicals Supply Co.)

inserted into 24 well plates were coated with 100 μg/ml poly-D-lysine in 0.06 M borate buffer

(30 min, RT), washed 3 times with ultrapure water, and air dried. Dissociated neurons diluted

at least 6 fold in medium immediately after thawing were plated at a density of 40,000 neurons

per well (0.5 ml medium per well) in complete growth medium composed of self-made Neuro-

basal medium supplemented with 10% FBS (Hyclone, VWR Radnor, PA), Glutamax (25 μl/10

ml), 50 U/ml penicillin, 50 μg/ml streptomycin, N21-MAX (1 ml/50 ml, R&D Systems, Minne-

apolis, MN). Cultures are incubated at 37˚C in a humidified 5% CO2 atmosphere). After 1 to 2

h, serum-containing medium was removed, replaced with complete growth medium (1 ml/

well) and exchanged every 3 days. Self-made Neurobasal was made from all components of

commercial NB yet substituted with highly purified L-serine, adjusted final concentrations of

175 μM L-cysteine, 2.5 mM glucose, and an osmolarity of 320 mOsM with NaCl.

Adenovirus preparation and neuronal infection

The AdEasy system was utilized to generate recombinant, replication-deficient adenovirus

(He et al., 1998; Minamide et al., 2003) to express either EGFP-PrPc, lacZ-GFP, or a dominant

negative mutant of the small membrane NOX subunit p22PHOX (DNp22PHOX) in AdTrack

vector [19]. Virus titer was determined by immunostaining against E2A in HEK293 cells

infected with serially diluted virus as previously described [27]. Titers were expressed as infec-

tious virions/ml (iv/ml) and were usually about 109 iv/ml. Recombinant adenoviruses were

stored at -80˚C. For optimal infection of primary neurons, recombinant adenovirus was added

to dissociated neurons 4 days in vitro (DIV) at a multiplicity-of-infection (MOI) ranging from

30 to 200 to express either EGPF-PrPc, lacZ-GFP, DNp22PHOX. Infection was executed con-

comitant with a full medium exchange.
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Rod induction in neuronal cultures

Rod induction was initiated at 6 DIV over a time period of 16 h unless indicated otherwise.

After a complete medium exchange (1 ml/well), doses between 250 pM and 750 pM of dual

tropic gp120MN, X4 monotropic gp120IIIB or gp120LAV, or R5 monotropic gp120CM or

gp120Bal were added in complete growth medium. Amyloid-β dimer/trimers (Aβd/t) were iso-

lated from medium of 7PA2 cells as previously described [18, 28, 29] and used at ~1 nM final

concentration (monomer equivalent) determined from Western blots with monomeric syn-

thetic Aβ standards.

Pharmacological treatments

Maraviroc (100 nM, Santa Cruz Biotechnology) and AMD3100 (50nM, Santa Cruz Biotech-

nology) were used as specific antagonists of CCR5 and CXCR4 receptors, respectively. NOX2

was inhibited with TG6-227 kindly provided by Dr. J. D. Lambeth, Emory University [19].

Pharmacological inhibitors were added to cultures 1 h prior to gp120 exposure and maintained

for the duration of the experiment.

Immunolabeling of rods and chemokine receptors

Following treatments, neuronal cultures were fixed in 4% formaldehyde, 0.1% glutaraldehyde

in phosphate buffered saline (PBS) (37˚C at addition, 30 min, RT). Cultures were washed 3

times with PBS and permeabilized with methanol (chilled to -20˚C) for 3 min. Permeabiliza-

tion with non-ionic detergents must be avoided for best rod preservation. After several washes

with Tris buffered saline (TBS), cultures were treated with blocking buffer (5% goat serum, 1%

BSA in TBS) for 1 h prior to the addition of primary antibodies (4˚C, overnight). After 3

washes with TBS, Alexa-labeled secondary antibodies (1:500 to 1:1000) were applied (1h, RT),

followed by 3 washes in TBS. Coverslips were mounted onto glass slides with ProLong Gold

Antifade containing DAPI (Fisher Scientific). For immunostainings targeting only surface co-

receptors CXCR4 or CCR5, the permeabilization step was omitted.

Rod quantification

Immunolabeled neurons were imaged on an inverted fluorescence microscope using a 40x

0.95 na air objective and scored by an individual blinded to the treatments or by more than

one individual. For most experiments, at least 100 neurons per coverslip were scored for the

presence of rods with triplicates for each condition and three independent experiments. Neu-

ronal processes in the vicinity of non-neuronal cells and rod-like staining in growth cones

were disregarded in the analysis. Density of neuronal cultures required two ways of quantify-

ing rod formation. Scoring in low-density cultures was performed by calculating the percent of

isolated neurons with rods, whereas in higher density cultures, rod index was scored by count-

ing the number of rods per total nuclei (DAPI) per field or number of rods per neuron per

field.

Fluorescence recovery after photobleaching (FRAP)

FRAP experiments were performed on 6 DIV mouse hippocampal neurons infected 60 hrs

prior to imaging with adenovirus for expressing cofilin-mRFP and treated with 1 nM Aβd/t 24

hr prior to imaging. Imaging was performed on an Olympus IX83 microscope with a Yoka-

gawa spinning disc confocal system and a phasor light illumination system (3I, Denver, CO).

A 100x, 1.45 na objective was used for photobleaching with either the 488 nm or 561 nm lasers

at 100% power for 0.5 s. Single plane images of both emissions were acquired every 5 s using
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an exposure of 100 ms with laser power at 20%. Acquisition duration was 20 min or until fluo-

rescence recovery plateaued as observed via real-time Slidebook (3I, Denver, CO) fluorescence

recovery graphs.

Statistical analysis

Rod quantification experiments were performed in triplicate for each condition and repeated

in three independent experiments. For rod analysis, both rod index (rods per DAPI positive

nuclei in a field of view) and/or percent neurons with rods were calculated. Independent

group averages obtained from triplicates were used to calculate standard deviations shown on

plots. Significant differences among treatments and between treatments and controls were

tested using by one-way ANOVA with Tukey’s or Dunnett’s posthoc-analysis using Graph

Pad Prism software (GraphPad Software, Inc.). An alpha level of 0.05 was used for statistical

significance unless indicated otherwise.

Results

Gp120 interacts with neurons to induce actin-cofilin rods in a dose- and

time-dependent manner

Prior to experiments examining gp120-mediated rod induction, we first addressed the issue of

spontaneous rod formation in neuronal cultures. Spontaneous rods in neuronal processes are

commonly observed in fewer than 5% of neurons (rod index < 0.2 rods/neuron) in dissociated

hippocampal or cortical cultures under control conditions likely due to culture stress arising

from commercial neurobasal medium (e.g. [19]). Since over time, levels of spontaneous rod

formation became increasingly variable and reached levels has high as 25% (rod index> 0.5),

we sought to improve culture conditions to minimize spontaneous rod formation. Modifica-

tions to various media components achieved a reset of spontaneous rod formation to< 5%

(rod index< 0.2) using a self-made neurobasal medium composed of L-serine with minimal

D-serine contamination, a glucose concentration of 2.5 mM, and a physiological osmolarity of

320 mOsM (S1 Fig). All experiments were executed using self-made neurobasal with the

exception of those examining the role of NOX activity.

Gp120 was demonstrated previously to be a potent stimulator of ROS production [13].

Given the requirement of oxidized cofilin for the formation of rods (1:1 complex of cofilin:

actin), we examined whether dual-tropic gp120MN, R5 tropic gp120CM, and X4 tropic gp120IIIB

were capable of inducing rod formation in cultured mouse hippocampal neurons (Fig 1). After

exposure of DIV 6 neuronal cultures with 250 pM gp120 for 18 h, cultures were fixed, immu-

nostained for cofilin, actin, and/or the growth cone marker 2G13, and evaluated for rod for-

mation. Robust rod formation in neuronal processes was evident following treatment with

dual tropic or monotropic gp120 (Fig 1A). Since rods are composed of 1:1 oxidized cofilin:

actin complexes [17, 20], we demonstrated co-immunostaining against both cofilin and actin

(Fig 1B). To demonstrate the different dynamics between cofilin-actin bundles in rods and in

growth cones, we performed FRAP analysis (S2 Fig). Recovery of cofilin fluorescence to 50%

in growth cone bundles was on the order of 1 min whereas recovery in rods needed to be

extrapolated from data to estimate 50% recovery in 80 min confirming the need to remove

growth cone cofilin-actin co-stained bundles from rod analysis. To distinguish rods from cofi-

lin-stained actin bundles in growth cones, cultures were double immunostained for cofilin and

the growth cone marker 2G13 (Fig 1C). Whereas growth cones are immunoreactive for both

cofilin and 2G13, rods are quantified exclusively from regions not immunoreactive for 2G13.
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Rod formation was not an exclusive response of mouse hippocampal neurons to gp120. In

fact, hippocampal neurons as well as cortical neurons from both mouse and rat exhibited simi-

lar rod formation to dual and mono-tropic gp120 as well as Aβ d/t or TNFα (Table 1).

Rod formation in response to gp120 exhibited both dose and time-dependence (Fig 2).

Dual tropic gp120MN induced rod formation significantly above the untreated control for each

concentration tested ranging from 100 pM to 750 pM (Fig 2A). As dual-tropic gp120MN is

capable of binding to both CCR5 and CXCR4 receptors, we further evaluated the ability of

mono-tropic gp120 strains to induce rod formation. Neurons exposed to increasing concen-

trations of R5-tropic gp120BaL or X4-tropic gp120IIIB for 18 h exhibited rod formation signifi-

cantly above control at concentrations of 500 and 750 pM for both strains tested, suggesting

that both co-receptors are capable of initiating gp120-mediated rod formation. We did not

determine a maximum saturation concentration for either gp120 strain since concentrations

Fig 1. HIV gp120 induces the formation of aberrant, rod-shaped cofilin-actin inclusions (rods). After 18 h of gp120 exposure, dissociated mouse

hippocampal neurons cultures were immunostained for cofilin, actin, and/or the growth cone antigen 2G13. (A) Dual tropic gp120MN (II), R5-tropic

gp120 CM (III), or X4-tropic gp120IIIB (IV) at 250 pM caused a robust induction of rod-shaped cofilin-actin inclusions (arrow heads) in neurites

neurons compared to untreated control (I). Cofilin immunoreactivity in growth cones is indicated by asterisk. (B) Rod-shaped inclusions were

immunostained for both cofilin and actin (arrowheads). (C) Notably, the growth cone antigen 2G13 reveals growth cone-associated cofilin indicated by

arrows in expanded boxed areas 1 and 2, structures clearly distinct from rods (arrowheads), which are in regions not immunoreactive to the growth

cone antigen.

https://doi.org/10.1371/journal.pone.0248309.g001
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above 750 pM exhibited significant cytotoxicity over the 18 h incubation period. A time-

dependent exposure of mouse hippocampal neurons to dual tropic gp120MN (500 pM) demon-

strated significant rod formation in neurites above control by 6 h with a half-maximum rod

induction at 8 to 9 h (Fig 2B). A similar time-dependence of rod formation induced by

R5-tropic gp120CM and X4-tropic gp120LAV was found in rat cortical neurons. Previous stud-

ies have demonstrated that almost all neurons can form rods when subjected to energy deple-

tion [22] but rods are induced in a maximum of 20–25% of cultured mouse hippocampal

neurons by Aβd/t and the proinflammatory cytokine TNFα when used separately or in combi-

nation, suggesting that both stressors elicit rod formation through the same pathway [19]. To

determine if dual-tropic gp120 is also inducing rods through this same pathway, mouse hippo-

campal neurons were treated with 500 pM dual tropic gp120MN alone or in conjunction with

either 50 ng/ml TNFα or 1 nM Aβd/t for 24 h before immunostaining and rod quantification.

Rods were observed in 20–25% of gp120-treated neurons alone or in combination with Aβd/t

or TNFα (Fig 2C). Interestingly, we also found gp120-mediated rod formation to be reversible

since washing out gp120 after a 20 h exposure significantly reduced the percentage of neurons

with rods detected 4-hours post washout similar to what was observed for TNFα-induced rods

[19] and Aβd/t-induced rods [30].

Productive infection by HIV in the CNS is restricted primarily to microglia and, to lesser

extent astrocytes with subsequent injury and apoptotic death in neurons [2, 31, 32]. Hence,

there has been some debate whether gp120-associated neuronal injury observed in HAND is

the result of indirect effects mediated by the release of neurotoxic, proinflammatory host fac-

tors from infected or activated glial cells, or rather the result of a direct neurotoxic effect of sol-

uble HIV proteins shed from infected host cells and virus [12, 33, 34]. For that reason, we

examined the presence of microglia cells and/or astrocytes in our neuronal cultures by

Table 1. Rod induction in rodent CNS neurons in response to extrinsic stressors.

Species Neuronal cell type Stress Concentration % Neurons with Rods

Mean St.Dev. p>0.05

mouse hippocampal - - - - - - 7.30 5.20

mouse hippocampal gp120MN 500 pM 28.52 7.46 �

mouse hippocampal Aβ d/t 200 pM 24.1 4.7 �

mouse hippocampal TNFα 50 ng/ml 25.1 5.8 �

mouse cortical - - - - - - 10.81 2.89

mouse cortical gp120MN 500 pM 25.96 10.08 �

mouse cortical Aβ d/t 1 nM 24.8 5.85 �

rat hippocampal - - - - - - 0.33# 0.577

rat hippocampal gp120MN 500 pM 29.65 8.36 �

rat hippocampal Aβ d/t 1 nM 21.67 2.08 �

rat cortical - - - - - - 0.25# 0.16

rat cortical gp120LAV 250 pM 1.27# 0.10 �

rat cortical gp120CM 250 pM 0.53# 0.05 �

rat cortical gp120MN 500 pM 22.82 5.64 �

rat cortical Aβ d/t 1 nM 15.36 3.19 �

rat cortical TNFα 50 ng/ml 23.06 5.99 �

gp120MN = dual tropic; gp120LAV = X4 tropic; gp120CM = R5 tropic.

Dissociated rodent neuron cultures were exposed on DIV 6 to extrinsic stressors (gp120, Aβd/t, TNFα) at concentrations provided for 18 h prior to fixation and

immunostaining against cofilin to visualize rods. Rod induction was quantified as % neurons with rods unless indicated otherwise by # referring to rod index (�p<0.05).

https://doi.org/10.1371/journal.pone.0248309.t001
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immunocytochemistry (Fig 3). Anti-Iba1 immunostaining, specific for microglia was first con-

firmed in adult mouse brain slice cultures revealing cells with ramified extensions characteris-

tic for microglia (Fig 3A). Notably, immunoreactivity against Iba-1 in dissociated mouse

hippocampal neuron cultures was absent strongly suggesting cultures were devoid of microglia

Fig 2. Different tropic gp120 strains induce dose- and time-dependent rod formation in hippocampal neurons. (A) Increasing concentrations of

dual tropic gp120MN, R5-tropic gp120BaL, or X4-tropic gp120IIIB revealed a dose-dependent formation of rods in processes of hippocampal neurons

quantified either as the percentage of neurons forming rods (dual-tropic) or as rod index (� p<0.01, ��� p = 0.0002, ���� p<0.0001). (B) Time-course of

rod formation measured as a percent of neurons with rods upon exposure to 500 pM dual-tropic gp120MN. Rod induction was significantly above

control from as early as 6 h and remained sustained for the duration of the experiment (�p<0.01). (C) A wash-out of gp120MN after 20 h for a 4 h time

period significantly reduced rod formation (��p<0.01 compared to no wash-out for 24 h). It is noteworthy that no additive effect was measured upon

incubation of hippocampal neurons with a combination of 500 pM gp120MN and 50 ng/ml TNFα or 500 pM gp120MN and 1 nM Aβd/t. Note, all

manipulations showed significant rod formation compared to control (�p<0.01).

https://doi.org/10.1371/journal.pone.0248309.g002

PLOS ONE HIV gp120 induces rod-shaped cofilin-actin inclusions in neuronal processes mediated by PrPc and NOX activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0248309 March 11, 2021 8 / 25

https://doi.org/10.1371/journal.pone.0248309.g002
https://doi.org/10.1371/journal.pone.0248309


cells (Fig 3B). In contrast, astrocytes revealed by GFPA immunoreactivity comprised roughly

40% of total cells.

Taken together, these findings suggest that dual tropic and mono-tropic gp120 elicit rod

formation in a subpopulation of hippocampal neurons through direct interactions with che-

mokine receptors with no indirect neurotoxic contribution from microglia. We previously

demonstrated no increase in proinflammatory cytokine production in similar cultures [19],

suggesting astrocytes are not participating via that route. Moreover, the fact that gp120,

regardless of co-receptor tropism, as well as Aβd/t, and TNFα all induced rod formation in the

identical population of neurons implies a likely common pathway, and a requirement of con-

tinuous exposure to gp120 for the persistence of gp120-induced rods.

Gp120-induced rod formation is mediated by CCR5 and CXCR4

chemokine receptors

Since both dual- and mono-tropic gp120 elicited rod induction, we examined the role of the

individual chemokine co-receptors CCR5 and CXCR4. Though most cell types in the human

CNS express either chemokine receptor, there has been less consistent evidence of CCR5

expression on neuronal cells [2, 36–38]. First, we confirmed that both CXCR4 and CCR5 are

indeed expressed on the surface (soma and all neurites, respectively) of both mouse and rat

hippocampal neurons (DIV 7) by immunostaining omitting permeabilization in the staining

protocol (Fig 4A). As levels of CCR5 expression in mouse neurons have been reported to

increase following exposure extrinsic stress insults [39], we tested whether gp120 exposure

may also upregulate CCR5 membrane expression. Mouse hippocampal neurons were treated

with 250 pM of R5 and X4-tropic gp120 for 16 h prior to being fixed and immunostained for

Fig 3. Microglia cells are virtually absent in dissociated cultures of hippocampal neurons. Microglia and astrocytes in dissociated cultures of mouse

hippocampal neurons were characterized by immunoreactivity against Iba-1 or GFAP, respectively. (A) Immunostaining of adult mouse brain slices

with Iba-1 antibody revealed the presence of microglia indicating that our fixation, methanol-permeabilization and immunostaining protocol worked

well for the Iba-1 antibody. Immunoreactivity is shown in the cytoplasm of a microglial cell co-stained with DAPI (nucleus). A ramified extension of

the microglial cell is visible (arrowhead in overlaid image, 100x confocal microscopy). Identical staining was obtained in slices following the more

extensive but unnecessary citrate buffer antigen retrieval [35]. (B) Dissociated cultures of mouse hippocampal neurons (DIV 7) were fixed, methanol

permeabilized and immunostained (identical conditions as in panel A). Confocal images were acquired (20x) to reveal nuclei (DAPI), astrocytes

(GFAP), microglia (Iba-1), and cofilin and an overlay image generated. No Iba-1 staining was observed indicating cultures were devoid of microglia, a

finding confirmed by scanning with 60x and 100x objectives as well. GFAP-positive cells (astrocytes) comprised about 40% of total DAPI nuclei within

this particular preparation.

https://doi.org/10.1371/journal.pone.0248309.g003
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CCR5 or CXCR4 but no apparent increase in expression of either receptor was detectable as

the images were identical in intensity to those in Fig 4A.

Although binding of gp120 to CCR5 and CXCR4 co-receptors is essential for viral envelope

fusion with the host membrane, interactions with other neuronal receptors, including N-

methyl-D-aspartate receptors (NMDAR) and nicotinic acetylcholine receptors (nAChR) have

been reported [16, 40–42]. Having demonstrated that gp120 co-receptors are present in the

membrane of rodent hippocampal neurons, we sought to confirm that rod formation is a

direct consequence of gp120 interaction with these specific chemokine receptors. To this end,

we exposed mouse hippocampal neurons (DIV 6) to dual tropic gp120MN, R5-tropic gp120CM,

or X4-tropic gp120IIIB (250 pM each) in the presence of CCR5- and CXCR4-specific inhibitors

maraviroc (100 nM) and AMD3100 (50 nM), respectively (Fig 2B). For dual-tropic gp120MN,

the presence of AMD3100 significantly reduced the number of rods whereas maraviroc was

ineffective. In neurons exposed to R5-tropic gp120BaL, the CXCR4 antagonist AMD3100 had

no effect but there was a measurable decrease in rod index in cultures exposed to maraviroc

but it did not quite reach our level for significance. In neurons exposed to X4-tropic gp120IIIB,

rod index was not reduced by maraviroc but was reduced to control levels in the presence of

AMD3100 supporting the observation that neuronal rod induction is more sensitive to gp120

Fig 4. CXCR4 receptors predominantly mediate gp120-dependent rod formation. (A) Mouse hippocampal neurons (C57BI/6) at DIV 7 express

both CXCR4 and CCR5 receptors on the surface of neuronal soma and processes as revealed by immunostaining with receptor-specific antibodies in

the absence of a permeabilization step. (B) Neuronal cultures were incubated with the CCR5-specific inhibitor maraviroc (100 nM) or the

CXCR4-specific inhibitor AMD3100 (50 nM) for 1h prior to and during exposure with 250 pM of either dual- or monotropic gp120. The presence of

AMD3100 blocked rod induction by X4-tropic gp120IIIB and dual tropic gp120MN but not by R5-tropic gp120CM. In contrast, the CCR5 antagonist

maraviroc reduced rod formation in neurons exposed to R5-tropic gp120CM but was ineffective in blocking rod formation in response to X4-tropic

gp120IIIB or dual tropic gp120MN (�p<0.01 unless indicated otherwise). Hippocampal neurons obtained from PrPC-null mouse line expressed both

CXCR4 and CCR5 chemokine receptors indistinguishable from neurons derived from wild type mice (S3 Fig).

https://doi.org/10.1371/journal.pone.0248309.g004
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signaling through CXCR4. Importantly, neither maraviroc nor AMD3100 significantly

affected rod induction in cultures exposed to the opposite receptor-binding gp120 strain and,

spontaneous rod formation was not affected by the presence of either inhibitor. These findings

strongly suggest that rod induction by gp120 through a CXCR4-mediated signal transduction

pathway is more potent since blocking CXCR4 with AMD3100 returned rod formation to

basal levels for both dual- and X4-tropic gp120.

Gp120 mediates rod formation through a cellular prion protein PrPC-

dependent pathway that requires the NOX activation

Rod induction by Aβd/t and proinflammatory cytokines occurs through a PrPc-dependent sig-

naling pathway linking these ligands to the activation of NOX [19]. We hypothesized that

gp120-mediated rod induction must also require membrane expression of PrPC and active

NOX. To test this hypothesis, we exposed hippocampal neurons cultured from PrPC null mice

to all three gp120 tropic strains. Unsurprisingly, none of the tested strains of gp120 induced

rod formation (Fig 5A). To verify the requirement of PrPC expression for gp120-mediated rod

formation, we expressed EGFP-PrPC driven by a CMV promotor in PrPC-null hippocampal

neurons using recombinant adenovirus, which has previously been demonstrated to drive the

expression of functional PrPC at the membrane surface [43]. In neurons re-expressing PrPC,

18 h treatment with 250 pM of each tropic strain of gp120 induced a significant increase in rod

formation over control (Fig 5B). Having confirmed an essential role for PrPC in gp120-me-

diated rod formation, we next sought to confirm the requirement for active NOX.

Active NOX2, a superoxide (O2
-) generating multi-subunit enzyme, is comprised of two

membrane subunits (gp91PHOX, p22PHOX) and three cytosolic components (p47PHOX,

p67PHOX, and p40PHOX) in addition to the ancillary small GTPase Rac1. To test the require-

ment for NOX activity in rod induction by gp120, we employed a combination of pharmaco-

logical, molecular, and genetic approaches to block NOX activity (Fig 6). First, we used the

NOX inhibitor TG6-227 (kindly provide by Dr. David Lambeth, Emory University GA) and

exposed cells to dual-tropic gp120MN (16 h, 250 pM). Rod-induction by gp120MN was signifi-

cantly reduced in presence TG6-227-treated neurons compared to an absence of the pharma-

cological inhibitor (Fig 6A). Next, we expressed the dominant-negative mutant of the NOX

small membrane subunit p22PHOX (DNp22PHOX) in dissociated mouse hippocampal neurons

using recombinant adenovirus at 30 and 100 MOI (multiplicity of infection) shown to effec-

tively block NOX activation [44]. DNp22PHOX-expressing hippocampal neurons revealed no

increase in rod induction when exposed to 500 pM dual-tropic gp120MN at either MOI tested

(Fig 6B). In contrast, both control neurons and those infected with adenovirus expressing the

lacZ reporter (control infected) responded to dual-tropic gp120MN with a nearly 4-fold

increase in rods. Lastly, we demonstrated that the absence of the cytosolic membrane subunit

p47PHOX (p47PHOX-null mouse line) negated rod formation upon exposure to dual-tropic

gp120MN, R5-tropic gp120BaL, or X4-tropic gp120IIIB (Fig 6C). Hippocampal neurons obtained

from p47PHOX-null or PrPc-null mouse lines expressed both CXCR4 and CCR5 chemokine

receptors indistinguishable from wild type mouse hippocampal neurons (S3 Fig). Together

these results demonstrated that the inhibition of NOX activity is sufficient to block gp120-in-

duced rod formation.

CCR5 and CXCR4 antagonist block rod induction by soluble Aβd/t

Our previous studies demonstrated the rod-inducing capacity of soluble Aβd/t [19]. Although

several receptors for Aβd/t in the CNS have been identified including acetylcholine receptor

and PrPC, recent reports imply a significant role of CCR5 activation in the progression and
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Fig 5. Gp120-mediated rod induction requires the expression of the cellular prion protein PrPC. (A) Dissociated

hippocampal neurons from PrPC-null mice (6 DIV) were expose to dual-tropic gp120MN, R5-tropic gp120BaL, or

X4-tropic gp120IIIB for 16 h (250 pM each) and rod formation was quantified as rod index. The lack of PrPC abolishes

rod induction to levels indistinguishable from spontaneous rod formation. (B) PrPC-null neurons were infected with

adenovirus (50 moi) for expressing EGFP-PrPC or EGFP (control) for 60 h prior to gp120 exposure for an additional
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acceleration in the development of AD [45]. A decline in expression of CXCL12, the natural

antagonist of CXCR4, occurs in AD and is linked to neurocognitive events both on the behav-

ioral and molecular level revealing a Rac1-dependent effect on actin polymerization [46, 47].

Therefore, we examined whether Aβd/t-mediated rod induction implicated the CCR5 and/or

CXCR4 receptors (Fig 7). Dissociated cultures of rat hippocampal neurons (DIV 6) were

exposed to Aβd/t (1 nM, 16 h) in the presence or absence of the CXCR4 antagonist AMD3100

(100 nM) or the CCR5 antagonist maraviroc (50 nM). Interestingly, inhibition of either che-

mokine receptor abolished Aβd/t-mediated rod induction. This finding suggests a potential

direct interaction of Aβd/t with CCR5 and CXCR4 receptors or via a promiscuous co-receptor

such as PrPC.

Discussion

Cofilin-actin rod induction is a cellular response to many neurodegenerative stimuli including

mitochondrial dysfunction, ischemia/reperfusion, NMDA receptor-mediated excitotoxicity,

pro-inflammatory cytokines, as well as Aβd/t [4, 19, 48–50]. Here we describe for the first time

HIV gp120-mediated induction of cofilin-actin rods in mouse hippocampal neurons requiring

interactions with CCR5 or CXCR4 chemokine receptors linked to a pathway necessitating

both PrPC and NOX. This novel mechanism potentially contributes to neuronal dysfunction

in HAND.

Common to all rod inducers is the activation of NOX, which produces ROS, causal to rod

formation. Gp120-mediated rod formation was abolished by pharmacological inhibition, the

introduction of dominant-negative mutation in the p22PHOX membrane subunit, or by a gene-

16 h (250 pM, see strains above) followed by rod quantification (rod index) in EGPF-expressing neurons. Restoring

PrPC expression resulted in a robust gp120-mediated rod formation above control levels for all tropic forms tested

(��p = 0.0053, ���p = 0.0003, ����p<0.0001).

https://doi.org/10.1371/journal.pone.0248309.g005

Fig 6. Gp120-induced rod formation requires NADPH oxidase (NOX). NOX activity was inhibited using pharmacological, molecular biological and

genetic approaches in dissociated cultures of mouse hippocampal neurons. (A) The NOX inhibitor TG6-277 blocked dual-tropic gp120MN-induced

rod formation (16 h exposure, 250 pM) compared to an absence of the pharmacological inhibitor (�p<0.05). TG6-277 alone did not alter basal levels of

spontaneous rod formation. (B) Adenoviral-mediated expression of a dominant-negative mutant of the small NOX membrane subunit p22PHOX

(DNp22PHOX) completely abolished rod formation upon exposure to dual-tropic gp120MN (250 pM) using MOIs (MOI: multiplicity of infection) of 30

to 100. Note, expression of the reporter gene LacZ (control) did not induce rods nor interfere with gp120MN-mediated rod formation (�p<0.05). (C)

Hippocampal neurons lacking the cytosolic subunit p47PHOX crucial for NOX activity (p47PHOX-null mouse line) were exposed to dual-tropic gp120MN,

R5-tropic gp120BaL, or X4-tropic gp120IIIB (250 pM each, 16 h) and rod induction quantified (rod index). Neither gp120 tropic strain induced rod

formation above control levels in p47PHOX-null neurons.

https://doi.org/10.1371/journal.pone.0248309.g006
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Fig 7. Inhibition of CCR5 and CXCR4 signaling abolishes Aβd/t-mediated rod formation. Dissociated rat hippocampal

neurons (DIV 6) were exposed to 1 nM Aβd/t for 16 h followed by immunostaining against cofilin and rod quantification. As

expected, the presence of 1 nM Aβd/t induced a 4-fold increase in rod-containing neurons compared to control (Con), which

was abolished by the presence of either the CXCR4 or CCR5 inhibitors, AMD3100 (60 nM) or maravirac (60 nM),

respectively (�p<0.05).

https://doi.org/10.1371/journal.pone.0248309.g007
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knockout of cytosolic subunit p47PHOX [51]. Although p22PHOX does not contain catalytic

function, the dominant negative mutant interferes with NOX2/p47PHOX interactions [44]. The

three cytosolic subunits p67PHOX, p40PHOX, and p47PHOX always exist as a complex and a lack

of p47PHOX disables complex formation and its key role in NOX activation [52, 53]. Similarly,

PrPC was essential for rod generation in response to gp120 exposure. Re-expression of PrPC

successfully recovered the ability of gp120 to induce rods in PrPC-null mouse hippocampal

neurons. Importantly, we found that cofilin-actin rods induced by Aβd/t also occurs via a mar-

aviroc/AMD3100-sensitive pathway implicating a contribution of CCR5 and CXCR4 chemo-

kine receptors in AD, which we previously showed involves a PrPC/NOX-dependent signaling

pathway [19]. These results provide evidence that rod induction via the PrPC/NOX-dependent

pathway downstream of CCR5 and CXCR4 receptors may be a common mechanism underly-

ing neuronal impairment observed for several neurodegenerative diseases, including Alzhei-

mer’s disease and HAND.

Although PrPC and NOX are critical for rod induction, the signal transduction pathway by

inference is likely much more complex (Fig 8). The importance of the membrane lipid raft

domain as a regulator of protein structure and function cannot be overstated and is key to the

gp120-mediated pathway to rod formation [13, 54]. For instance, cholesterol modulates pro-

tein function through interactions with a cholesterol recognition amino acid consensus

sequence as a ‘chaperone-like’ allosteric regulator [55, 56]. Notably, putative cholesterol bind-

ing sites have been identified in the structure of both CCR5 and CXCR4, supporting the neces-

sity of lipid raft localization for proper receptor function [57, 58]. Furthermore, both PrPC and

NOX2 are localized to raft domains where raft composition similarly affects conformational

stability and enzyme activity [59–61]. In a passive role, PrPC organizes lipid raft domains rich

in cholesterol, sphingolipids, and cytoplasmic phosphatidylinositol phosphates crucially

impacting CCR5 and CXCR4 receptor activity and possibly NOX activity as well. More

directly, PrPC is known to insert a domain of its octapeptide repeat region into the lipid raft

membrane to interact with the cytoplasmic leaflet-associated caveolin, which can modulate

src-family kinase signaling [62, 63] such as Fyn, which phosphorylates p47PHOX implicated in

NOX activation [64]. Furthermore, PrPC is a well-documented promiscuous co-receptor and

could serve this function in gp120-chemokine receptor interactions. Jana et al. (2004) [13]

described the activation of neutral sphingomyelinase (nSMase) by gp120 in neurons increasing

ceramide and ceramide-1-phosphate levels, which are both lipid activators for NOX [65].

The importance of the host cytoskeleton to the HIV life cycle imparts a key role for actin in

viral entry, replication and assembly, and budding [69–71]. Modulation of actin regulatory

proteins in host cells is one strategy [72]. Activation of pathways linked to cofilin have been

described in resting CD4+T cells facilitating viral post-entry nuclear import critical in estab-

lishing HIV latency [73]. Notably, HIV does not productively infect neurons yet individual

HIV proteins affect neuronal cytoskeleton dynamics through modulating the activity of regu-

latory proteins including cofilin but the outcomes likely differ from those associated with pro-

ductive infection [74]. Formation of cofilin-actin rods rest on two prerequisites: 1) the

presence of active, dephosphorylated cofilin, and 2) an oxidative environment. In HIV

patients, downregulation of cofilin phosphorylation has been reported [75, 76]. Although

excess dephosphorylated cofilin could account for rod formation [77], a vast pool of dephos-

phorylated cofilin is present in adult mouse brain accounting for up to 95% of total cofilin

with no apparent formation of rods (S4 Fig). Presumably, most active, dephosphorylated cofi-

lin is sequestered such as that bound to phosphatidylinositol phosphates enriched in lipid raft

domains, or bound to F-actin regulating myosin II and thus contractile events, which run

amuck in cells where ADF/cofilin expression has been silenced [78]. Thus, dephosphorylation

of a phospho-cofilin pool is not inherently necessary for rod formation. Rod formation appears
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to be intimately linked to an oxidative environment that favors release of sequestered cofilin.

Isolation of cofilin from rods formed by ATP-depletion predominantly exists as disulfide-

linked dimers [20], but other oxidation products of cofilin have not been further investigated.

Moreover, ROS produced by NOX can simultaneously activate slingshot-1, a phospho-cofilin

phosphatase, by oxidizing and removing an inhibitory 14-3-3 family protein that helps main-

tain slingshot-1 in an inactive state [67]. Cofilin’s collaboration with Aip1/WDR1 supports

actin filament severing and recruitment of oligomers of CAP1/2 to cofilin-actin fragments

assists in their complete depolymerization [79, 80].

Neuronal injury observed in HAND occurs indirectly through the release of neurotoxic,

proinflammatory host factors predominantly from microglia and astrocytes, which are pro-

ductively infected by HIV [2, 31, 32], or as a direct neurotoxic effect of soluble HIV proteins

shed from infected host cells and virus such as gp120 [12, 33, 34, 81]. Pertinent to our studies,

gp120 stimulates the release of pro-inflammatory and pro-apoptotic cytokines such as TNFα
[82–84]. Although our cultures of dissociated mouse hippocampal cultures were virtually

Fig 8. Signaling components in gp120-mediated cofilin-actin rod formation and some putative downstream effectors. PrPC is associated with

lipid-rafts, plasma membrane domains enriched in cholesterol, gangliosides, sphingolipids and phosphatidyl inositol phosphates (PIP2) all of which

properly organize chemokine receptors (CXCR4, CCR5), large and small membrane subunits of NADPH oxidase (NOX and p22PHOX, respectively),

and other raft proteins such as caveolin (Cav), neutral sphingomyelinase (nSMase), and fyn, a src-family kinase. Interaction of gp120 with chemokine

receptors and potentially PrPC stimulates NOX activity to generate ROS through one or more signaling pathways likely involving heterotrimeric G-

proteins, Rho family GTPases, caveolin, and fyn. The small GTPase Rac1 is essential for NOX activation whereas Cdc42 is implicated in cofilin

activation [66]. The oxidative environment favors activation of the cofilin phosphatase slingshot-1L [67] and dephosphorylation of inactive, phospho-

cofilin (pCof) to the active form (Cof). Alterations in phosphoinositides can release PIP2-sequestered phospho and dephospho-cofilin [68]. The

increasing pool of active cofilin can locally saturate F-actin, sever filaments, and form cofilin-saturated F-actin fragments now susceptible to ROS-

induced formation of intermolecular disulfide-linked cofilin dimers ultimately forming thick bundles of cofilin-actin filaments or rods [20]. Note, lipid

rafts (grey lipid bilayer) are thicker in diameter compared to the more fluid plasma membrane (orange bilayer). Dashed lines indicate multi-step

pathways whereas solid lines refer to single-step pathways.

https://doi.org/10.1371/journal.pone.0248309.g008
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devoid of microglia cells (see Fig 3), a significant population of astrocytes is present (approxi-

mately 40% of cells). In the case of Aβd/t as the stressor, secretion of rod-inducing levels of

proinflammatory cytokines was not detectable [19]. In pure astrocyte cultures or mixed astro-

cyte/microglia cultures in serum-containing conditions, gp120-dependent secretion of TNFα,

Il-1β, Il-6, and Il-8 ranged from 200 to 600 pg/ml [85–87]. Significant rod induction in dissoci-

ated hippocampal neuron cultures requires a minimum cytokine concentration of 5 ng/ml

nearly 10 times what is produced by pure astrocyte cultures. Thus it is unlikely that gp120-in-

duced astrocyte-released cytokines could make a significant contribution to rod formation.

Considering these arguments and findings, a direct mechanism in which gp120 interacts with

CCR5 and/or CXCR4 receptors on the neuronal membrane is most likely to accounts for the

PrPC/NOX-mediated pathway of rod induction.

Although signaling through either CCR5 or CXCR4 induced a significant increase in rod

index, there appear to be differences in the strength of induction associated with individual

receptors. Whereas AMD3100 inhibition of the CXCR4 receptor significantly reduced rod

induction to control levels for both dual-tropic and X4-tropic strains of gp120, maraviroc at

100 nM achieved a partial yet non-significant reduction in rod formation by dual-tropic or

R5-tropic gp120. This concentration commonly used in the literature is not associated with

cytotoxicity for the times of our exposure. However, 20 μM maraviroc accomplished signifi-

cant rod reduction yet widespread neurotoxicity was observed allowing the possibility that 100

nM maraviroc is insufficient to block all CCR5 receptor signaling. Our data conclusively dem-

onstrates that different tropic-strains of gp120 are indeed receptor specific. Immunocytochem-

istry demonstrated the presence of CCR5 and CXCR4 in the plasma membrane of dissociated

mouse hippocampal neurons (Fig 4 and S3 Fig) in accordance to findings on rat cortical neu-

rons [88]. However, expression levels for different antigens cannot be inferred from immuno-

reactivity due to varying antibody affinities. A more quantitative study by Petito et al. (2001)

found similar levels of CXCR4 and CCR5 on human hippocampal neurons (postmortem con-

trol) whereas hippocampal neurons from AIDS individuals revealed increased CXCR4 expres-

sion accompanied by decreased CCR5 [89]. Interestingly, CCR5 expression was absent in CA1

hippocampal regions. Similar mRNA expression levels for CCR5 and CXCR4 were reported in

human embryonic neurons and rat hippocampal neurons [90, 91]. Most studies provide rela-

tive mRNA levels for each chemokine receptor and thus do not allow a comparison of the pro-

tein expression [92].

Synaptopathy has emerged as a hallmark of HIV-mediated neurotoxicity of HAND in the

post-cART era [74] and impairments in neuronal cytoskeleton are highly relevant driven by

neurotoxic HIV proteins [93–95]. Synaptic dysfunction and dendritic simplification are linked

to gp120 neurotoxicity and underlie cognitive impairments observed in HAND yet the mecha-

nisms are poorly understood [12, 96, 97]. The activation of a PrPC/NOX-mediated pathway of

rod induction is one potential mechanism for gp120-induced synaptic dysfunction involving

the perturbation of neuronal cytoskeleton dynamics. Although rod pathology has not been

described in postmortem brain of HAND patients, perhaps because it requires non-standard

procedures for their immunostaining [17, 22], persistent cofilin-actin rods have been observed

during the progression of Alzheimer’s [4, 22, 98] and following ischemia [48, 49], correlating

strongly with cognitive impairment [99, 100]. Common to these cofilin-actin pathologies [101,

102], synaptic dysfunction might arise from either or both an interruption of vesicular trans-

port due to occluded neurites [21, 77] or a sequestration of cofilin from dendritic spines blunt-

ing its role in post-synaptic plasticity [23, 103, 104]. Only recently, dendritic simplification and

cognitive flexibility in a transgenic rat model of HIV-1 infection was rescued by CXCL12, an

endogenous chemokine and antagonistic ligand for the CXCR4 receptor, presumably outcom-

peting gp120 interaction with CXCR4 [46]. Marchionni et al. (2012) reported opposite
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outcomes on spontaneous activity of Cajal-Retzius cells from CXCL12 and gp120 treatment

[105]. A significant role for CCR5 was implied in Aβd/t-dependent synaptotoxicity responsible

for neurocognitive deficits in AD [45]. Administration of the CXCR4 antagonist AMD3100 to

3xTg-AD mice improve AD pathologies, neuroinflammation, and cognition [63]. Lastly,

directly increasing cofilin phosphorylation in cultured neurons decreased rod formation in

response to Aβd/t and in mouse models of AD and other neurodegenerative diseases lead to

marked cognitive and behavioral improvements [106].

Taken together, inhibition of cofilin-actin rod formation by the CXCR4 and CCR5 antago-

nists AMD3100 and maraviroc along with the promiscuous nature of PrPC and NOX activity

and their essential role in signaling downstream of both Aβd/t and gp120, strongly suggests

that rod formation is of central importance to synaptopathy and cognitive decline observed in

HAND and AD. Whether cognitive deficits are a result of direct effects impeding intraneurite

vesicular transport [21, 77], sequestering of cofilin to inhibit its role in dendritic spine dynam-

ics [23, 104], or other actin-based functions required for normal functions of neuronal net-

works remains to be determined. Therapeutics, including chemokine receptor antagonists that

target rod formation, could ameliorate not only HAND but also pathologic rod formation in

response to Aβ oligomers and proinflammatory cytokines. Since lipid rafts have also been

implicated in the pathology of several neurodegenerative disorders including HAND, modula-

tion of membrane architecture could be employed as another target to blunt signaling events

associated with rod formation.

Supporting information

S1 Fig. Effects of L-cysteine concentration of spontaneous and induced rod formation in

dissociated hippocampal neurons. (A) Spontaneously formed rods were quantified per field

of view in DIV 6 cultures of dissociated mouse hippocampal neurons grown in commercial

neurobasal (NB) containing 260 μM L-cysteine (L-cys) as opposed to selfmade NB with con-

centrations of L-cys of 50 μM, 100 μM, or 260 μM. (B) Percent of neurons with rods induced

by neurodegenerative signals or glutamate compared to control (CTRL, spontaneous rods) as

a function of L-cysteine concentration. Averages of duplicate samples with range shown by

bar. Overnight treatments: Aβd/t at 1 μM, gp120MN at 500 pM, TNFα at 50 ng/ml. Glutamate

at 200 μM was used for 30–60 min.

(TIF)

S2 Fig. Turnover of cofilin on filamentous actin bundles in growth cones and rods in neur-

ites. (A) Images of fluorescence recovery after photobleaching (FRAP) for R21Qcofilin-mRFP

(arrows) along actin bundles in growth cones (top row) and rods in neurites (bottom row) in

DIV 6 hippocampal neurons treated for 24 h with 1 nM Aβd/t. Laser intensity and duration

was set to achieve about 80% bleach. Note, R21Qcofilin-mRFP recovery to 50% on actin bun-

dles in growth cones occurs within one minute. In contrast, R21Qcofilin-mRFP recovery to

50% on rod actin bundles is over one hour. (B) FRAP recovery times to 50% of cofilin-RFP on

actin bundles starting value from five independent observations each of rods in neurites and in

growth cones (GC). Bar for rod recovery represents the range of times determined from

extrapolation of curves over a 20 min observation period.

(TIF)

S3 Fig. Hippocampal neurons from PrPC- and p47PHOX-null mice express CXCR4 and

CCR5 chemokine receptors. Dissociated cultures of hippocampal neurons derived from (A)

PrPC- and (B) p47PHOX-null mice lines were cultured for 7 days prior to fixation. Omitting

permeabilization, cultures were immunostained for either CXCR4 or CCR5 chemokine
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receptors. Hippocampal neurons expressed both chemokine receptors on neuronal cell bodies

and processes. Chemokine receptor expression was indistinguishable from that of wild type

neurons considering the application of identical antibody dilutions and image acquisition

parameters.

(TIF)

S4 Fig. The predominant form of cofilin in brain is active, dephospho-cofilin. Extracts of

brain cortex were prepared from six individual adult mice in the presence of phosphatase

inhibitors and SDS as described previously and immediately heated in a boiling water bath

[25]. Proteins were precipitated with methanol/chloroform [107], and solubilized in 9.5 M

urea, 18 mM dithiothreitol, and 2% IGEPAL CA-630 for protein assay [108]. To insure linear-

ity of quantification from blots, loading of 10, 20, 30 and 40 μg of protein were performed.

Shown here are the blots from 20 μg protein loads on IPGphor pH3-10 strips (Amesham),

transferred after focusing 3 hr to 15% isocratic polyacrylamide gels. Following SDS-PAGE,

proteins were transferred to nitrocellulose. After blocking, cofilin and ADF were visualized

with a pan rabbit antibody that is equally reactive to both mammalian cofilin-1 and ADF [25].

Positions of ADF and cofilin species were previously identified [109] using antibody to cofilin

[110] and an ADF/cofilin phosphospecific antibody [25]. In embryonic chick brain (E9-E19),

phosphorylated forms of ADF and cofilin accounted for about 25% of the total ADF/cofilin

pool [111].

(TIF)
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