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In this work the effects of simple imputations are studied, regarding the integration of multimodal data originating from different
patients. Two separate datasets of cutaneous melanoma are used, an image analysis (dermoscopy) dataset together with a
transcriptomic one, specifically DNA microarrays. Each modality is related to a different set of patients, and four imputation
methods are employed to the formation of a unified, integrative dataset. The application of backward selection together with
ensemble classifiers (random forests), followed by principal components analysis and linear discriminant analysis, illustrates the
implication of the imputations on feature selection and dimensionality reductionmethods.The results suggest that the expansion of
the feature space through the data integration, achieved by the exploitation of imputation schemes in general, aids the classification
task, imparting stability as regards the derivation of putative classifiers. In particular, although the biased imputation methods
increase significantly the predictive performance and the class discrimination of the datasets, they still contribute to the study
of prominent features and their relations. The fusion of separate datasets, which provide a multimodal description of the same
pathology, represents an innovative, promising avenue, enhancing robust composite biomarker derivation and promoting the
interpretation of the biomedical problem studied.

1. Introduction

Integration of multimodal and multiscale data is of known
importance in the context of personalized medicine and
future electronic health record management. The quest for
suitable data fusion schemes, which could ideally optimize
the exploitation of the information residing in compos-
ite datasets, is an emergent area with numerous potential
applications. In the context of Virtual Physiological Human
(VPH), an integrated framework should promote the inter-
connection of predictive models pervading different scales,
with differentmethods, characterized by different granularity.
Such a framework consolidates system level information and
enables formulation and testing of hypotheses, facilitating a
holistic approach [1].

In this work we propose a novel methodology on mul-
timodal data fusion regarding separate datasets. As separate

we define datasets where each has been obtained from a
different technological source and from a different set of
patients. Even the number of patients participating in each
examination is not the same. The only common determinant
of separate datasets is that they refer to the same disease.
Such datasets are not amenable to ordinary fusion methods,
as all the known methods deal with the same set of patients
being examined by various instruments and techniques in
sequence, thus producing the multimodal data. However,
the majority of open-accessible data refers to the unimodal
results of certain experiment relative to a specific disease.The
suggested methodology is able to highlight biomarkers uti-
lizing these separate unimodal outcomes and thus repurpose
the existing data of accessible repositories.

As proof of concept, we focus on the fusion of two
separate unimodal datasets, one of molecular and one of
imaging description, both concerned with the study of
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cutaneous melanoma (CM). Application of feature selection
and dimensionality reduction algorithms on the produced
unified dataset can contribute towards the extraction of better
biomarkers, ruling out false positive findings coexisting, but
with no causal association, with the investigated disease.
The procedure can be applied to various cases and tackle
separated datasets of other diseases as well.

This paper is organized as follows: Section 2 includes
related work and background on information fusion meth-
ods, the cutaneous melanoma disease, and the feature selec-
tion techniques used in this work. Section 3 contains the
preprocessing steps for the preparation of the unimodal
datasets, the construction of the unified table with the use of
imputation methods, and the implementation details of the
feature selection methods regarding random forest, principal
component analysis, and linear discriminant analysis. Sec-
tion 4 encloses the results of the feature selection procedures
regarding specific biomarkers and their performance and
stability observed during repetitive runs. Finally, in Section 5
we discuss the use of synthetic data via the simple class
imputation methods, the multiple imbalances present at the
joined datasets, a comparison considering the modal origin
of the highlighted features, and biological implication of the
proposed biomarker sets. The paper concludes with future
work.

2. Background and Related Work

2.1. Information Fusion. Information fusing algorithms can
be classified as belonging to one of the following categories:
Combination of Data (COD) or Combination of Interpre-
tations (COI) [2]; COD methods aggregate features from
each source into a single feature vector before classification,
while COI methods classify the data from each source
independently and then aggregate the results. Rohlfing et
al. [2] compared the two methods to combine information
sources in different biomedical image analysis applications,
whileHaapanen andTuominen [3] followed aCODapproach
for the combination of satellite image and aerial photograph
features for higher accuracies at forest variable estimation.
On the other hand, Jesneck et al. [4], on a COI path,
optimized clinically significant performance measures in a
decision-fusion technique combining heterogeneous breast
cancer data. Lee et al. [5] proposed a Generalized Fusion
Framework (GFF) for homogenous data representation and
subsequent fusion in the metaspace, using dimensionality
reduction techniques. The metaspace comprises the pro-
jections of the heterogeneous data streams transformed in
a way that scale and alleviate dimensionality differences.
Such metaspace representation approaches, which transform
data into a homogeneous space enabling direct combination
of modalities, are embedding projections and kernel space
projections [6]. For example, Hinrichs et al. [7] used mul-
tikernel learning, while Gray et al. [8] used manifolds and
random forests to exploitmultimodal datasets onAlzheimer’s
disease. The first work resulted in a multimodal disease
marker to predict the progress of the disease, while the

second resulted in a model, which outperforms the predic-
tions of the individual unimodal datasets. Golugula et al.
[9] applied a specialised version of regularized canonical
correlation analysis on histologic imaging and proteomic
signatures regarding prostate cancer data, for the creation of a
metaspace representation. Utilizing random forests they were
able to predict biochemical recurrence of the disease with
significantly higher accuracy.

GFF algorithms assume that we have raw data from
sources 𝑆
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there are single modal data for a set of patients and then
other available data of a different modality from observations
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disease although possibly at different stage or phase of the
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typic manifestations. Furthermore, associations underlining
causal biological actions could emerge due to associated
physiological determinants. We name the datasets derived
from the sources 𝑆

𝑖
and 𝑆
𝑗
as separate datasets.

2.2. Cutaneous Melanoma. Cutaneous melanoma (CM) is
considered a complex multigenic and multifactorial disease
that involves both environmental and genetic factors. It
is the most life-threatening neoplasm of the skin, and its
incidence andmortality are constantly increasing worldwide.
CM tumorigenesis is often explained as a progressive trans-
formation of normal melanocytes to nevi that subsequently
develop into primary cutaneous melanomas (PCM). How-
ever, the molecular pathways involved have not been clearly
elucidated, although considerable progress has been made
[10]. Despite the success of genomics in defining genomic
markers or gene signatures for other kinds of cancers (such
as breast cancer), there has been no similar progress related
to malignant melanoma.

The microarray studies that have been performed on CM
by different groups exploit different microarray technological
platforms applied in highly heterogeneous patient cohorts
and pathological sample collections [11]. These differences
hurdle significantly comparisons, yielding cohorts of reduced
total size and diversity. Integration of independent cohorts
from different studies bears significant challenges for a
number of reasons stemming from the technical design to
purely biological ones [12].

Regarding the clinical methods for diagnosis of mela-
noma, there exist several standard approaches for analysis
and diagnosis of lesions, For example, the Menzies, scale,
the Seven-point scale, the Total Dermoscopy Score based on
the ABCD rule, and the ABCDE rule (Asymmetry, Border,
Color, Diameter, Evolution). In thesemethods, digital images
can serve as a basis for the medical analysis and diagnosis
of lesions under consideration. As human interpretation
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of image content is fraught with contextual ambiguities,
advanced computerized techniques can assist doctors in
the diagnostic process [13]. A review of image acquisition
and feature extraction methods utilized in the literature
regarding existing classification systems can be found in
[14].

2.3. Feature Selection. Feature selection techniques do not
alter the original representation of the input variables but
merely select a subset of them, a contrast to other dimen-
sionality reduction techniques like those based on projection
(e.g., principal components analysis) or compression (e.g.,
using information theory).Thus, feature selection techniques
preserve the original semantics of the variables, enhancing
interpretability by a domain expert [15].

The main objectives of feature selection are (a) to avoid
overfitting and improve model performance, (b) to provide
faster andmore cost-effectivemodels, and (c) to gain a deeper
insight into the underlying processes that generated the
data.

Regarding the applied feature selection procedures in
this study, at first, a wrapper type technique was employed
(sequential backward elimination—SBE) using the random
forest (RF) algorithm [16], which utilizes ensembles of
decision trees. SBE algorithm starts with the full set of
features and iteratively removes the feature computed as least
important each time, until a required number of features
remain. As an option, a multivariate filter was used to reduce
the colinearity among features of the microarray dataset,
prior to the application of the wrapper method. This filtering
together with the imputation represents a transition from a
COD method towards a GFF approach, although here no
further transformation is applied to the feature vectors.

The random forest algorithm, among other ensemble
learning methods, is reported to be successful in variance
reduction, which is associated with reducing overfitting
[17]. In addition, we used the option of stratifying the
bootstrapped samples with equal number of cases per class
[18]. This is compatible with the Balanced Random Forest
(BRF) approach,which is computationallymore efficientwith
large imbalanced data, since each tree only uses a small
portion of the training set to grow. Additionally it is less
vulnerable to noise (mislabelled class) than the Weighted
Random Forest (WRF) where a heavier penalty is placed on
misclassifications of the minority class [19]. BRF alleviated
the class imbalance problem, a common problem in disease
diagnosis, where the disease prevalence entails that disease
cases are a small fraction of the total population. In our case
dermoscopy and microarray data had class imbalance ratios
of disease to healthy samples: 70 : 972 and 45 : 18, respectively.
The recognition goal is to detect people with the disease; thus
a favorable classification model is one that supports higher
identification rates for the disease category. Additionally,
the random forest algorithm was chosen for this study for
one more reason: the method has only two optimizing
parameters, the number of created trees as an ensemble and
the number of randomly tried features on each split as a tree is
created.

Next, principal component analysis (PCA) and linear
discriminant analysis (LDA) were employed to highlight top
features with larger coefficients as potential biomarkers. PCA
is an unsupervised method and a data reduction technique
that allows the major sources of variation in a multidimen-
sional dataset to be analyzed without introducing inherent
bias. PCA as a manifold provides an isomorphic, direct
mapping of high-dimensional data into a lower-dimensional
space capturing and representing the information of the
original data incrementally. PCA defines new orthonormal
in-between variables, consisting of linear combinations of
the original variables such that the axis of the first principal
component (PC) highlights the dimension collinear to the
most variation and the axis of the second component the
dimension with the most of the remaining variation and so
on. The coordinates of the samples in the new space created
by the PCs are called scores [20].

LDA uses class information to maximize the separation
between various groups of observations. LDA presumes
that the classification variables follow a normal multivariate
distribution and the covariance matrices for the observations
of each class are equal (homoscedasticity). When these
working assumptions are not considered plausible, LDA does
not represent the optimal classifier. However, it can still be
considered a valid and accurate method for the screen of
the multidimensional solution space, when the objective is
the determination of separating hyperplanes that maximize
discrimination between different classes. This is so, because
the hypotheses on the form of the data distributions do not
have any impact on the solution of the geometrical separation
problem [21].

3. Materials and Methods

3.1. Multimodal Data Fusion of Separate Datasets. The work-
flow of the methodology is shown in Figure 1. At the initial
phase (a) there are two unimodal separate datasets (image
and microarray data). Each table has different features (If
and Mf) and different numbers of observations/rows (Ir and
Mr) obtained from different patients. The last column of the
tables represents the response variable (rv). In our case it
is a binary response variable with two classes: healthy or
disease. Next (b) the unimodal tables are merged to one
block sparse matrix. The only column without nonavailable
values is the one with the response variable. Subsequently,
at step (c) simple biased imputations are performed per
feature and per class. These are depicted with dotted lines.
The total number of rows and features of the unified table
is the sum of the rows and features of the two initial tables
(Ur, Uf). Now the table is amenable to multivariate statistical
analysis, and specific composite biomarkers can be extracted
and studied for their performance contribution and stability
in their appearance over repetitive runs of synthetic data
creation via the imputations.

All workflow programming was implemented in R [22].

3.1.1. Image Data. The dataset derived from skin lesion
images contained 972 instances of nevus skin lesions and
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Figure 1: Data fusion workflow for separate datasets: (a) separate
datasets, (b) unified sparse dataset, (c) unified dataset (class impu-
tations), and (d) and (e) multivariate statistical analysis and feature
selection. See text for details.

69 melanoma cases. Three types of features were analyzed:
Border Features which cover the A and B parts of the ABCD-
rule of dermatology, Color Features which correspond to the
C rules, and Textural Features which are based on D rules.
31 out of the initial set of 32 possible features were used;
one feature was removed due to having zero variation across
the samples. The relevant preprocessing for all features is
described in [23]. The dimensions of the image dataset were
thus 1041 (rows) × 31 (columns).

3.1.2. Microarray Data. The microarray dataset was taken
from the Gene Expression Omnibus (GEO) [24], GDS1375.
In that experiment, total RNA isolated from 45 primary
melanoma, 18 benign skin nevi, and 7 normal skin tissue
specimens was used for gene expression analysis, using the
Affymetrix Hu133Amicroarray chip containing 22,000 probe
sets [25]. The dataset contains the MAS5-normalized signal
intensities and is globally scaled so that the average intensity
equals 600.

Data retrieval from GEO was performed using GEO-
query [26] and concomitantly processed with limma [27]
R packages from the Bioconductor project [28], following
the proposed steps as listed in the R script produced by
the GEO2R tool [29]. The gene expression values across all
categories were log-transformed, and the mean values of all
genes in the normal skin were calculated. Subsequently, the
mean gene vector concerning the normal skin categories
was subtracted from all replicate vectors of the other two
categories. In this way, the initial signal intensities provided

ratios of differential expression, calculated by dividing the
signal intensities of each category by the respective gene
value of the normal category. As all values have been log-
transformed, the division is replaced with a subtraction.
For the remaining analysis the differentially expressed gene
values of the melanoma versus skin and nevi versus skin were
exploited. 1701 genes from a linear model fit were extracted
setting FDR for multiple testing adjustment, 𝑃 value 0.001
and 2-fold changes as thresholds. The dimensions of the
microarray dataset were thus 63 (rows) × 1701 (columns).

3.1.3. Data Integration. The two tables containing the
microarray and image data were merged to one block sparse
matrix with dimensions 1104 rows × 1734 columns, marking
the unavailable values as NA. The rows contain the microar-
ray and image data samples and the columns microarray and
image features plus one binary response variable (0 for nevus
and 1 for melanoma).

3.1.4. Missing Values Imputation. Although there are several
software packages implementing advanced imputationmeth-
ods [30], they could not be utilized in this unified dataset
where the multimodal data have only the class variable
column as complete. In this study we considered four simple
imputation methods applied per feature and per class:

(i) “mean value” imputation,
(ii) “random normal” imputation,
(iii) “uniform” imputation,
(iv) “bootstrap” imputation.

In the second case, after estimating the mean value (m)
and standard deviation (sd) of each feature (ignoring the
NA values) per class, we randomly filled the missing values
sampling from an assumed normal distribution having as
parameters: (m, sd). The “uniform” imputation is conducted
by sampling uniformly within the range of each feature
per class and the “bootstrap” imputation by independent
bootstrap of each variable separately per class, until all the
NA values are replaced. The last two imputation methods are
similar to the way random forests construct synthetic data,
in order to provide for a similarity measure [18]. For the
efficient execution of the imputations, the plyr R package
was employed [31].

3.2. Feature Selection with Random Forest. The first feature
selection workflow was built, using the R package caret
(classification and regression training) [32]. The search algo-
rithm employed in caret uses the recursive feature elimina-
tionmethod on predefined sets of predictors and in this study
the length of the variable subsets was defined as [1 to 10, 15, 20,
25, 30, 35, 40, 45, 50], except for the image-only data, where
the subsets were [1 to 10, 15, 20, 25, 30, 31] due to the number
of image predictors.

The setup of the insilico simulation involved the exam-
ination of the reported selected feature subsets when (a)
applying a colinearity removal filter to the microarray dataset
prior to the execution of the selection algorithm (marked as



BioMed Research International 5

filtered/unfiltered), and (b) setting a 95% tolerance threshold
to the best-obtained performance criterion (Tolerance/Best).
As noted at the caret documentation, the colinearity filter
computes the correlations between the microarray features
and then screens the correlation matrix, in order to remove
features with high pairwise correlation. If two variables have
a high correlation (0.75 is set by default as cut-off value), the
function traces themean absolute correlation of each variable
and removes the variable with the largest mean absolute
correlation.The default cut-off value was empirically selected
as to reduce the number of high-correlated features (genes)
up to a level where “enough” genes were left to continue with
the analysis (∼30%). The cut-off value is dataset dependent,
as the correlation among the features of an experiment is
inherent to the experiment itself. As to the tolerance-in-
the-performance criterion, it allows the selection of a subset
size that is small enough but without sacrificing too much
performance and can yield good results with a performance
plateau for larger subset sizes. The combination of prior-
filtering and tolerance-threshold resulted in the examination
of four distinct cases: “Filtered Tolerance,” “Filtered Best,”
“Unfiltered Tolerance,” and “Unfiltered Best.”

For each of the four cases, a 10-fold cross-validation
procedure was performed with 50 repetitions on six different
datasets:

(i) only the microarray data (marked as o.m),
(ii) the unified dataset produced by themean imputations

(m.i),
(iii) the unified dataset by normal random imputations for

the NA values (nr.i),
(iv) the unified dataset by the “uniform” imputations (u.i),
(v) the unified dataset by the “bootstrap” imputations

(b.i),
(vi) only the image data (o.i).

Throughout all repetitions, the nr.i, u.i, and b.i datasets
were reimputed, thus providing more sampling variations.
Prior to the application of the repetitions, the datasets were
centred and scaled.

For each of the 50 repetitions, the cardinality of the
optimum subset of predictors was recorded, along with the
names of the predictors and the performance attained. The
area under the ROC curve (auc) was used as a performance
metric. The auc of a classifier is equivalent to the probability
that the classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative instance.
This is equivalent to the Wilcoxon test of ranks and is also
closely related to the Gini coefficient [33].

3.3. Feature Selection Using Linear Multivariate Statistical
Analysis. Statistical analysis was performed using multivari-
ate techniques, specifically PCA, followed by LDA. For all the
cases, the colinearity removal filter from the caret package
was applied to the microarray data. PCA was performed by
the prcomp R function and LDA by the lda function from
the MASS R package [21].

The lda function has two workingmodes: one having the
parameter CV = False (the default), implying no application
of cross-validation methods, meaning it can obtain an object
that includes discriminant scores, and the other with CV =
True, where predictions of class memberships are derived
from leave-one-out (LOO) cross-validation. In LOO CV a
model is trained iteratively with all the available observations
(rows) but one each time, and a prediction is made as regards
the response value of the left out observation.This procedure
provides an estimation of the overall performance of our
model.

Initially, we ran the lda function on each of the exam-
ined datasets and retrieved the estimated scores as well
as the Singular Value Decomposition (SVD) parameters.
SVD parameters provide the ratio of the in-between- and
within-group standard deviations on the linear discriminant
variables.Their squares conform to the canonical F-statistics.
The lda function (having CV = True) was executed 50 times
on each dataset (value imputations were applied each time to
the unified datasets), in order to assess the variability of the
attained accuracy performance for the melanoma class. Next,
the lda functionwas run again 100 times (having CV= False)
on each dataset in order to assess the stability of the suggested
top performing features.

Finally, the set of the 20-top scoring biomarkers was
derived, in order to assess the prediction performance for the
melanoma case. The LDA (CV = True) and RF (stratified, 18
samples per class) methods were applied 50 times on each
dataset using only the biomarkers’ columns and the class as
response variable.TheRFperformancewas assessed using the
out-of-bag (OOB) error estimation. OOB are the rows of the
dataset that have not taken part in the creation of a decision
tree due to the bootstrap procedure, and therefore they can be
used to assess the performance of the created decision tree.

4. Experiments and Results

4.1. Feature Selection with RF. The results of the tests regard-
ing the feature selection process are depicted in Figure 2.
All missing value imputation schemes applied onto the
unified datasets yielded an almost perfect score as can be
surmised from the median values of the area under curve
(auc) estimates of those datasets. These median auc values
are displayed in parentheses for each dataset at the data-label
boxes in Figure 2.

The unimodal dataset of the image data (o.i) exhib-
ited lower performance scores together with the higher
cardinality of the selected features set. The application of
the colinearity reduction filter to the microarray data had
little effect regarding the dispersion of the optimum subset
cardinality. The execution time in the condensed dataset,
derived after the application of the filter, however, was 4
times faster than before, in proportion with the reduced
number of remaining features after the use of the filter (482
from the initial 1701 differentially expressed genes in the
microarray dataset). The results on the imputed datasets
of filtering demonstrated a drastic reduction regarding the
number of features required to build the classifier, as well as
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Figure 2: Gaussian kernel density plots of the optimum features number from 50 repetitions.The six datasets are onlymicroarray (o.m),mean
imputation (m.i), normal random imputation (nr.i), uniform imputation (u.i), bootstrap imputation (b.i), and only image (o.i). In parentheses
are the medians of the obtained performances (auc) for each dataset.
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Table 1: Top features (genes) selected after 50 repetitions of the 10-
fold cross-validation modeling for the best-filtered case in each of
the tree datasets (o.m, m.i, and nr.i along with the frequencies of
appearance).

Feature Freq. Feature Freq. Feature Freq.
(o.m) (o.m) (m.i) (m.i) (nr.i) (nr.i)
CDC37L1 47 NEIL1 4 CDC37L1 49
RRAS2 34 IFI16 3 RRAS2 2
SLC7A8 18 CTDSPL 2
HPCAL1 14 DLK2 2
IFT81 8 NADK 2
SSBP2 6 OR2A9P 2
GIPC2 5 PIK3C2G 2
CTDSPL 3

the constancy of the feature subsets, regarding the derivation
of the classifier in the iterative framework.

The four imputed datasets, despite their different mecha-
nism of imputed value generation, produced classifiers with
similar cardinality. As shown in the feature of Tables 1 and
2, the normal random imputation dataset (nr.i) resulted in
a considerably more stable selection of features compared to
the mean imputation unified dataset (m.i). The same pattern
is observed for the unfiltered cases (data not shown). In the
unfiltered cases, the nr.i dataset exhibited far better stability
in the formation of the predictor set, outperforming even
the unimodal transcriptomic (microarray-only) dataset. This
improvement supports the expediency of coming up with an
extended integrative dataset as this approach stabilizes the
performance and tackles covariance effectively, managing to
rescue the critical information that enables correct classifica-
tion.

The features from the mean-imputation unified dataset
presented higher instability than all other methods and so
proved to be the least preferable approach for the imputation
procedure. All other imputation schemes (nr.i, u.i, and b.i)
performed equally well in terms of stability.

The noted weaknesses in the use of solely performance
indicators for marker discovery, without considering the
stability of the proposed marker set, has been raised in the
literature [34] and is in congruence with the findings of this
study. The imputations applied using the nr.i, u.i, and b.i
schemes resulted in a balanced selection of the predictor
set from the derived, unified dataset each time. This was
attained through the expansion of the feature set and thus the
neater representation with respect to its stratification of the
total information variation of the experiment. Consequently,
this resulted in the retrieval of smaller optimum subsets
of features, encompassing at the same time a more stable
selection of genes to be considered as candidate biomarkers.

4.1.1. Image-Derived Features Importance by RF. Notably,
none of the image-derived features were present in the
top selected features of the unified datasets, as shown in
Tables 1 and 2. In order to assess the consistency of the
ranking of image features, 50 repetitions of the random forest

Table 2: Top features selected at the tolerance-filtered case.

Feature Freq. Feature Freq. Feature Freq.
(o.m) (o.m) (m.i) (m.i) (nr.i) (nr.i)
CDC37L1 45 PARD3 5 CDC37L1 40
RRAS2 25 ACOT9 3 RRAS2 6
SLC7A8 17 CYP4F3 3 HPCAL1. 2
HPCAL1.1 10 FZD10 3 SSBP2 2
IFT81 6 NEIL1 3
GIPC2 5 ACADL 2
CTDSPL 4 MTUS1 2
NEIL1 4 PER3 2
SSBP2 3 PPP2R3A 2
SMAD5OS 2 SMAD5OS 2

algorithm were executed for each of the unified datasets
derived by the four imputation methods (m.i, nr.i, u.i, and
b.i). Each of the resulting 50 lists of features was sorted
by decreasing importance. Next, the positions of the image
features in the lists were collected; the density plots for the
filtered/unfiltered cases are shown in Figure 3. Random forest
exposes four importance measures [35] and in this case the
“MeanDecrease Gini” criterion was chosen.The results using
the other three criteria were similar (data not shown).

The majority of the image features were ranked as less
important when compared to the features from the microar-
rays; this implies their lower informative power concerning
the total observed variation in the integrated dataset. The
lower informative power of the image features could be
attributed to the phenotypic complexity of the image feature
space, as well as the technical covariance and the size of
its feature space. These factors mark their fingerprint in the
integration process, despite the application of normalization
techniques, thus impacting the response vector of the disease.
When using the nr.i, u.i, or b.i method, however, the image
features perform better, demonstrated through their more
frequent presence in higher positions of the classifier’s vector.
This contrasts with the results of the m.i method. The mean
imputation process relegated all image features to the lowest
positions of the complete feature set, considering them less
informative compared to the microarray features. In this
sense, it is obvious that the three imputation methods,
nr.i, u.i, and b.i, yield a more impartial effect. This can
be surmised from the improved score of the image related
features, providing practical value to its application in the
integration process. The simulated dataset thus derived has
a more balanced representation of features from the two
modalities (microarray and image).

In order to assess whether the small size of the image fea-
tures (31 variables) compared to the 482 microarray features
(after the colinearity filtering from the initial 1701 microarray
features) is the reason that RF algorithm consistently favors
microarray predictors as the best performers, we performed
a series of simulations similar to those described in Figure 3.
This time, however, for the derivation of the unified datasets
we replicated the image features 10 times, so adding 310
replicated image features, in order to balance the feature size
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Figure 3: Kernel density plots of importance ranks for image-derived features on the unified dataset. Ranking in the x-axis is in decreasing
order of importance.

effect with the microarray features. The results again showed
the same preference to the microarray features, excluding the
case that the behavior shown in Figure 3was due to the feature
size imbalance.

4.2. Feature Selection with PCA and LDA. In Figure 4
the representation of the dataset (scores plot), using the
first two principal components after the nr.i imputation
method, is shown. The first principal component, which
describes the largest part of the data variation, can dis-
criminate the melanoma/nonmelanoma classes quite well.
Comparing the graphs of the PCA for all the cases (Sup-
plementary 1 in Supplementary Material available online at
http://dx.doi.org/10.115/2014/145243) we note that while in
unimodal image data more than 2 PCs are needed in order
to discriminate the two classes, in all other cases PC1 can
separate the classes, with the exception of 2-3 samples, all
of which come from the microarray dataset (noncrossed
symbols). The three imputation methods (nr.i, u.i, and b.i)
perform similarly regarding the extent of separation they
attain between classes, as well as the percentage of variation
captured by the two PCs.

The plot of the scores after application of the LDA after
the nr.i imputation method is shown in Figure 5. Comparing
the graphs of the LDAs, this time for all the datasets
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Figure 4: Scores plot for the nr.i unified dataset. In parentheses is the
percentage of variation covered by each principal component. With
circles are the melanoma samples (red), and crossed (either circles
or rectangles) are the image data points.

(Supplementary 2), it is obvious that the imputation process
significantly increases the discrimination between the two
classes, as denoted by the svd values. The mean imputation

http://dx.doi.org/10.1155/2014/145243
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process yields the smallest increase of the SVD value relative
to nr.i, u.i, and b.i procedures.

The execution of the lda function 50 times in LOO
cross-validation mode for each of the datasets (unimodal or
integrative according to the different imputation schemes)
enables measurement of the accuracy of the predictive model
for the case of melanoma class. The accuracy is measured
as the percentage of correct guesses in all predictions made
by the model related to the dataset. As it is shown in
Figure 6, the accuracy for the nr.i, u.i, and b.i datasets
is very high (over 95%). The mean imputation of unified
dataset again underperforms compared to the other three
imputation methods. There is a significant improvement in
the attained LDA accuracy regarding the accuracy of the
original microarray-only and image-only datasets.

As with the high performing features derived by the
application of the random forest algorithm, the stability of the
features suggested by the LDA is of high importance. In order
to test the stability of the features derived by the LDA, we
executed the lda function 100 times without cross-validation
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Figure 7: LDA LOO CV and RF OOB performance using u.i top-
means biomarkers (𝑁 = 50).

for each integrative dataset and recorded the LDA coefficients
(loadings). Then we introduced two performance indicators
that rank feature performance as follows: the top-20 features
with the largest mean coefficient (top-means) or the top-20
features which appeared most of the times having the top-20
largest coefficients (top-20). The results are shown in Table 3.

In Table 3 the three first columns (o.m, o.i, and m.i top-
means) are retrieved after only one run, since there is no
variation in the LDA coefficients as the dataset is stable in
these cases. The top-20 features for o.m, o.i, and m.i have
been included so as to have a full view of the best variables at
each dataset. As it is obvious from the frequencies columns,
the three imputation methods (nr.i, u.i, and b.i) show similar
distributions. In order to assess the method which presents
the better stability, we used as stability indicator (si), the
number of common features between top-means and top-20
columns for each method. The si for nr.i, u.i, and b.i was 2, 5,
and 1, respectively.

As a last step, we assess the predictive performance of
the top features (u.i top-means), looking at the LDA and RF
algorithms, to all the datasets. For the cases of the original
datasets (o.m, o.i) only the relative part of the biomarkers was
used as predictors.The results are shown in Figure 7.Aperfect
score is achieved by random forests for all the datasets apart
from the image-only original dataset. LDA reports an almost
perfect score too, apart from the o.i dataset in which it cannot
guess correctly any of the melanoma samples.

5. Discussion

In this work we propose the fusion of two separate datasets,
concerning the same disease, as a new approach for the
extraction of better biomarkers. The study extends the
evaluation of the optimum set of predictors not only in
light of the attained performances but in relation to the
stability of the resulted predictors as well. This is the first
attempt, to the best of our knowledge, to assess feature
selection algorithms on integrative datasets retrieved from
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separate sources (modalities), where each source comes from
a different set of patients, connected however by the same
pathological mechanism. Although this study focused in
the CM disease, the method could be applied, in general,
to any disease where separate datasets exist, such as those
residing in microarray expression, proteomic and genomic
data repositories. Of course, special care has to be given to the
selection of matching experiments regarding the disease, so
samples, preparation methods, and the subsequent analysis
are in the same context. In this work regarding CM, for
instance, the microarray experiment selected was carefully
screened among dozens residing in the GEO related to
melanoma in order to match comparable state, progress, and
tissue taken for the disease (e.g., no artificial cell lines, not
only metastatic tumours, etc.).

5.1. Use of Synthetic Data. The application of imputation
methods per feature and per class fills the gaps in the block
sparse matrix of the unified dataset and produces a dataset
which is amenable for processing by multivariable machine
learningmethods.The imputation process as performed here
is class dependant and so inserts a significant bias at testing
time towards achieving high performance accuracies. As a
heavy biased procedure still, it is able to integrate the different
datasets at the data level and highlight features and relations
amongst them which would otherwise be impossible.

The three imputation methods (apart from the mean
imputation), where each relies on a given statistical distribu-
tion scheme, perform similarly (auc or accuracy) regarding
the predictor sets (biomarkers) they propose for the 2-
class classification problem. These methods also performed
equally well regarding the stability of the predictors, seen
especially in the RF results. In all cases the unified datasets
were able to produce biomarkers of higher predictive per-
formance (with the exception of the RF case for the only-
microarray data, which produces analogue results). In par-
ticular, when the stability of the proposed biomarkers was
taken into account, the unified datasets had a superior perfor-
mance, especially when compared with the solely microarray
related features.

5.2. Dataset Idiosyncrasies. The two joined datasets are
characterised by class imbalance, features imbalance, and
imbalance of the number of observations between themodes.
An additional caveat is that the columns in both datasets are
covariant. The random forest algorithm, applied in stratified
bootstrapped samples, was capable of tackling these issues
and performs almost perfectly in most cases, with the excep-
tion of the image-only data, which had an auc score of 0.8.The
linear approaches (PCA and LDA) did not perform highly in
the cases of the unimodal datasets (image or microarrays).
For the unified datasets, however, both RF and LDA attained
top scores.

5.3. Impact of the Unimodal Datasets. One of the noticeable
differences in the proposed predictor sets between RF and
LDA is the performance of the image features.RF indicates

that all image features score lower than the 100th position of
importance for the filtered case or after the 350th position
for the unfiltered case. In the linear analyses of PCA and
LDA, however, presence of image features in the predictor
sets is on a par with the microarray features. In addition,
from the two used stability indicators on LDA, top-means
favours microarray features (e.g., 17 to 3 for the u.i top-
means), and top-20 favours image features (e.g., 2 to 18
for the u.i top-20). Moreover, as surmised from the svd
values (Supplementary 2) of the unimodal datasets, both
perform similarly and so the proposed top predictor sets
contain variables from both modes. Additionally, in the same
linear perspective, the image data points present better class
separation in the unified datasets, as denoted by the crossed
marks in the PCA and LDA scores plots. The selection of
the 20 u.i top-means set as biomarkers (as seen in Figure 7)
resulted in an almost perfect performance on all the datasets
for both methods (RF and LDA) apart from the image-only
case. This is due to the fact that the selected u.i top-means set
contains only 3 image features. RF, however, needs between 5
to 10 image features to reach the top performance as seen in
Figure 2 for the two “best” cases.This is evenmore obvious for
the LDA method, which fails to predict any melanoma case
from the 3 proposed image predictors, as seen in Figure 7.

These findings support the notion that the expansion of
the feature set, through the use of the imputation meth-
ods, benefits the classification process. Proposing geometric
spaces where appropriate separating hyperplanes can be
derived incurs good performance in a methodologically sim-
ilar way with methods as the Support Vector Machines. It is
worth noting the dramatic improvement of the predictor sets
inferred by the unified datasets (although biased), in terms
of classification performance as well as informational content
regarding the explained variation. Of paramount importance
is the fact that this superior performance is rescued even by
subsequent application of drastic data reduction techniques,
such as the top-means or the top-20 formalisms. A possible
explanation for this finding is that the transformation of
the initial classification problem in a geometric space, which
alleviates features covariance, makes leeway for the inference
of separating planes between classes that perform robustly.
This improvement is therefore retained permanently, even
when the representation space is collapsing; a different,
however, still robust combination of features that define the
signature set is feasible. Moreover, through the integration
of data from two different layers of organization of the
biological information (molecular and whole tissue), the
effect of noise, in the form of false positives in each layer of
description, is seriously limited. By transforming the initial
datasets into a unified phantom set the effect of arbitrary
feature covariance due to noise is confined in this layer of
organization, downgrading their impact in the unified dataset
and thus disqualifying them fromcandidates for the predictor
set.

5.4. Biological Implications of the Biomarker Sets. Theanalysis
of the composite multimodal signature sets presented in
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Table 3, according to the two different performing indi-
cators, top-means and top-20, proposes equivalent feature
sets capable of classifying robustly and accurately human
samples, probed either through molecular (gene expression
profiling) or imaging (dermoscopic evaluation) examination.
The fact that these signatures are top performers, not only
in terms of efficiency in classification but also regarding the
informational content of the observed variation that they
manage to explain in the integrative dataset, renders them
ideal starting points for functional interpretation of critical
determinants of the CM pathophysiological mechanism.
As previously said those signatures bear complementarity
regarding the modules they select in order to perform
the classification task, in terms of functional implication.
Interestingly, the top-means indicator, which comprises the 20
features with the largest mean coefficients, is heavily enriched
with features coming from the molecular layer, while the top-
20 is basically comprised of image features. The HPCAL1.1
gene was encountered in all of the unified signatures with the
exception of b.i, where CDC37L1 was observed.

Regarding the imaging features, they can contribute to
the construction of reliable operators, that consolidate the
wealth of morphological information, critical for the task of
the dynamic description of the undergoing transformations
of biological procedures in relation to disease manifesta-
tion. Moreover they may represent reliable macroscopic
candidates for assessment of disease molecular subtypes,
something that could be strengthened if covariance-based
association of those markers with the molecular markers is
undertaken.However in order that this analysis is biologically
insightful and of practical use, large populations of cohorts
are needed to check the consistency of the findings.

The molecular part of the feature set comprises genes
which imply promotion of tumorigenesis, angiogensis, and
protein endoplasmic misfolding, that induces stress response
repair signals, xenobiotic metabolism, and so forth, namely,
involvement of cellular modular functions. These func-
tions are known to be associated with the carcinogenic
aberrant course in particular for aggressive cancers like CM.
Indicatively, FOX1 possesses an established role in myogenic
growth, differentiation, and blood angiogenesis. Defective
function of FOX1 is incriminated for rhabdomyosarcoma
type 2, a highly malignant tumour of striated muscle derived
from primitive mesenchymal cells, which is a cancer model
that is evolutionary close to skin cells [36]. CDC37L1 is a
cochaperone that binds to numerous proteins and promotes
their interaction with Hsp70 and Hsp90, whose aberrant
function suggests an endoplasmic reticulum stress response
as a result of protein misfolding stress [37]. MMP1 is impli-
cated in the breakdown of extracellular matrix in normal,
physiological processes, such as embryonic development,
reproduction, tissue remodeling, and blood coagulation, as
well as in disease processes such as arthritis and themetastatic
procedure [38], for which melanoma cells present a high
potency. Interestingly, HPCAL1 encodes an extracellular
protein, which is a member of neuron-specific, calcium-
binding, protein family, found in the retina and brain [39].

This finding is consistent with the fact that skin and neural
cells, especially the cancer ones that are dedifferentiated, have
common progenitor lines.

5.5. Future Work. In this study, the direct comparison
between RF and the linear information-oriented methods,
regarding the stability of the proposed predictor set for
biomarker discovery, was based on an empirical cut-off,
namely, the top-20 features, as surmised by the LDAmethod.
Subsequently, mode membership (image or microarrays) in
the 20 feature set was examined for the two schemes: top-
means and top-20. Still, this approach could be further devel-
oped to implement automated feature selection, exploiting
statistically derived decision cut-offs. It can also be extended
to enable juxtaposition with the automated filtering that
occurs in the feature selection with RF, which is depicted at
the 3rd column of Tables 1 and 2. In addition, the signatures
derived by the unified datasets could be compared with
clinical multimodal data stemming from the same set of
patients. In this way, the impact of the imputationmethods in
the creation of the synthetic dataset could be cross-evaluated,
with the performance of other data analysis methods, such as
canonical correlation analysis or variations of such methods.
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