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Abstract—ViVA Open Human Body Model (HBM) is an
open-source human body model that was developed to fill the
gap of currently available models that lacked the average
female size. In this study, the head–neck model of ViVA
OpenHBM was further developed by adding active muscle
controllers for the cervical muscles to represent the human
neck muscle reflex system as studies have shown that cervical
muscles influence head–neck kinematics during impacts. The
muscle controller was calibrated by conducting optimization-
based parameter identification of published-volunteer data.
The effects of different calibration objectives to head–neck
kinematics were analyzed and compared. In general, a model
with active neck muscles improved the head–neck kinematics
agreement with volunteer responses. The current study
highlights the importance of including active muscle
response to mimic the volunteer’s kinematics. A simple PD
controller has found to be able to represent the behavior of
the neck muscle reflex system. The optimum gains that
defined the muscle controllers in the present study were able
to be identified using optimizations. The present study
provides a basis for describing an active muscle controller
that can be used in future studies to investigate whiplash
injuries in rear impacts

Keywords—Finite element, Neck muscle reflex, Rear impact,

Whiplash, Human body model.

INTRODUCTION

Finite element (FE) models of the human neck have
been used to study cervical kinematics and injury
response related to vehicle collisions since the early
1990s.2 These models are valuable tools for under-
standing cervical spine kinematics as well as injuries
that result from vehicle collisions. Several FE models
of the human neck have been developed2 and were
aimed mostly to understand occupant kinematics
during the crash as well as to predict tissue level in-
juries.

To use a head–neck FE model for assessing the risk
of soft tissue neck injuries, so called whiplash injuries,
the correct prediction of cervical spine kinematics is
important. During rear impacts, several phases of neck
kinematics are observed: retraction, extension and
flexion.10,11,39 Many hypothesis regarding the causa-
tion of whiplash injuries are related to the retraction
motion of the neck (S-shape cervical spine).6,19,20,39,43

Therefore, if a head–neck FE model is to be used for
predicting whiplash injuries, an important aspect is
that the model generates a human-like retraction mo-
tion.

To increase the kinematic validity and correctly
capture human responses during impacts, inclusion of
active muscles in the neck is important.2 In the neck,
muscles are a major part of the neck structure in terms
of volume and could affect injury risk of other
anatomical sites in the neck.34 Cervical muscles activity
have also been shown to change the head kinematics
during impact.15,32–34
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Several methods of modelling active cervical mus-
cles have been proposed, with two major activation
approaches called Open-loop and Closed-loop.24 In the
Open-loop scheme, cervical muscle activations are pre-
defined by previous simulations, experimental or
optimization results. Therefore, a model with an open-
loop muscle scheme can only be used for a specific
application since the model is dependent on a defined
activation input.24 Conversely, in the closed-loop
scheme which is most often implemented using a Pro-
portional Integral Derivative (PID) controller, the
muscle activation is controlled by real-time response of
a model which imitates the human’s feedback mecha-
nism.24

Human feedback and reflex mechanisms are com-
plicated systems that are not yet well established1,3,4,9

and consist of multisensory inputs that have different
functions. However, the vestibular system and the
muscle spindle have been historically highlighted to
maintain the head orientation in space and head on
trunk orientation by activating the cervical mus-
cles.1,3,4,9 The vestibular system could initiate the
Vestibulocollic reflex (VCR) by sensing the head
rotational and translational motion. Meanwhile, the
muscle spindle senses the changes in muscle length and
could trigger the Cervicocolic reflex (CCR). 1,3,4,9

Several neuromuscular models have accounted for
reflex responses initiated by the human neck muscle
reflex system into their model of cervical mus-
cles.7,8,16,18,22,23 However, none of these models were
specifically developed to assess whiplash injury.
Moreover, none of these models were developed to
represent the 50th percentile female.

To address the lack of female representation in
human body models, a human body model which
represents the 50th percentile female called ViVA
OpenHBM was developed at the Chalmers University
of Technology in Sweden.25,26 This model has been
validated against PHMS (Post Mortem Human Sub-
jects) data but not against volunteer data. To allow
further developments, the ViVA OpenHBM was
structured as a modular model and consisted of a
whole-body model and a head–neck model.26 The
head–neck model was also further developed by adding
active reflexive cervical muscle controllers.27

In the latest study, Putra et al.27 implementing two
different muscle controllers to the cervical muscles of
the ViVA OpenHBM head–neck. One controller was
implemented to approximate reflex response using a
neck link orientation, and another controller was
implemented to represent displacement feedback from
the muscle spindle. The comparison of head kinematics
between the models showed the improvement of the
head kinematics agreement between the model and the
volunteer responses. Better kinematics agreement was

achieved by the model with an active muscle controller
based on the neck link angle. Therefore, in this study,
the muscle controller based on the neck link angle was
further studied with three different approaches to
identify the controller parameters.

The first objective of this study was to represent the
cervical muscle reflex response with a closed-loop PD
feedback control mechanism to the Finite Element
(FE) models of cervical muscles. The second objective
was to calibrate the PD control gains by an opti-
mization-based parameter identification based on
published-volunteer data and to analyze the effects of
three calibration objectives to the head and cervical
kinematics of the model.

MATERIAL AND METHODS

ViVA Open Human Body Model (ViVA OpenHBM)
Head–Neck Model

The dimensions of the ViVA OpenHBM head–neck
model25 correspond to the 50th percentile female sta-
ture as mentioned in Schneider et al.31 In the original
version, the 34 cervical muscles are represented by 129
beam elements on each side with Hill-type material
models implemented without any activation forces.
The validation of the head–neck model in rear impacts
was conducted against five female PHMS head–neck
complexes as published by Stemper et al.36–38

The base for the current study is the simplified
cervical spine ViVA OpenHBM head–neck model.26

This model was developed by removing the interver-
tebral non-muscular soft tissue structures and intro-
ducing compliant joints (translational, axial rotation,
lateral bending and flexion-extension compliance)
based on (in vitro) kinematic data of human sub-
jects.26 These simplifications have been proven to save
overall computational cost by about 39% with no
significant difference in CORA ratings of the head–
neck kinematics in rear-impact collisions.26

Active Cervical Muscle Modelling

An active muscle model was developed to represent
the neck muscle reflex system. In the present study, this
controller is referred as the Angular-Positioned Feed-
back (APF) controller.

The cervical muscles in the present model were
modelled using beam (resultant truss) elements with LS
Dyna *MAT_156/*MAT_MUSCLE.13 The total force
of each element is described in Eq. (1).

F ¼ PCSA � rmax Na tð Þ � fv vð Þ � fl lð Þ þ fpe lð Þ
� �

ð1Þ
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PCSA is the Physiological Cross-Sectional Area of
each fascicle, rmax is the maximum isometric stress,
Na tð Þ is the muscle activation level with range of 0-1,
and fv vð Þ; fl lð Þ fpe lð Þ are the force-velocity function,

force-length functions, and force contribution from
parallel elastic stiffness which were based on Winters
and Stark.40 The detailed explanation regarding mus-
cle modelling of the current model can be found in
Östh et al.25

The Proportional and Derivative (PD) controller
defined by the PIDCTL function in LS-DYNA was
used to represent the human neck muscle reflex system
in order to give activation signal to the cervical muscles
with purpose to keep head’s horizontal orientation
during rear-impact. This approach was adopted from
earlier studies that were conducted by Östh et al.22,23

and Olafssdotir et al.18 This controller design was used
to determine the different neck muscle recruitments
shown in the spatial tuning pattern developed in
Olafssdotir et al.17 (Fig. 1). In the present study, the
level of muscle activation of each muscle was con-
trolled by the signal that comes from the PD controller
where a minimum activation level (5%) was equivalent
to co-contraction and assumed similar to the activation
level of relax condition. The co-contraction is required
to balance the head in the upright posture.

To approximate the reflex system, the coordinate of
the head’s center of gravity (head C.G) and the center
of first thoracic spine (T1) vertebral body were sam-
pled (Fig. 1). These coordinates were defined as the
sample coordinates and were used to define the con-
troller vector.

When impact loads are applied to the model, the
head C.G and T1 positions are sampled and used to
update the controller vector. If there are any differ-
ences between the reference vector and the current
vector, an error angle is calculated between these two
vectors. The controller vector is also the input needed
for the spatial tuning pattern.

A delay was introduced in the error angle feedback
signal in the feedback loop presented in Fig. 2 mim-
icking the neural processing delay. The delayed error
signal was given to the PD controller, comparing this
signal to the reference angle and then computing the
control signal. The control signal was then given to a
pre-defined spatial tuning pattern17 to define the
specific muscle activation values for each muscle.

The muscle activation signals are filtered by the
muscle activation dynamics function. The filtered sig-
nals then are input to the min-max function that can
limit the lowest activation value to the value of co-
contraction level and the maximum equal to 1.0. The
final signal then goes to LS-DYNA Hill’s muscle
activation card.

The muscle activation dynamics in the current study
were modelled using two first order differential equa-
tion based on Winters and Stark40 as can be seen from
the Eqs. (2) and (3).

dNe

dt
¼ u�Neð Þ

Tne
ð2Þ

dNa

dt
¼

Ne�Nað Þ
Tna;a ; Ne � Na

Ne�Nað Þ
Tna;d

; Ne<Na

8
><

>:
ð3Þ

where u is the muscle excitation signal, Ne is the neural
excitation level, Na is the muscle activation level,
Tna,a represents the muscle activation time, Tna,d is
the muscle deactivation time, and Tne is the neural
excitation time.

Volunteer Data and Boundary Condition

Volunteer data from Sato et al.29 were used to cal-
ibrate the response of the model. The data are based on
earlier experiments conducted by Ono et al.20 of low-
speed rear impacts of two female volunteers. In the

FIGURE. 1. Simulation setup, controller vector calculation and projection using spatial tuning pattern.
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present study, the average of the first thoracic spine
(T1) kinematics, both linear (x- and z-) and rotational
(y-) displacements, were prescribed for the T1 of the
model to replicate the kinematics of the volunteers. In
addition, the sled displacement in x- direction was also
added to the T1 of the model. To correctly mimic fe-
male cervical spine alignment, an average cervical
spine alignment based on five female subjects from
Sato et al.30 was adopted. A comparison of head
kinematics in the passive model was also conducted by
comparing two different cervical spine alignments, the
original cervical spine alignment of the ViVA
OpenHBM model25 and the present study cervical
spine alignment which was based on Sato et al.30

Optimization-Based Parameter Identification

The optimizations in this study were conducted
using software called LS-OPT.35 The total length of
each simulation was 400 with 100 ms gravitational
acceleration (9.81 m/s2) settling included. These opti-
mizations were aimed to identify the optimum PD gain
values for the muscle controllers (Kp and Kd), the
optimum neural transmission and processing time de-
lay (Tnd), and the optimum time constants describing
the muscle activation dynamics (Tna,a, Tna,d, and
Tne). In total, there were six design variables or
parameters in the present optimizations (Table 1).

The initial value and the lower bound of optimiza-
tion range for the Kp was based on Putra et al.,27 while
the upper bound was adopted from Östh et al.22 For
the Kd, the initial value and the upper bound of the
ranges were also based on Putra et al.,27 and the lower
bound was based on Östh et al.22. The neural trans-

mission delay value was set at 15 ms as the initial
value,27 3, 5 ms as the lower bound value28 and 20 ms
as the upper bound value.18 For the time constants of
the muscle activation dynamics, the initial values were
based on original work from Winter and Stark,40

which were also adopted and implemented to the
muscle controller by Östh et al.22 and Olafsdottir
et al.18 Optimization ranges of time constants were
adopted from Winter and Stark.41

The objective function of the optimizations was
defined to minimize the error between model and vol-
unteer data kinematics, which were used as the target.
To calculate this error, a curve mapping algorithm
based on Witowski et al.42 was used. The curve nor-
malization was included in the algorithm to make sure
that this method is independent of the measurement
units. Four optimizations were conducted with three
different strategies that minimized error between
model and volunteer: linear and angular head kine-
matics, cervical spine angular kinematics, and head
linear and angular direction and cervical spine angular
kinematics (Table 2). Optimization 4 had similar
objectives with Optimization 3 but the total weight of
cervical spine objectives was equal to one.

The method for optimization was the Metamodel-
based Optimization using Sequential Response Surface
Method (SRSM) with Domain Reduction.35 The Hy-
brid SA (Simulated Annealing + Leapfrog Optimizer
for Constrained Minimization) was used as the opti-
mization algorithm.35 For the metamodel, a Linear
Polynomial Metamodel with D-Optimal point selec-
tion was used.35

The total number of Simulation Points (sub-itera-
tions) was equal to 11 for each optimization iteration.

FIGURE. 2. PD controller algorithm.
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The maximum number of global iterations was set to
10. The tolerance criteria were defined as ± 1% design
change and ± 1% objective function tolerance as the

LS-OPT default settings. See Stander et al.35 for de-
tailed theories and explanations of the optimization
strategy used in the present study.

TABLE 1. Optimization parameters.

Parameter/design variables Symbol Unit Initial value Optimization range

Proportional gain Kp %contraction/rad 0.601a 0.601a–40b

Derivative gain Kd %contraction/rad ms21 412.62a 5b–412.62a

Neural transmission and processing delay Tnd ms 15a 3.5c–20d

Muscle activation dynamics

Muscle activation time Tna,a ms 10b,d,e 5–15f

Muscle deactivation time Tna,d ms 40b,d,e 20–60f

Neural excitation time Tne ms 35b,d,e 20–50f

aPutra et al.27.
bÖsth et al.22.
cRosengren and Colebatch.28.
dÖlafsdottir et al.18.
eWinter and Stark.40.
fWinter and Stark.41.

TABLE 2. Optimization objectives.

Optimization name Optimizations objectives function Weight Curve matching metric

Optimization 1

(Opt. 1)

To match volunteer head C.G x-disp 1 Curve mapping algorithm

To match volunteer head C.G z-disp 1

To match volunteer head C.G rotational y-disp 1

Optimization 2

(Opt. 2)

To match volunteer C1 absolute rotational y-disp 1 Curve mapping algorithm

To match volunteer C2 absolute rotational y-disp 1

To match volunteer C3 absolute rotational y-disp 1

To match volunteer C4 absolute rotational y-disp 1

To match volunteer C5 absolute rotational y-disp 1

To match volunteer C6 absolute rotational y-disp 1

To match volunteer C7 absolute rotational y-disp 1

Optimization 3

(Opt. 3)

To match volunteer head C.G x-disp 1 Curve mapping algorithm

To match volunteer head C.G z-disp 1

To match volunteer head C.G rotational y-disp 1

To match volunteer C1 absolute rotational y-disp 1

To match volunteer C2 absolute rotational y-disp 1

To match volunteer C3 absolute rotational y-disp 1

To match volunteer C4 absolute rotational y-disp 1

To match volunteer C5 absolute rotational y-disp 1

To match volunteer C6 absolute rotational y-disp 1

To match volunteer C7 absolute rotational y-disp 1

Optimization 4

(Opt. 4)

To match volunteer head C.G x-disp 1 Curve mapping algorithm

To match volunteer head C.G z-disp 1

To match volunteer head C.G rotational y-disp 1

To match volunteer C1 absolute rotational y-disp 1/7

To match volunteer C2 absolute rotational y-disp 1/7

To match volunteer C3 absolute rotational y-disp 1/7

To match volunteer C4 absolute rotational y-disp 1/7

To match volunteer C5 absolute rotational y-disp 1/7

To match volunteer C6 absolute rotational y-disp 1/7

To match volunteer C7 absolute rotational y-disp 1/7

Cross-Validation

(Cross-Val.)

To match volunteer head C.G x-disp 1 Curve mapping algorithm

To match volunteer head C.G z-disp 1

To match volunteer head C.G rotational y-disp 1

Second-Validation

(Opt.1 Val.)

To match volunteer head C.G x-disp 1 Curve mapping algorithm

To match volunteer head C.G z-disp 1

To match volunteer head C.G rotational y-disp 1
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Cross-Validation Optimization

Cross-Validation with a different optimization
strategy was conducted with a similar setup and
objective as Optimization 1 (Tables 1 and 2) to verify
the parameter identification. Instead of using a meta-
model-based approach, direct optimization using The
Genetic Algorithm was conducted.35 The total process
was limited to 10 iterations with one verification iter-
ation. Each iteration consisted of 30 simulations. The
optimum parameters as the results of cross-validation
optimization were then selected as the starting point of
the parameters in a second validation optimization
(Opt.1 Val) to identify if the result of optimum
parameters was independent of the optimization
strategy. The same optimization setup and strategy as
the Opt.1 was selected as the Opt.1 Val. The opti-
mization was conducted for Kp and Kd only while the
other time parameters were kept constant.

Quantitative Ratings Evaluation

To quantify the similarities between the kinematics
responses of the model and the volunteers, an objective
rating evaluation using Correlation Analysis (CORA-
plus) software 4.0.4 was conducted.5 Default corridors
for CORA was selected with 5 and 50% of inner and
outer limits respectively and combined with CORA
correlation method to get the final score. The evalua-
tion compared the whole duration of head kinematics
between the model and volunteers’ average responses
(0–300 ms). The comparison only considered the
interval of 0–180 ms for the cervical spine displace-
ment due to the data availability.

Software and Computational Environment

The simulations were conducted using LS-Dyna13

ver9.2 double precision with LS-Prepost 4.5(64-bit)14

and OriginPro 2018(64-bit)21 were used as pre- and
post- processing software.

RESULTS

Optimization-Based Parameter Identification Results

Parameter Convergence

The example of a parameter convergence plot (Kp)
is presented in Fig. 3. Convergence plots for all six
parameters are attached in the Supplemental Material.
The scatter plot represents the value of the simulated
parameters and the thick line representing the trend,
which was fitted using an exponential fit.21 All
parameters were observed to convergence near the last
iterations. All parameters converged to values within

their assigned limits whereas Kd did converge to its
lower limit for some optimization strategies.

Correlation Between Parameters

The linear correlation matrix between each param-
eter in all optimizations is presented in Table 3. A
weak correlation (£ ± 0.29) was seen in almost all
optimizations. Five parameters had medium correla-
tions (± 0.30 to ± 0.49) in Optimization 3, three
parameters in Opt. 1, and Opt. 2, and two parameters
in Opt 4. Only one strong correlation (± 0.50 to ±

1.00) was found between two parameters in Opt. 2.

Optimum Controller Parameters

The optimum controller parameters as the result of
optimizations simulation are presented in Table 4. The
optimum Proportional gain (Kp) for all simulations
tended towards the minimum value except for Opti-
mization 2, which instead moved towards the maxi-
mum limit. For the parameter Kd, the lower limit was
the optimum value. However, different optimum val-
ues for Kd were obtained by the Opt. 2 and Cross-
Validation Optimization. The optimum values for the
time constants (Tnd, Tna,a, Tna,d, and Tne) describ-
ing neural delay and muscle activation dynamics were
reasonably consistent and essentially independent of
the optimization strategy.

Cross-Validation Optimization

A cross-validation optimization was conducted to
identify the influence of the optimization method. All
six parameters were observed to convergence and are
reported in Table 4 (see Supplemental Material for
details). When the optimum parameters were com-

FIGURE. 3. Convergence plots of Kp. Convergence plots for
all parameters are attached in the Supplemental Material.

BIOMEDICAL
ENGINEERING 
SOCIETY

PUTRA et al.120



pared between the Opt. 1 and the Cross-Validation
optimization, the differences were quite small except
for the Kd (Table 4).

The second validation approach (as described in the
methods section) utilized the output from the cross
validation as the starting condition for a new opti-

mization of strategy Opt. This simulation resulted in
similar values to the original Opt.1 simulation (Ta-
ble 4).

The head kinematics results were also compared
between the Opt. 1 model, the Cross-Val. model and
the Opt.1 Val. model as shown in Figs. 4a–4c. In

TABLE 3. Linear correlation matrix between parameters.

Opt. 
Name Parameter Tnd Kd Kp Tna,a Tna,d Tne

Opt. 1

Tnd 1,00 -0,21 -0,04 0,17 0,26 0,19
Kd 1,00 0,30 -0,19 0,08 -0,45
Kp 1,00 -0,26 0,13 -0,13

Tna,a 1,00 0,15 0,17
Tna,d 1,00 0,07
Tne 1,00

Opt. 
Name Parameter Tnd Kd Kp Tna,a Tna,d Tne

Opt. 2

Tnd 1,00 -0,06 0,39 -0,15 0,50 0,35
Kd 1,00 -0,17 0,17 -0,07 -0,14
Kp 1,00 -0,16 0,29 0,29

Tna,a 1,00 -0,09 -0,22
Tna,d 1,00 0,31
Tne 1,00

Opt. 
Name Parameter Tnd Kd Kp Tna,a Tna,d Tne

Opt. 3

Tnd 1,00 0,02 0,03 0,06 0,09 0,03
Kd 1,00 0,33 -0,38 -0,34 -0,29
Kp 1,00 -0,37 -0,31 -0,16

Tna,a 1,00 0,47 0,29
Tna,d 1,00 0,44
Tne 1,00

Opt. 
Name Parameter Tnd Kd Kp Tna,a Tna,d Tne

Opt. 4

Tnd 1,00 0,20 0,23 0,06 0,01 -0,11
Kd 1,00 0,30 0,02 -0,01 -0,20
Kp 1,00 -0,11 -0,10 -0,13

Tna,a 1,00 0,06 0,09
Tna,d 1,00 0,04
Tne 1,00

Strong Correlation Medium Correlation Weak Correlation No Correlation

TABLE 4. PID gains and optimum time delays.

Parameter Unit Opt. 1 Opt. 2 Opt. 3 Opt. 4 Cross-Val. Opt. 1 Val.

Proportional gain (Kp) %contraction/rad 4.89 37.49 0.60 2.85 3.08 6.02

Derivative gain (Kd) %contraction/rad ms21 5.00 106.34 5.00 5.00 85.16 5.00

Neural transmission and processing delay (Tnd) ms 15.07 19.83 12.48 8.03 19.95 19.95

Muscle activation time (Tna,a) ms 14.92 7.63 14.92 11.09 13.63 13.63

Muscle deactivation time (Tna,d) ms 42.49 56.67 59.97 40.91 56.57 56.57

Neural excitation time (Tne) ms 49.99 39.82 46.08 42.24 49.66 49.66
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general, the head C.G. displacements were almost
identical, with slightly better responses in the Opt.1
Val. model.

FIGURE 4. Head C.G. displacement comparison between optimization 1 and cross-validation optimization; (a) head C.G. x-
displacement; (b) head C.G. z-displacement; (c) head C.G. ry-displacement.

FIGURE 5. Influence of cervical spine alignment to head kinematics of passive model. (a) cervical spine alignment comparison;
(b). head x-displacement; (c) head z-displacement; (d) head ry-displacement.

FIGURE 6. Comparison of head kinematics calibration
simulation: (a) head C.G x-linear displacement; (b) head C.G
z-linear displacement; (c) head C.G y-angular displacement;
(d) time-series kinematics comparison.

c

BIOMEDICAL
ENGINEERING 
SOCIETY

PUTRA et al.122



BIOMEDICAL
ENGINEERING 
SOCIETY

Optimization of Female Head–Neck Model with Active Reflexive Cervical Muscles 123



Kinematics Comparison Between ViVA OpenHBM
Head–Neck and Volunteer

Influence of Cervical Spine Alignment to Head Kine-
matics of Passive Models

The average female cervical spine alignment based
on Sato et al. (2016) was more kyphotic compared to
the original ViVA OpenHBM head–neck model
(Fig. 5a). In general, improved head kinematics
agreement was seen when the model is configured to
better reflect the average female cervical spine align-
ment. The difference in cervical spine alignment af-
fected the head displacements in all directions, with a
more pronounced difference observed in the z-dis-
placement (Fig. 5c). With a new cervical spine align-
ment, the present study model could better reproduce
the volunteer’s upward motion, which occurred at
impact time around 100 ms.

Comparison of Head Kinematics

The head kinematics comparison between the
models with and without an active muscle controller
can be seen in Fig. 6. In general, muscle activation
alters the head kinematics by reducing peak displace-
ments in all kinematics direction except for the model
with optimum parameter from Optimization 3
(Fig. 6d).

Muscle activation started to change the head kine-
matics in the horizontal direction (x-displacements) at
around 100 ms (Fig. 6a). The Opt. 1, Opt. 2, and Opt.
4 model closely followed the volunteer head kinematics
until around 220 ms. After that, the Opt. 2 model
started to deviate. The other two models were able to
follow the volunteer head horizontal kinematics until
300 ms. The same head displacement was observed in
the passive and Opt. 3 model for the whole duration of
the simulation.

The comparison of vertical head motions (z-displace-
ments) for the models with an active muscle controller,
passive model, and the volunteer responses are presented
in Fig. 6b. All models, including the passive model, could
not follow the upward motion of the volunteer responses
during theperiodof50-100 ms.Threemodels could reduce
excessive head vertical motions (Opt 1, Opt. 2 andOpt. 4).
All three models closely followed the kinematic trend, al-
though the displacement magnitude was not perfectly
identical. A small difference was observed in the Opt. 3
model when compared to the model without an active
muscle controller (Passive).

The head angular-y displacement is presented in
Fig. 6c. All models over predicted this motion until
impact time 125 ms. After that, the passive model
started to perform within the range of volunteer
responses. However, the models with active muscle

controllers continued to exhibit rotational motions
higher than the volunteer response until 150 ms. The
Opt. 3 model started to deviate at 175 ms and had
higher rotational movements after 175 ms when com-
pared to the other models before following the passive
model motion at impact time around 250 ms. Mean-
while, The Opt. 2 model could reduce the head rota-
tional y-displacement after 175 ms. An almost
identical rotational motion was observed in the Opt. 1
and Opt. 4 model.

Comparison of Cervical Spine Kinematics

The comparisons of absolute y-angular displace-
ment between the C1–C7 of the model and the average
of volunteers are plotted in Fig. 7.

Both active and passive models over-predicted the
C1 angular response of the volunteer, especially during
the impact time of 50–100 ms. For the next 50 ms, the
Passive and Opt. 2 model could follow the volunteer
response but not in the other models.

The kinematics comparison between all models in
C2 y-angular displacement showed that all models
could not replicate the kinematics of volunteers until
100 ms except for the passive model. After that, all
models deviated.

All models could reasonably produce the volunteer
C3 y-angular displacement until 100 ms. After that,
Opt. 1 and Opt. 4 model could match the volunteer’s
response until 200 ms but only up to 150 ms for the
Opt. 3 model. Deviation from the volunteer’s kine-
matic target was more pronounce in the passive and
Opt. 2 model.

Until 120 ms, two models (Opt. 1 and Opt. 4) could
reasonably mimic the volunteer kinematic responses
when the kinematics of C4 y-angular were compared to
the volunteer responses. The most substantial devia-
tion was observed in the Opt. 2 model. A similar trend
was also observed for the C5 and C6 y-angular dis-
placement.

For the rotational motion of the C7, generally, all
models could replicate the kinematics of the volunteers
at least until 140 ms, although it was not perfectly
identical. After that, two models (Opt. 1 and Opt. 4
model) started to deviate, while other models were
following the volunteer displacement.

Quantitative Rating Evaluation

The quantitative rating evaluation using CORA is
presented in Table 5. The model that was calibrated
for head kinematics only with initial value based on
Cross-Validation (Opt.1 Val.) improved the head
kinematics agreement the most compared to other
models. This model also had the highest score for all
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FIGURE 7. Comparison of cervical spine kinematics.

TABLE 5. Quantitative rating evaluation using CORA.

Kinematics parameter Opt. 1 Opt. 2 Opt. 3 Opt. 4 Cross-Val. Opt.1 Val Passive

Head x-linear displacement 0.874 0.858 0.651 0.864 0.874 0.878* 0.715

Head z-linear displacement 0.577 0.483 0.463 0.562 0.582 0.593* 0.465

Head y-angular displacement 0.806 0.741 0.691 0.804 0.811 0.813* 0.742

Average of head displacement 0.752 0.694 0.602 0.743 0.755 0.761* 0.640

C1 y-angular displacement 0.774 0.847 0.768 0.771 0.778 0.780 0.896*

C2 y-angular displacement 0.892 0.896 0.883 0.892 0.899 0.898 0.936*

C3 y-angular displacement 0.986 0.949 0.949 0.988 0.989* 0.986 0.936

C4 y-angular displacement 0.880 0.836 0.995* 0.884 0.876 0.876 0.944

C5 y-angular displacement 0.750 0.647 0.980* 0.757 0.747 0.744 0.938

C6 y-angular displacement 0.718 0.682 0.896* 0.742 0.728 0.711 0.857

C7 y-angular displacement 0.645 0.870* 0.675 0.679 0.677 0.648 0.625

Average of cervical spine angular displacement 0.806 0.818 0.878* 0.816 0.813 0.806 0.877

Average of head and cervical spine displacement 0.779 0.756 0.740 0.780 0.784* 0.783 0.758

*Highest value.
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head kinematics components. For the cervical spine
kinematics, the highest average agreement was
achieved by the Opt. 3 model, although it was almost
identical with the passive model. When both kine-
matics components were combined, Cross-Val. model
had the highest agreement with the volunteers’
responses, almost similar rating with the Opt.1 Val.
model.

DISCUSSION

The 50th Percentile female HBM called ViVA
OpenHBM25,26 was further developed in this study by
implementing active muscle controllers to represent the
human neck muscle reflex system.

The implementation of a PID controller to represent
the human neck muscle reflex system in the current
study was adopted from Östh et al.22,23 and Olafssdotir
et al.18 Beside these studies, other studies implemented
active muscle control representing feedback response
from reflexes steered by the human neck muscle reflex
system.7,8,16,18,22,23 These load cases were different
from the current study as none of them evaluated the
model against volunteer tests in a rear-impact collision.
Evaluating the performance of such controllers is also
relevant for rear impacts as most of the drivers or
occupants do not notice that they will be impacted by
another car from behind.

There are no confirmed injury mechanisms that
predict whiplash systems. The current hypotheses un-
der investigation6,19,20,39,43 focus on the formation of a
cervical S-shape that tends to occur in before 150 ms
after impact. Spine kinematics that can accurately
predict the head–neck kinematics up to 150 ms are
thus a priority.

The optimizations used for parameter identification
converged for all six parameters of interest. Therefore,
it was believed that the global minimum of each
parameter, with relation to three different optimization
objectives, had been found. When the independency of
each parameter was analyzed, it was found that only
Optimization 2 (when only neck kinematics used as the
target of optimization) had two parameters with a
strong correlation suggesting this approach was not
worth pursuing. For the other optimization objectives,
most of the parameters had only had weak correla-
tions. These results indicate the selected control
parameters are independent of each other.

The optimum parameters of the derivative gain, Kd,
converged to a similar value for Optimization 1, 3, and
4. For proportional gain, Kp, some variations were
observed in those same optimizations. This suggests
that the parameter Kd was less sensitive to the objec-
tive function for the optimization, and the derivative

control aspect of the present controller has less
authority than the Kp on the neck kinematics.

The parameters of cross-validation simulation con-
verged at almost identical values with the Opt.1. Only
the value of the Kd was quite different. When the head
C.G. kinematics of the two optimization techniques
were directly compared, it was found that the cross-
validation model had an almost identical response,
although the optimizations strategy was different. This
result again demonstrated that the parameters of Kd
only had a small influence on the optimization objec-
tives.

When the cervical spine alignment of the model was
adjusted to the average female alignment,30 improve-
ment of head kinematics (mainly in the vertical mo-
tion) was already achieved in the passive model. This
result highlighted that the initial alignment of the
model cervical spine is essential to be evaluated before
implementing and optimizing the active muscle con-
troller to the model.

When the head and cervical spine kinematics
responses of the models and the volunteers were
compared, muscle activation were shown to alter the
head kinematics by reducing peak displacements.
However, when the muscles were activated, the tension
from the muscles caused cervical spine buckling,
especially after impact time 150 ms. This was observed
in Optimization 1 and Optimization 4. Less contrac-
tion of cervical muscles was observed in Optimization
3 and less cervical spine buckling was observed. Con-
sequently, the head kinematics of Optimization 3 was
almost identical with the passive model.

Even though only cervical spine kinematics were
used as the objective in Optimization 2, the cervical
spine kinematics agreement was still below that found
in Optimization 3. This result also proved that the
current simplification of neck muscle reflex system by
using a vector between head C.G. and the center of the
T1 vertebral body combined with spatial tuning pat-
tern for activated the cervical muscle worked well to
detect the head position changes. However, it had less
influence to control the cervical spine kinematics. To
better control the cervical spine kinematics, it could be
beneficial to define an error signal that incorporates
more degrees of freedom in the head–neck complex.
Another approach would be to include a controller
that mimics the displacement feedback from the neck
muscle spindles. In fact, high concentrations of muscle
spindle were found in the deep neck muscles,12 which
connected directly with the cervical spine. This also
may address the complex intravertebral kinematics and
ensuring muscle activity is within biomechanical limits.
This extra control implementation would require more
parameter identification studies (similar to the APF
controller described herein). Due to the complex
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muscle configurations, this additional controller design
was beyond the scope of the current study.

The current controller implementation assumes the
neck muscle reflex system controlling the muscle
response can be captured by a single rigid body link
between T1 and the head CG. As this assumption ig-
nores individual rotations within the vertebral joints,
the existing controller does not explicitly capture cer-
vical kinematics and implicitly accounts for this
behavior through the different optimization
approaches (Opt. 2–4). The controller design could be
updated to include two or three feedback signals better
describing the head–neck kinematics. Increasing the
control complexity would require establishing a new
spatial tuning pattern to describe the muscle recruit-
ment strategy. Increasing the controller complexity
creates higher requirements on the type and quantity
of validation data, and the current model currently
uses the most of available volunteer data.

The current study highlights the importance of
including active muscle response to mimic the volun-
teer’s kinematics. A simple PD controller has found to
be able to represent the behavior of the neck muscle
reflex system. The optimum gains that defined the
muscle controllers in the present study were able to be
identified using optimizations. The different optimiza-
tion approaches could refine the model response
incrementally but could not perfectly reproduce the
volunteer response. The present study provides a basis
for describing an active muscle controller that can be
used in future studies to investigate whiplash injuries in
rear impacts.
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