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Abstract

Background Our evolutionary history is defined, in part, by our ability to survive times of nutrient scarcity. The outcomes of
the metabolic and behavioural adaptations during starvation are highly efficient macronutrient allocation, minimization of
energy expenditure, and maximized odds of finding food. However, in different contexts, caloric deprivation is met with vastly
different physiologic and behavioural responses, which challenge the primacy of energy homeostasis.
Methods We conducted a literature review of scientific studies in humans, laboratory animals, and non‐laboratory animals
that evaluated the physiologic, metabolic, and behavioural responses to fasting, starvation, protein‐deficient or essential
amino acid‐deficient diets, and cachexia. Studies that investigated the changes in ingestive behaviour, locomotor activity,
resting metabolic rate, and tissue catabolism were selected as the focus of discussion.
Results Whereas starvation responses prioritize energy balance, both protein malnutrition and cachexia present existential
threats that induce unique adaptive programmes, which can exacerbate the caloric insufficiency of undernutrition. We
compare and contrast the behavioural and metabolic responses and elucidate the mechanistic pathways that drive
state‐dependent alterations in energy seeking and partitioning.
Conclusions The evolution of energetically inefficient metabolic and behavioural responses to protein malnutrition and
cachexia reveal a hierarchy of metabolic priorities governed by discrete regulatory networks.
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Introduction

Appropriate nutrient consumption is an essential process in
sustaining normal biological processes. Both small and ex-
treme fluctuations in caloric intake result in changes in me-
tabolism and behaviour in effort to maintain organismal
homeostasis. During calorically plentiful states, organisms
activate energy‐consuming anabolic pathways and satiety
behaviours, while states of caloric deprivation result in
energy‐liberating catabolic pathways and foraging
behaviours.1,2 These metabolic programmes and behaviours
are evolutionarily conserved responses that were shaped to
endure periods of famine.3 Specifically, starvation results in
metabolic adaptations that decrease energy expenditure
and conserve protein stores in order to preserve organ func-
tion, while increasing appetite and foraging behaviours in
attempt to correct the underlying nutritional deficiency.
However, in the context of protein‐specific malnutrition or
disease‐associated cachexia, the metabolic and behavioural
responses to nutrient insufficiency differ from simple starva-
tion. For example, in both protein malnutrition and
cachexia, catabolic processes are activated, and macronutri-
ent intake is paradoxically suppressed, violating the rule of
energy conservation. While decades of research demonstrate
that the physiologic and behavioural responses activated
during starvation serve to spare energy stores and restrict en-
ergy expenditure, recent discoveries regarding the physiology
and behavioural neuroscience of protein malnutrition and
cachexia reveal additional levels of metabolic regulation that
lend insight into the pressures that guided metabolic path-
way evolution.

Simple starvation, defined herein as pure caloric deficit in
an otherwise healthy organism, activates programmes that
prioritize metabolic efficiency, thereby promoting resilience
and survival. Less is known about protein malnutrition and
cachexia, and recent evidence suggests that the metabolic
programmes of these states in response to caloric deficit
are broadly inefficient. Furthermore, these three states of
nutrient deprivation result in unique behavioural responses
that either complement or contradict the overall nutrient re-
quirement of the organism (Figure 1). In this review, we will
discuss the disparate physiologic responses of the metabolic
states of simple starvation, protein malnutrition, and ca-
chexia, with a particular focus on our current understanding
of metabolism, neurophysiology, and behavioural outputs.

Starvation

Metabolic homeostasis is maintained by a well‐described net-
work involving regions in the hypothalamus and brainstem
that respond to hormonal and metabolic signals of both
short‐term and long‐term energy supply and engage appro-
priate behavioural and physiologic programmes.4 Under
physiologic conditions, mammals are able to match cumula-
tive energy intake with energy expenditure with exceptional
precision because of tight control of tissue metabolism and
feeding behaviours by the central nervous system.5,6 Because
nutrient scarcity represented an existential threat to
organisms throughout their evolution, these systems priori-
tize efficiency and energy storage to maximize both
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countermeasures against and resilience to undernutrition.
This response is defined behaviourally by an increase in appe-
tite and foraging behaviour and metabolically by a decrease
in basal metabolism and preferential catabolism of adipose
over lean tissue.7,8 Although this imbalanced response to nu-
trient availability likely made humans more vulnerable to
obesity in the context of high nutrient availability, it ensures
that the long‐term effects of nutrient insufficiency are mini-
mized. In this review, we use simple starvation to introduce
the homeostatic response to nutritional insufficiency, which
will then serve as our comparator when discussing the re-
spective situations of protein malnutrition and cachexia.

Ingestive behaviour

Secreted peripheral factors alter neuronal activity and feeding
behaviours during starvation, with decades of research
demonstrating the influence of gut‐secreted and fat‐secreted
neuropeptides on the mediobasal hypothalamus (MBH).9

Here, we will briefly discuss the well‐studied endocrine mole-
cules ghrelin and leptin that are known to play roles in driving
behaviours of feeding at least in part through their direct, yet
opposing, mechanisms on hypothalamic neurons. Other pe-
ripherally secreted hormones that influence food intake
under physiologic conditions are summarized in Table 1.
During fasting and starvation, the stomach releases the
peptide hormone ghrelin, the only known circulating
hormone that stimulates appetite. After secretion by the
stomach, acylation of ghrelin is required for its binding to its
receptor, the growth‐hormone‐secretagogue receptor, and
for its ability to cross the blood–brain barrier.10 Once in the
brain, ghrelin stimulates appetite through interaction with
appetite‐regulating neurons in the MBH. These include neu-
rons that inhibit food intake [pro‐opiomelanocortin (POMC)
neurons], and appetite‐stimulating neurons expressing neuro-
peptide Y and agouti‐related protein (AgRP), known collec-
tively as the melanocortin system. The melanocortin system
exerts many of its effects through regulation of activity at
the Type 4 melanocortin receptor (MC4R), which is expressed

Figure 1 An overview of macronutrient intake, tissue metabolism, and behavioural changes observed during simple starvation, protein deficiency, and
cachexia. *Increased appetite to protein‐rich foods, yet active rejection of protein‐poor foods.

Table 1 Additional endocrine molecules that mediate food intake

Hormone Source Signalling mechanism(s)

Cholecystokinin (CCK) Enteroendocrine cells of
the duodenum and jejunum

Peripheral vagal afferent receptors and transmission of signals
to nucleus of the solitary tract; Melanocortin system198

Glucagon‐like peptide‐1 (GLP1) L cells of distal small and
large intestine

nucleus of the solitary tract in the brainstem and the
paraventricular nucleus of the hypothalamus; glucose regulation199,200

Peptide YY (PYY) endocrine L cells of the gut Hypothalamic melanocortin system*; Aversive response;
protein‐dependent satiety201,202

Glucocorticoids Adrenal gland Unclear, but potentially permissive in the orexigenic effect
of AgRP in the hypothalamus203,204

Insulin Endocrine pancreas Hypothalamic melanocortin system205,206
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in numerous brain regions. POMC neurons release the MC4R
agonist neurotransmitter alpha‐melanocyte stimulating
hormone, whereas AgRP neurons directly inhibit POMC neu-
ronal activity and also release the MC4R inverse agonist AgRP
at most MC4R expressing neurons. Ghrelin induces food in-
take primarily via activation of neurons expressing neuropep-
tide Y/AgRP neurons in the arcuate nucleus of the MBH,11–13

which in turn send projections to numerous nuclei within the
hypothalamus, including the paraventricular, ventromedial,
dorsomedial, and lateral hypothalamus, as well as nuclei out-
side of the hypothalamus, including the nucleus of tractus
solitarii and parabrachial nucleus (PBN).14 Conversely, the
anorexigenic adipokine leptin is markedly reduced during
starvation.15 Leptin functions as a long‐term signal of energy
status, with circulating levels proportional to total adipose
stores.16 Whereas the presence of leptin is permissive of nor-
mal caloric intake and neuroendocrine function, a fall in leptin
levels signals a loss of long‐term energy stores. Correspond-
ingly, decreased leptin is associated with decreased anorexi-
genic POMC neuronal activity, thereby triggering hunger and
accompanying physiologic responses during starvation.17 This
neuroendocrine interplay between rising levels of ghrelin and
falling levels of leptin synergistically increases appetite during
starvation. This intricate balance between upregulation of
orexigenic and downregulation of anorexigenic molecules is
a unifying theme of starvation neurophysiology.

Locomotor activity

The regulation of activity in response to starvation is
somewhat more complex than that of appetite. On one hand,
voluntary activity increases energy usage and exacerbates
energy debt in the absence of food intake. Yet, for nearly all
of human existence, survival depended on the ability to forage
or to efficiently locate, acquire, and consume food.18 As such,
foraging is deemed an obligate life history strategy, and a
species’ ability to recognize when foraging is beneficial or
detrimental is a part of its evolutionary code.19 In general,
starvation increases foraging behaviours when the likelihood
of a meal is increased, yet limits foraging and movement when
prey or food is limited.20,21 During calorie deprivation, hyper-
activity and increased foraging behaviour are readily observed
in rodents, wherein they exhibit stereotypic food anticipatory
activity in the hours preceding mealtime.22 Although the
neural pathways underlying this response are incompletely
understood, this behaviour is associated with concurrent
increases in hypothalamic turnover of norepinephrine, dopa-
mine, and serotonin.23 The neuropeptide orexin‐A, released
by neurons located in the lateral and perifornical hypothala-
mus, is required for fasting‐associated activity increases.
Furthermore, recent mouse work demonstrated that AgRP
neurons in the MBH are themselves activated during starva-
tion and are capable of driving foraging behaviour.24 Orexin

neurons reciprocally regulate both hypothalamic AgRP neu-
rons and catecholaminergic neurons in the locus coeruleus,
establishing a brainstem‐to‐hypothalamus arousal loop that
appears to mediate fasting‐associated foraging.25,26 The de-
gree of hyperactivity and foraging is balanced between fear
of predation and likelihood of feeding, and these processes
are influenced, in part, through amygdala circuitry.27

Rodents will increase their locomotor activity (foraging)
when calorie availability is restricted, but access to at least
some nutrition is maintained. In contrast, complete removal
of food causes a triphasic response in weight loss and loco-
motor activity in rodents.28–30 The short‐lived first phase is
defined by early rapid weight loss and a decline in daily activ-
ity within 24 h of fasting initiation. During a prolonged second
phase, ongoing suppression of activity is associated with low
rates of protein turnover, high dependence on lipid oxidation,
and relatively steady body mass. Upon exhaustion of adipose
depots, fasted rodents then show a profound rise in
locomotor activity in the third phase, associated with rapid
weight loss and protein catabolism.31 The duration of the
energy‐conserving second phase is age dependent, longest
in older animals that have larger adipose depots. Similar re-
sponses were shown in other species, most notably migratory
birds and emperor penguins, in which the metabolic shift
from lipid to protein catabolism is a signal of expiring energy
stores that switches behavioural programme from conserva-
tion to active foraging.32,33 Collectively, these observations
demonstrate the clear link between voluntary activity and en-
ergy balance and reveal an evolutionarily conserved mecha-
nism whereby activity is regulated both by food availability
and by long‐term energy stores.

Resting metabolic rate

Energy conservation is a key component of the adaptive re-
sponse to starvation. Resting metabolic rate (RMR), the en-
ergy used to maintain body temperature, repair organs and
tissues, maintain ion gradients, and support cardiorespiratory
function, accounts for approximately two‐thirds of total
energy expenditure.34 Therefore, the RMR represents the
greatest potential reservoir for energy conservation. Indeed,
decades of research demonstrate that one of the main adap-
tations in humans and other species to nutrient deprivation is
to reduce RMR. RMR is proportional to an animal’s lean body
mass, as lean tissues are far more metabolically active than
adipose tissue. The suppression of RMR seen in response to
even prolonged starvation exceeds that which can be
explained by pure loss of lean mass, indicating that RMR
depression is an active conservation strategy. This is known
as ‘adaptive thermogenesis’, because heat generation is the
principal component of resting energy expenditure that is
modulated in response to feeding. One of the earliest reports
of this process showed the basal metabolic rate (equal to the
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RMR upon waking, while fasted and at rest) of a man who
fasted for 42 days, with intake limited to water, lemonade,
or beer. Basal metabolism progressively decreased until the
end of his fast, at which time, his resting energy expenditure
was approximately half of that in the fed state.35 Similarly,
the Minnesota experiment challenged normal weight partici-
pants through stages of semi‐starvation, restricted refeeding,
and ad libitum refeeding, demonstrating excess suppression
of RMR during undernutrition.36 Rats and mice also reduce
thermogenesis response to fasting, suggesting that this is an
evolutionarily conserved mechanism to preserve body
mass.37,38 Suppression of thermogenesis can preserve mass
over a large range of caloric deficits, perhaps most recogniz-
ably in the context of failure to lose weight during dieting.39

The RMR is largely under the control of the sympathetic
nervous system (SNS). Catecholamines released into the syn-
apse from noradrenergic nerve terminals or systemically from
the adrenal medulla increase the rate of cellular metabolism
and mobilize fuel stores by stimulating lipolysis in adipocytes
and glycogenolysis and gluconeogenesis from the muscle
and liver.40 The SNS is responsive to nutritional status—en-
gaged by overfeeding and suppressed by fasting.41 This re-
sponse is seen in the human studies cited above, wherein
fasting decreased resting heart rate, a surrogate for decreased
sympathetic tone, in addition to its effects on thermogenesis.
Indeed, fasting mice and rats also exhibit decreases in heart
rate and blood pressure, consistent with decreased SNS
activity.42,43 Fasted rats have lower levels and turnover of nor-
epinephrine in the heart, liver, pancreas, and other sympa-
thetically innervated tissues as compared with fed rats.44

Although these cardiovascular effects can themselves con-
serve energy, the SNS has direct effects on thermogenesis me-
diated primarily by brown and white adipose tissue (WAT) via
the β3 adrenoceptor.45 SNS activation stimulates uncoupled
oxidative respiration via the expression of uncoupling protein
1 (UCP1), leading to non‐shivering thermogenesis in brown
adipose tissue (BAT).46 Simultaneously, adrenergic input in-
duces lipolysis in WAT, thereby providing a fuel source for
BAT thermogenesis.47 Although previously thought to only
be found in infants, BAT has recently been identified as an im-
portant thermogenic tissue in adult humans, as well.48–52

Thus, the decreases in RMR induced by fasting appear to be
largely mediated by decreased SNS activity and the resultant
restriction of thermogenesis and cardiac output.

Fuel utilization and tissue catabolism

The primary purpose of the metabolic response during fasting
and starvation is to provide sufficient energy to the brain and
other tissues critical for survival. During starvation, energy in
the form of glucose is mobilized during early starvation, with
ketone bodies serving as the primary energy source for the
heart and brain in prolonged starvation.53 If fasting proceeds
beyond one day in humans, or 8–12 h in mice, hepatic stores
of glycogen are rapidly depleted, and catabolism of adipose
and muscle tissue serve as the major sources of energy.54,55

Because fat stores are limited in their ability to generate glu-
cose, muscle catabolism is the primary source of hepatic and
renal glucose production during starvation through liberation
of gluconeogenic amino acids.56 However, proteins are not a
substantial stored energy reserve, and humans evolved to
preserve protein by shifting our fuel utilization from glucose
to ketone bodies after just 2 days of starvation.57 These
ketone bodies are produced by the liver from
lipolysis‐liberated fatty acids and significantly curtail muscle
catabolism during starvation.58 Indeed, humans preferentially
catabolize fat stores over skeletal muscle mass during
prolonged caloric deficit.1 If starvation persists after fat stores
are depleted, protein catabolism accelerates and can lead to
severe wasting, organ failure, and ultimately death.59,60 The
preferential catabolism of adipose tissue is largely driven by
the endocrine response to starvation. In the short term, fall-
ing blood sugar is met with the counter‐regulatory endocrine
response, including release of glucocorticoids, glucagon, and
growth hormone, and a concomitant decrease in insulin.61,62

This stimulates both gluconeogenesis and lipolysis, engaging
a catabolic programme that redistributes stored energy in
the absence of food intake.63 Although full discussion is out-
side of the scope of this review, a review of the major
changes in circulating hormone levels is summarized in Table
2. Taken together, this strategic triaging of energy store

Table 2 Overview of peripheral hormone response during starvation, protein malnutrition, and cachexia

Starvation Protein malnutrition Cachexia

Cortisol Increased63 Increased207,208 Increased96,209

Thyroid hormone Decreased210–212 Decreased213 Increaseda 143

Parathyroid hormone Increased214 Increased215 Increased138,216

Renin–angiotensin aldosterone Increased217,218 Increased; minimal excretion219 Increased220,221

Norepinephrine Increased peripherally222;
reduced action centrally223

Increased peripherally;
reduced action centrally224

Increased221

Growth hormone Increased61,62 Increased225 Increased226

Insulin Decreased222,227 Increased228 Decreaseda 221,229–231; impaired secretion
IGF1 Decreased232 Decreased233 Decreased234

Data are compared with healthy (all human studies) or pair‐fed controls. Trends reported from human studies are italicized.
aCompared with non‐cachectic cancer patients.
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utilization during starvation serves to reduce breakdown of
proteins while providing adequate energy substrates for the
brain and other tissues critical for survival (Figure 2A).

Protein malnutrition

Protein malnutrition represents a special case of undernutri-
tion, in which specific adaptations evolved to ensure
adequate intake of amino acids essential for growth, repro-
duction, and survival.64 In contrast to simple starvation,
which is defined as caloric insufficiency, in protein malnutri-
tion, an imbalance in amino acid content or inadequacy of
one or more amino acids drives behavioural and metabolic
responses designed to correct the imbalance. Protein malnu-
trition can refer to a broad range of protein‐deficient diets
from total lack of protein content to specific amino acid
shortages. For the sake of this review, we will define protein
malnutrition as either overall inadequate protein intake—a
low protein (LP) diet—or the dietary absence of a single es-
sential amino acid (EAA‐deficient diet), a scenario which best
exemplifies the protein‐specific homeostatic circuit. Absence
or excess of single amino acids elicit powerful feeding and be-
havioural effects, which in some cases can exacerbate overall
energy imbalance. Imbalances in amino acids are then recov-
ered via the increased catabolism of lean tissues, which may
rely upon pathways that increase RMR. This highlights a
graded system in which regulation of nutritional composition
preferentially drives the response programme over pure calo-
ric content. Below, we discuss the parallel mechanisms that
mediate these processes and their interactions with homeo-
static systems employed during starvation.

Ingestive behaviour

Animals fed an LP diet display alterations in appetitive behav-
iours that vary depending on protein content. For example,
rats fed a moderately LP diet, with 8–10% of energy as
protein, display sustained hyperphagia, prioritizing normaliz-
ing protein levels over caloric homeostasis.65–67 However,
rodents consuming either very LP diet (<8% of energy in rats

or <5% in mice) or EAA‐deficient diets become hypophagic,
even in the context of negative energy balance.68,69 When ex-
posed to such a diet, rats will decrease meal size and increase
interfeeding intervals within 20 min of meal onset, mediated
by neuronal detection of the EAA imbalance.70,71 Within
hours, the rats then develop conditioned taste aversion to
the deficient diet while also developing preference for the
missing amino acid.72,73 Thus, despite undernutrition, labora-
tory rodents will paradoxically sustain hypophagia in the pres-
ence of EAA‐deficient foods. When given access to foods
containing the missing amino acid, or if the deficient EAA is
injected into the brain, feeding behaviour rapidly resumes
with preference shown for the nutritionally replete food.74

Upon refeeding, rats will even prefer a protein‐free meal to
an amino acid‐imbalanced chow, reinforcing the importance
of amino acid composition as a driver of food preference.75

Chronic hypophagia is therefore driven by aversion to EAA
deficiency, not lack of appetite. These observations translate
somewhat to human studies, as moderate restriction of
dietary protein induces adaptive changes in food intake to
restore adequate protein status, but people will not overeat
a very LP diet to the point of protein repletion.76,77 These
findings led to the hypothesis of a ‘protein‐centric’ feeding
paradigm, in which dietary amino acid composition is
proposed to be the primary determinant of ingestive behav-
iour, superseding the drive for energy homeostasis.

The sensing of amino acid deficiency during protein malnu-
trition is complex and involves both the hypothalamus and
the anterior piriform cortex (APC), a region involved in olfac-
tion that is amongst the most primitive parts of the mamma-
lian cortex.78,79 The APC detection mechanism relies on the
accumulation of uncharged transfer RNA, which activates
the general amino acid control non‐derepressing kinase 2
(GCN2). Mice and drosophila lacking GCN2 do not detect or
avoid EAA‐deficient diets, unless this exposure is prolonged.78

GCN2 phosphroylates eukaryotic initiation factor 2 (EIF2A) in
APC neurons, initiating a signalling cascade that functions to
block general protein synthesis.78,80 The net effect of this
pathway is to reduce GABAergic inhibition in the APC circuit
and increase glutamatergic transmission.81 Although it re-
mains unclear which targets of APC mediate the anorectic re-
sponse, fMRI assessments in rats show rapid activation of

Figure 2 Relative rates of carbohydrate, fat, and protein catabolism during simple starvation (A), protein malnutrition (B), and cachexia (C).
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both the ventromedial and lateral hypothalamus, two regions
involved in feeding behaviours that receive APC axonal
projections.81,82 However, recent conflicting studies question
the GCN2/EIF2A‐dependent mechanism in the APC, suggest-
ing that neuronal sensing of amino acids remain incompletely
understood.83 A similar mechanism for EAA detection in the
MBH was proposed, supported by the blunting of the anorec-
tic response to a leucine‐deficient diet following adenoviral
knockdown of GCN2 in the arcuate nucleus of mice.84

Although appetite‐regulating neurons in the hypothalamus
may directly detect EAA deficiencies, central melanocortin
signalling appears to only play a minor role in the acute feed-
ing response. Mice depleted of the MC4R have a slightly at-
tenuated acute anorectic response to EAA‐deficient diet,
but neither pharmacologic blockade nor genetic blockade im-
pacts the chronic hypophagia induced by dietary EAA
deficiency.68 This observation illustrates the mechanistic and
behavioural divergence between feeding responses—driven
principally by aversion—and appetite, which is preserved.

Locomotor activity

Rodents fed EAA‐deficient diets develop rapid and sustained
anorexia yet display increased foraging behaviours in effort
to find foods containing the needed EAA.81 This supports the
observation that hypophagia observed during EAA‐deficient
diet consumption is not reflective of a global decrease in appe-
titive behaviours. Similar to fasting, both LP diet and EAA defi-
ciency significantly increase locomotor activity compared with
rodents fed normal chow.85 During the initial EAA‐deficient
meal, increased activity corresponds temporally to meal
termination and is characterized by digging in their food cup,
suggesting that the purpose of this activity is to seek new
foods.86 Accordingly, this behaviour is rapidly extinguished
upon reintroduction of the deficient EAA, in a process depen-
dent upon normal protein synthesis in the APC.87

As with the regulation of food intake, the regulation of
foraging behaviour because of protein malnutrition is
complex. The key site of signal integration appears to be
orexin neurons in the lateral hypothalamus, which receive
both excitatory projections from the APC and peptidergic
projections from the MBH. Disinhibition of APC neurons in
response to EAA deficiency then directly activates lateral hy-
pothalamic orexin neurons, which coordinate the locomotor
appetitive behaviours (reviewed in Gietzen and Aja 81).
Karnani and colleagues demonstrate that orexin neurons
are also activated by non‐EAAs, which may be increased in
the context of EAA deficiency, leading to increased foraging
activity.88 These authors were further able to show that
non‐EAAs at physiologic concentrations were able to over-
come glucose inhibition of orexin neurons, providing a mech-
anistic explanation for the activation of foraging in the
EAA‐deficient setting despite adequate calorie intake.88

Collectively, it is clear that protein malnutrition induces forag-
ing behaviours similar to that of a starving animal and, com-
bined with a strong preference for amino acid replete food
sources, serve to maximize the animal’s chances of rectifying
nutrient imbalances.

Resting metabolic rate

The central sensing of amino acid deprivation can regulate
energy expenditure and autonomic outflow through mecha-
nisms that are independent of other macronutrients. Dietary
leucine deprivation increases thyrotropin‐releasing hormone
expression in the hypothalamus, ultimately increasing energy
expenditure as indicated by measures of locomotor activity,
oxygen consumption, and temperature regulation.89 This col-
lective increase in thyrotropin‐releasing hormone observed
during leucine deprivation results in SNS activation and auto-
nomic outflow to peripheral tissues that increases RMR and
lipid catabolism, as reviewed earlier. Specifically, leucine dep-
rivation increases the expression of the β3‐adrenoceptor,
Adrb3, as well as Ucp1 in BAT consistent with sympathetic ac-
tivation of thermogenesis.90,91 Similarly, we found that Ucp1
expression was increased in mice and rats fed with a
valine‐deficient diet, and Guo and colleagues showed that
both valine and isoleucine deficiency increase lipid mobiliza-
tion and energy expenditure suggesting that hypermetabo-
lism is a conserved response to amino acid imbalance.68,85

Other investigators demonstrated that leucine deprivation in-
duced the induction of Ucp1 and other markers of thermo-
genic activation (generally known as ‘browning’) in WAT, via
a CNS pathway and activation of sympathetic outflow.92 The
evolutionary benefit of this increase in metabolic rate and
metabolic reprogramming of adipose tissue in an undernour-
ished animal is not immediately clear, but may be important
to balance the energy demands of foraging, via SNS‐mediated
activation of lipolysis.90

Fuel utilization and tissue catabolism

When compared with starvation, protein malnutrition is
broadly associated with an earlier onset and increased pro-
tein and fat catabolism (Figure 2B). After being fed a diet de-
ficient in EAA, rodents quickly deplete carbohydrate stores
similar to that observed during simple starvation. However,
rodents catabolize muscle at a significantly higher rate than
their normal chow pair‐fed counterparts, demonstrating that
a distinct and independent catabolic pathway is associated
with EAA deficiency.68 Active muscle catabolism releases
EAAs into the blood, thereby providing a source of
diet‐limited EAAs and allowing for ongoing protein synthesis
to maintain essential physiological processes. Mechanistically,
this process is driven by the induction of catabolism‐inducing
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E3 ubiquitin ligases (MuRF1 and MAFbx) in skeletal muscle.
These catabolic proteins are upregulated in the muscle of ro-
dents fed an EAA‐deficient diet after just 3 days and remain
elevated after nearly 3 weeks.68 To a lesser extent, this in-
creased catabolic state observed in the muscle compartment
for EAA‐deficient animals is also observed in fat tissues. Spe-
cifically, rodents on an EAA‐deficient diet catabolize fat stores
similarly to pair‐fed controls for the first week, but burn fat at
a much higher rate after 2 weeks.68 This catabolic programme
is likely to be influenced both by increased energy expendi-
ture described earlier, along with the actions of circulating
glucocorticoids. Although the general trends of hormonal
changes associated with protein malnutrition are similar to
those found in starvation (Table 2), administration of a
valine‐deficient diet increased plasma corticosterone com-
pared with pair‐fed control mice and rats.68 In response to
a leucine‐deficient diet, Xia and colleagues define a novel role
of p70 S6 kinase 1 (S6K1) in modulating expression
of corticotropin‐releasing hormone in MC4R‐positive
hypothalamic neurons. This induction of hypothalamic
corticotropin‐releasing hormone expression is essential for
stimulating lipolysis in response to leucine deprivation.93 Fur-
thermore, glucocorticoids play a well‐established role in me-
diating skeletal muscle catabolism via the induction of the
E3 ubiquitin ligases referenced previously in multiple patho-
physiologic conditions.94–96 Although the dependence of
muscle catabolism in response to EAA deficiency upon gluco-
corticoid elevation has not been directly confirmed, the asso-
ciative data provide compelling evidence that glucocorticoids
serve as a unifying endocrine mediator of macronutrient
mobilization. Conversely, the levels of the anabolic hormones
insulin and insulin‐like growth factor‐1 are decreased in
rodents on an EAA‐deficient diet compared with pair‐fed
animals, further shifting the metabolic balance towards
catabolism.68 In total, EAA‐deficiency results in a sustained
catabolic state of peripheral tissues, liberating fat and muscle
stores at a faster pace than simple starvation.

Cachexia

Cachexia is a wasting syndrome associated with a broad
range of acute and chronic illnesses, including infection, heart
disease, cancer, and chronic inflammatory conditions. Unlike
starvation and protein malnutrition, which are dictated by
environmental nutrient availability, cachexia results from
internal factors and cannot be fully reversed by nutritional
supplementation. Cachexia is characterized by the
co‐occurrence of anorexia, lethargy, hypermetabolism, and
accelerated catabolism.97 This programme is the result of in-
flammatory and metabolic signals that reorient the homeo-
static mechanisms employed during starvation and protein
malnutrition, establishing a hierarchy of context‐specific

afferent signals. That cachexia is conserved across species,
and inflammatory conditions suggest that it likely evolved as
an adaptive response to life‐threatening illness. Indeed, sev-
eral studies demonstrate survival benefits of this catabolic
state during acute infectious processes.98,99 These benefits
are traditionally thought to result from the redirection of
valuable metabolic resources from the brain and gut to the
immune response.100 Recent work adds that this metabolic
programme aids in tissue tolerance during the immune re-
sponse, preventing end organ dysfunction.98,99 Proinflamma-
tory cytokines are common amongst cachectic conditions and
sufficient to drive much of the metabolic physiology. Recent
work has expanded the list of afferent mediators contributing
to wasting and offered new insights into its aetiology. We
contrast the CNS response to cachexia from those of starva-
tion and protein malnutrition and discuss the mediators that
drive these divergent programmes.

Ingestive behaviours

Because of the increase in resting energy expenditure during
cachexia, an increase in energy intake would be required to
offset the overall catabolic state. However, cachexia induces
appetite suppression that amplifies the overall energy deficit
(Figure 3). In some cases, this presents as frank anorexia,
whereas in other cases, a more subtle failure to appropriately
increase feeding is observed.101–104 The resistance to the
effects of energy debt are most notable after substantial

Figure 3 Energy intake and expenditure during starvation, protein mal-
nutrition, and cachexia.
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weight is lost, when the hypothalamic feeding rheostat would
be under increased pressure to reestablish homeostasis. The
disinterest in feeding during cachexia is in direct opposition to
what is observed in simple starvation or protein malnutrition,
each of which results in behaviours that attempt to restore
macronutrient homeostasis.

Multiple systemic and central factors converge to inhibit
ingestive behaviours, with the hypothalamus and brainstem
thought to be the major sites of signal integration. Principal
amongst anorectic factors are inflammatory cytokines, in-
cluding interleukin‐1β (IL‐1β), tumour necrosis factor
(TNF), leukaemia inhibitory factor (LIF), Type 1 interferon
(IFN), and prostaglandins.97,105 Each of these molecules is
independently capable of inducing anorexia when adminis-
tered either peripherally or directly in the brain. Research
in our laboratories and others’ over the past two decades
demonstrated that a principal site of action for these cyto-
kines is in the MBH, where specialized fenestrated endo-
thelium and localized inflammatory cells allow for the
transmission and amplification of peripheral inflammatory
signals (reviewed in Burfeind et al.106). These cytokines
then act directly or indirectly to increase signalling through
the MC4R, in a fashion similar to leptin.101 Pharmacologic
or genetic ablation of MC4R signalling reverses cachexia in
multiple acute and chronic laboratory rodent models of
cachexia.107–112

More recent work implicates two populations of neurons
in the brainstem in the anorectic component of cachexia.
The first consists of neurons in the PBN, located in the pons,
which relays noxious stimuli from the viscera to the amygdala
as a component of the threat circuit. Activation of PBN calci-
tonin gene‐related peptide (CGRP)‐expressing neurons po-
tently suppresses appetite.113 These neurons were activated
in two murine models of cancer cachexia and sterile inflam-
mation, and their chemogenetic inhibition was sufficient to
reverse the anorexia and weight loss associated with each
model.113,114 As PBN CGRP neurons are inhibited by hypotha-
lamic AgRP neurons and express MC4R, they may function
as a downstream effector of hypothalamic‐mediated
cachexia.115,116 Given their role in relaying aversive signals,
these neurons may also have non‐overlapping influences
on cachexia–anorexia, generating redundancy in this system.
A second brainstem site involved in the transmission of nox-
ious signals is located in the area postrema, a
circumventricular organ most well known for its role in nau-
sea. A population of neurons there expresses the GDNF fam-
ily receptor alpha like, the only known receptor for growth
differentiation factor 15 (GDF‐15), a member of the
transforming growth factor beta ligand family that sup-
presses food intake.117–119 Elevated serum levels of GDF‐15
are found in multiple cachectic states and serum levels corre-
late with weight loss in prostate cancer.99,120 Treatment of
mice with GDF‐15 or implantation with a GDF‐15 overex-
pressing tumour is sufficient to induce cachexia, whereas

treatment with a neutralizing antibody reversed cachexia in
multiple murine cancer models.104,121,122 Although there is
some integration of these anorectic pathways, the existence
of multiple disparate mediators represents a level of redun-
dancy found in few biological systems, suggesting that sup-
pression of food intake during illness is an essential
response. Indeed, a provocative study by Wang and col-
leagues demonstrated that improvement in survival in mice
with a Salmonella infection required fasting‐induced
ketogenesis.98 Whether decreased nutrient intake provides
an adaptive advantage in the contexts of cancer or other
conditions remains unclear.

Locomotor activity

Unlike starvation or protein malnutrition, cachexia is associ-
ated with a profound lethargy and decrease in both foraging
and non‐foraging locomotor activity. Lethargy is amongst the
first signs of sickness, often observed prior to the onset of
fever in patients with microbial infections or murine models
of sterile inflammation.123 From an evolutionary perspective,
this response makes sense both to reserve metabolic
resources for the fight against infection and to avoid expo-
sure to the elements or predation while in a weakened state.
Cachectic rodents neither exhibit the increase in foraging be-
haviour seen in other states of undernutrition nor develop
anticipatory activity when entrained with time‐restricted
feeding paradigms.124 As described earlier, foraging behav-
iour is mediated by perifornical/lateral hypothalamic orexin
neurons, which receive input from the MBH, APC, and
brainstem arousal centres. Orexin neuron activity is de-
creased in mice treated with lipopolysaccharide and
sarcoma‐bearing rats, and intracerebroventricular adminis-
tration of orexin can restore normal locomotor activity in
these models, suggesting that the inhibition of orexin neuron
activity underlies sickness‐associated lethargy.124 This inhibi-
tion appears to be mediated by an increase in the activity
of local interneurons that express neurotensin, but the link
between inflammation and the activity of these neurons
remains poorly described.124 Within the MBH, AgRP neuron
activity is necessary to engage in foraging behaviour, yet
AgRP neuron activity and peptide release are reduced in ca-
chectic rodents.24,125,126 As AgRP neurons are known to share
reciprocal projections with the lateral hypothalamus and
thought to drive foraging via activation of orexin neurons,
the loss of AgRP neuron activity may mediate the downregu-
lation of orexin neuron activity. The aforementioned study
that evaluated PBN CGRP neurons also found that their
chemogenetic inhibition reversed lethargy.114 Neurons in
the lateral PBN send projections to orexin neurons that then
innervate the locus coeruleus, but it remains unclear whether
orexin neurons play a role in lateral PBN CGRP‐mediated leth-
argy or these are two parallel pathways.127
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Decreased activity in cachectic humans and rodents ap-
pears to be multifactorial, involving peripheral mechanisms,
as well. Muscles from cachectic mice exhibit decreased mass,
strength, and function and exhibit early fatigability.128,129 Be-
cause inflammatory signalling can drive both skeletal muscle
wasting and lethargy, it can be difficult to attribute the de-
crease in locomotor activity specifically to muscle wasting.
However, transgenic mice overexpressing the transcription
factor Forkhead box protein O1 (FoxO1), a driver of skeletal
muscle catabolism, show reduced muscle mass and sponta-
neous locomotor activity, suggesting that skeletal muscle
loss is sufficient to suppress activity.130 Cachexia is further
associated with metabolic changes that alter fuel mobiliza-
tion and utilization. Recent work in mice bearing head and
neck cancers shows that decreases in locomotor activity
can occur independent of central inflammation and prior to
significant muscle loss.131 Metabolic phenotyping in these
mice revealed significant changes in carbohydrate metabo-
lism associated with lower blood glucose levels and in-
creased skeletal muscle lactate accumulation, positing an
additional contribution of metabolic exhaustion to
hypoactivity in cachexia.132

Resting metabolic rate

The regulation of RMR in cachexia is most thoroughly stud-
ied in the context of cancer, with the majority of studies
demonstrating normal or increased energy expenditure in
a variety of different cancer types.133–136 Cancer patients
frequently have reduced caloric intake and weight loss, so
even ‘normal’ energy expenditure should be considered ex-
cessive in this context. RMR is related to the degree of ca-
chexia, with elevated energy expenditure documented
prior to overt weight loss, sustained through early cachexia,
then declining in those most severely affected (refractory
cachexia),133,137 perhaps because of depletion of available
metabolic substrates. Indeed, increased fat oxidation is ob-
served in cancer patients, irrespective of weight loss, and
browning of WAT is observed in murine cachexia models
and in humans with cachexia.103,138 Although direct action
of circulating factors (e.g. parathyroid hormone related pep-
tide) can activate thermogenesis and browning of adipose
tissue in a subset of cancer types, the most robust and con-
sistent driver of this process is chronic activation of adrener-
gic sympathetic inputs. A number of studies demonstrate
activation of pre‐autonomic neurons in the paraventricular
nucleus of the hypothalamus during both the early and late
stages of cachexia, suggesting that this is a common mech-
anism of induction of thermogenesis in this disease.139,140

Although few in number, studies that explored the impact
of glucocorticoids on human adipose tissue thermogenesis
demonstrated an increase in BAT activation by glucocorti-
coids, suggesting that this is another mechanism driving

increased energy utilization during cachexia.141,142 Further-
more, the hormonal changes associated with cancer ca-
chexia are characterized by increased release of thyroid
hormone as compared with non‐cachectic patients, indicat-
ing that this may further increase the RMR143 (Table 2). Col-
lectively, existing data argue that increased metabolic rate
(or lack of compensatory metabolic response to insufficient
caloric intake) is an important feature of cachexia, driven by
a combination of metabolic inefficiency (‘futile’ metabolic
cycles) and tissue reprogramming. However, the afferent
signals driving these events, as well as the relative contribu-
tion of CNS vs. peripheral mechanisms remain poorly
described.

Fuel utilization and tissue catabolism

As in starvation and protein malnutrition, cachexia is associ-
ated with a global shift from carbohydrate to lipid oxidation
in both patients and rodent models of disease.144–146 Levels
of both glucose and lipids are frequently elevated in the
blood of cachectic patients and rodents, indicating
adequate substrate availability, particularly in early stages of
cachexia.147,148 That hyperglycaemia is common in cancer pa-
tients despite the tumour’s increased glucose avidity, implies
a global metabolic reprogramming favouring lipid as a sub-
strate. The relative fuel utilization can be measured by indi-
rect calorimetry and is expressed as the respiratory
exchange ratio (RER)—the ratio between the amount of car-
bon dioxide generated and the amount of oxygen consumed.
Multiple studies show a decrease in RER of cachectic patients
and rodents, indicating a preference for lipid oxidation over
glucose.103,144,149 Evidence from models of early cachexia
suggests that this transition occurs before substantial weight
loss occurs.144 Lipid oxidation appears to be elevated princi-
pally in the skeletal muscle, where excess lipid oxidation
may be sufficient to drive muscle wasting.144,150 However,
hepatic lipid oxidation, required for ketone generation, is de-
creased in multiple models of cachexia, demonstrating a
tissue‐dependent reprogramming.151,152 This impaired that
ketogenesis is hypothesized to be a driver of tissue wasting,
but conflicting data exist, with dietary or pharmacologic acti-
vation of ketogenesis shown to reverse cachexia in mouse
models of lung and pancreatic cancer, but not in a rat sar-
coma model or human cancer patients.151,153–155 The use of
proteins as a metabolic fuel is more difficult to measure, as
RER does not take them into account, and they generally con-
stitute a small contribution to overall metabolism. Although
muscle wasting is a cardinal feature of cachexia, levels of se-
rum amino acids and urinary nitrogen excretion are largely
unaltered or paradoxically decreased in cachectic patients
and rodents.156–158 Much of the protein mobilized from mus-
cles during cachexia is thought to provide substrate for the
hepatic acute phase response to inflammation, a

1438 B. Olson et al.

Journal of Cachexia, Sarcopenia and Muscle 2020; 11: 1429–1446
DOI: 10.1002/jcsm.12630



metabolically costly process involving the synthesis and re-
lease of bioactive proteins involved in modifying the meta-
bolic environment of the threatened host. Because the
amino acid composition of muscle differs substantially from
acute phase reactants, it is hypothesized that this drives fur-
ther wasting to supply adequate levels of the limiting amino
acids.159

In comparison with both starvation and protein malnutri-
tion, cachexia is associated with the greatest muscle and fat
catabolism relative to the degree of caloric deficiency (Fig-
ure 2C).102,160 Using computational models of cachexia in
humans, it is estimated that lipolysis increases by up to
30–80% over baseline,161–163 while reports suggest muscle
catabolism may increase by 40–60%.164–167 Muscle loss in
cachexia owes to a combination of reduced protein synthe-
sis and increased protein catabolism.168 The relative influ-
ence of altered synthesis and degradation to wasting
varies amongst studies, with early reports suggesting that
decreased synthesis played a dominant role.169,170 More re-
cent studies clearly established that cachectic patients retain
anabolic potential, with a clinical trial showing net gain in
muscle mass with the ghrelin mimetic (anamorelin) in pa-
tients with cancer cachexia.171–175 Amino acid supplementa-
tion in cachectic tumour‐bearing rats increased protein
synthesis, yet degradation outpaced gains in protein
synthesis.176 This catabolic programme in skeletal muscle is
mediated through the activation of the ubiquitin protea-
some pathway and enhanced Mafbx, Murf1, and Foxo1
expression.177 Although common to all three states of un-
dernutrition, the ubiquitin proteasome pathway is activated
to a greater degree in cachexia than in either starvation or
protein malnutrition.68,102 The activation of the ubiquitin
proteasome pathway in cachexia reflects the influences of
direct inflammatory cytokine signalling on muscle, persis-
tently elevated glucocorticoid signalling, and disuse.178

Multiple in vitro and preclinical studies confirm that
inflammatory cytokines, including IL‐1, TNF, and IFNγ, and
glucocorticoids, are independently sufficient to induce E3
ubiquitin ligase expression in skeletal muscle, thereby ampli-
fying the catabolic effect of undernutrition.179–181

Autophagy, the digestion and recycling of cellular con-
tents by the lysosome, also contributes to muscle catabo-
lism. This process is an important component of cellular
homeostasis, allowing for the degradation of damaged or-
ganelles, toxic protein aggregates, and misfolded proteins.182

Autophagy is increased following prolonged fasting in mice,
but notably is elevated in the muscles of cachectic human
mice as well, as evidenced by increased levels of autophagy
mediators BNIP3 and LC3B and the autophagy‐promoting
transcription factor FOXO3.183–189 Similar to the
ubiquitin‐proteasome pathway, autophagy can be activated
in skeletal muscle by metabolic (calorie restriction), hor-
monal (glucocorticoid), or inflammatory (cytokine) chal-
lenges, illustrating the high degree of conservation in

muscle‐intrinsic catabolic mechanisms across contexts.185

As in skeletal muscle, cardiac wasting can be driven by both
the ubiquitin proteasome pathway and increased autophagy.
Few extant data support the role of increased MAFbx and
MuRF‐1 in hearts from cachectic mice, however, with
conflicting reports in mice with cancer cachexia.102,190,191

Conversely, autophagy markers LC3‐II, cathepsin L, and
beclin are elevated in hearts from rodents with cancer
cachexia.190,192,193 The relative roles for these pathways in
cardiac wasting remain unclear and a topic of active investi-
gation. Ultimately, the cachectic humoral milieu, character-
ized by increased levels of proinflammatory mediators and
glucocorticoids, is able to augment physiologic activation of
these catabolic pathways in skeletal and cardiac muscle
beyond that of undernutrition alone.

Loss of WAT in cachexia is due to enhanced lipolysis, asso-
ciated with elevated levels of circulating free fatty acids and
glycerol.194 Lipolysis is mediated by two enzymes in adipo-
cytes—adipose triglyceride lipase (ATGL), which catalyzes
the initial hydrolysis of triglycerides to diacylglycerol, and hor-
mone sensitive lipase, which is responsible for the subse-
quent hydrolysis of diacylglycerol. Although hormone
sensitive lipase is generally considered the main inducible
driver of lipolysis, deletion of Atgl prevented lipolysis in the
B16 melanoma murine model of cancer cachexia.195 Lipolysis
in cachexia is mediated by increased SNS activation and a
host of humoral mediators, including TNF, IL‐6, and zinc alpha
glycoprotein, each of which is commonly elevated in the se-
rum of cachectic patients or rodents.194 Cachexia is also asso-
ciated with browning of WAT to promote thermogenesis via
the expression of the UCP1.103,138 In this way, cachexia mod-
ifies adipocyte biology both to induce WAT atrophy via lipol-
ysis and to increase metabolic rate through excess energy
dissipation. Fat and muscle catabolism are largely studied as
independent events in cachexia; however, several murine
studies demonstrate that preventing adipose wasting also re-
versed skeletal muscle loss.138,195 The link between adipose
wasting and muscle loss remains unclear but may owe to
oxidative stress associated with the increase in fatty
oxidation seen in cachectic muscle.150 When compared with
simple starvation and protein malnutrition, the metabolic
programmes of cachexia are broadly more catabolic and en-
ergetically inefficient, leading to an increase in resting energy
expenditure and depletion of metabolic reserves.

Conclusion

Throughout our evolutionary history, humans developed be-
havioural and biochemical strategies to cope with nutrient
scarcity in the context of famine. However, starvation was
not the only threat to survival associated with undernutrition,
as changes in ingestive behaviours and metabolism are seen
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in the contexts of protein malnutrition and infection or in-
flammation, as well. Herein, we sought to summarize general
macronutrient utilization and tissue catabolism shifts ob-
served amongst these three metabolic states, as well as the
associated deviations in neurophysiology and behaviours that
serve to rectify (or propagate) nutritional imbalances. In the
context of simple starvation and protein malnutrition, the
metabolic and neuroendocrine responses induce changes in
behaviour and metabolism that facilitate correction of the
nutritional deficiencies. Throughout the spectrum of starva-
tion and protein malnutrition, the brain receives both local
neuroendocrine signals and distant neuroendocrine signals
to interpret the body’s overall nutritional state and modu-
lates behaviours and motivations in attempt to balance en-
ergy needs, with the requirement to balance amino acid
composition eclipsing the drive to maintain overall caloric suf-
ficiency. This hierarchy may seem somewhat surprising and
may suggest that EAAs and not simple energy equivalents
are the limiting nutritional reagent for organismal survival
and replication.

The constellation of metabolic and behavioural responses
observed during cachexia represent a highly coordinated se-
ries of adaptations designed to survive acute insults by
shifting priorities to both combat and tolerate the inflamma-
tory challenge. As systemic infection represented the most
salient existential threat to animals in the pre‐antibiotic
era, the reorganization of metabolism around disease
survival provides a teleological narrative for this paradoxical
response to energy depletion. From an evolutionary
perspective, humans rarely lived long enough to develop
chronic diseases associated with cachexia. Because the met-
abolic alterations of cachexia, including browning of adipose
tissue, skeletal muscle, and adipose catabolism, and elevated
basal metabolic rate lead to a severe mismatch in energy
balance, it is commonly thought that these responses be-
come maladaptive when engaged over a prolonged period,
as during chronic disease. Furthermore, the sickness behav-
iours of cachexia (including appetite suppression, fatigue,
and debility) significantly impact patients’ quality of life,
stimulating efforts to develop treatments aimed specifically
towards reversing cachexia. However, future research may
yet show advantages to this physiology in chronic cachectic
conditions.

We recognize the important contributions that cognitive,
emotional, and hedonic inputs play in feeding motivation dur-
ing both normal physiology and pathology. Because of the
widely varying influences these psychosocial inputs play in
both energy metabolism and feeding, we chose to focus
solely on the brain’s integration of metabolic and neuroendo-
crine cues during starvation, protein malnutrition, and ca-
chexia, with a particular focus on neurological pathways
that are distinct amongst these three metabolic states. Nearly
all of the mechanistic data discussed in this review are de-
rived from studies in rodents. It is clear that these responses

are likely to be heavily modified by telencephalic inputs in
humans, which may provide an additional level of context
matching to enhance survival.

In starvation, classical neuroendocrine cues, such as
gut‐derived and fat‐derived hormones, are predominantly
responsible for organismal metabolic and behavioural out-
puts. During protein malnutrition, the direct sensing of
amino acid imbalances through recently identified neuronal
pathways in the APC likely play a direct role in driving periph-
eral tissue catabolism. The neuroscience of cachexia is de-
fined by the production of cachexia‐promoting factors that
are not regulated by nutritional stress alone, but by systemic
inflammation because of the underlying disease. The
CNS‐based pathways that regulate energy homeostasis
during cachexia remains an area of active investigation, but
a growing body of evidence demonstrates the capacity of
the brain to recognize peripheral mediators of sickness,
amplify these signals in circumventricular structures, and
modulate energy homeostasis through appetite regulation
and neuroendocrine and autonomic control of peripheral
tissue metabolism.97,106,196 Collectively, the neurophysiology
of cachexia exacerbates energy losses, whereas the neuro-
physiology of simple starvation and protein malnutrition
ultimately serve to rectify energy imbalances (Figure 3). As
evolution is driven by competing pressures, these divergent
responses are the result of a natural hierarchy of needs
and illustrate the profound impact that disease had in
shaping animal physiology. Future investigations into the me-
tabolism and neuroscience of these metabolic states may
identify distinct diverging points in our evolutionary history,
unique neurobiological pathways of CNS metabolic control,
and offer new insights into the physiologic plasticity needed
for long‐term survival of a species.
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