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Abstract: Over various scientific fields in biochemistry, amino acids have been highlighted in research
works. Protein, peptide- and amino acid-based drug delivery systems have proficiently transformed
nanotechnology via immense flexibility in their features for attaching various drug molecules and
biodegradable polymers. In this regard, novel nanostructures including carbon nanotubes, electro-
spun carbon nanofibers, gold nanoislands, and metal-based nanoparticles have been introduced
as nanosensors for accurate detection of these organic compounds. These nanostructures can bind
the biological receptor to the sensor surface and increase the surface area of the working electrode,
significantly enhancing the biosensor performance. Interestingly, protein-based nanocarriers have
also emerged as useful drug and gene delivery platforms. This is important since, despite recent
advancements, there are still biological barriers and other obstacles limiting gene and drug delivery
efficacy. Currently available strategies for gene therapy are not cost-effective, and they do not deliver
the genetic cargo effectively to target sites. With rapid advancements in nanotechnology, novel gene
delivery systems are introduced as nonviral vectors such as protein, peptide, and amino acid-based
nanostructures. These nano-based delivery platforms can be tailored into functional transformation
using proteins and peptides ligands based nanocarriers, usually overexpressed in the specified dis-
eases. The purpose of this review is to shed light on traditional and nanotechnology-based methods
to detect amino acids, peptides, and proteins. Furthermore, new insights into the potential of amino
protein-based nanoassemblies for targeted drug delivery or gene transfer are presented.

Keywords: amino acids; proteins; peptides; nanomaterials; drug delivery; gene delivery; detection

1. Introduction

Amino acids (AAs) have been spotlighted in research works over different scientific
areas in chemistry and biology [1]. AAs and derived chemicals have gained substantial
attention in drug development because of their fundamental roles in cells′ pathological
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and/or physiological processes [2]. As building blocks of various proteins, hydrophobic or
hydrophilic AAs possess extraordinarily diverse features, including reverse cross-linking,
chirality, and charge density [3].

AAs are traditionally classified as nutritionally essential or unessential for humans [4].
It has been reported that AAs were used as a supplementary therapy to treat many disor-
ders [5,6]. Because of their low molecular weight and inefficient pharmacokinetics, they
are not very effective in the clinic, which is a practical barrier that needs to be addressed [6].
Several artificial peptides and proteins consisting of essential AAs have been synthesized
and successfully tested for biomedical applications [3]. Advances in nanotechnology have
led to novel biosensing and therapeutic modalities for managing multiple diseases [7–13].
Nanomedicine is an emerging interdisciplinary field that involves nanotechnology, biology,
and medicine. In this regard, the design of novel proteins that can be self-assembled
into various supramolecular complexes is crucial in nanotechnology [14–16]. A variety of
nanotherapeutic approaches have been recently introduced for biological applications, in-
cluding to overcome chemotherapeutic resistance of cancer cells, combat cancer metastasis,
etc. [11,13,17–33]. Furthermore, thermosensitive magnetic nanomaterials were exposed to
alternate magnetic field in order to develop effective chemotherapeutic approaches [34–38].

Multiple biophysical methods can further characterize the stable form of these artificial
nanoarchitectures [39]. Compared to free AAs, self-assembled nanostructure complexes
composed of AAs have enhanced pharmacokinetic profiles and have shown increased accu-
mulation in specific target sites [6]. Peptide and protein nanotechnology have demonstrated
outstanding potential for the mimicry of living matter constituents and helped achieve
novel materials by combining proteins/peptides with nonbiological components [40–43].

Researchers have recently exploited molecular imprinting procedures to design new
polymer scaffolds that serve as synthetic receptors [44]. These can bind to specific organic
chemicals, which proved valuable in developing biosensors [44,45]. In this context, arrays
of nanostructures (i.e., carbon nanotubes, gold nano/microislands, etc.) with imprinted
polymers have been prepared to detect AAs or proteins [44,45]. Moreover, metal-based
nanoparticle (NP) sensors [46] and electrospun carbon nanofibers [47] have shown advan-
tages in the electrochemical determination of AAs or peptides.

In addition, nanotechnology has introduced many innovative devices that serve as
drug delivery and gene delivery systems [48,49]. In this regard, several AAs, peptides,
and proteins have been studied for targeted drug delivery [50,51]. The attention to them
partly stems from their flexibility in binding with different polymers and biological compo-
nents [52]. Moreover, because of their low toxicity and facilitated cellular uptake, multifunc-
tional protein-based nanocarriers hold great promise for the delivery of nucleic acids, such
as DNA, short-interfering RNA (siRNA), etc. [53,54]. Through this review, we hoped to
cast light on the nanotechnology-based techniques for sensing AAs/peptides/proteins and
provide new insights into exploiting protein-based nanoassemblies for targeted delivery of
specific drugs or genes.

2. Routine Methods for Detection of AAs, Proteins, and Peptides

Proteins are complex molecules essential to life that have enzymatic, structural, and
storage functions. The most common techniques used to determine the total amount of
protein are isotope ratio mass spectrometry (IRMS), the Kjeldahl method [55], and biuret
methods such as the Lowry′s method [56] and the Bradford method [57]. Among them,
the IRMS and Kjeldahl methods are susceptible and reproducible. However, artifacts
have been observed in these methods. The interference effect is relatively high in spec-
trophotometric and colorimetric techniques used to determine the total protein amount.
Therefore, the desired protein must be purified in the first step. However, this results in the
loss of some proteins. None of the abovementioned methods provides information about
AA composition.

The importance of AA analysis is increasing daily in different fields such as biochem-
istry, clinical chemistry, nutrition, and pharmaceutical formulation. The AA contents,
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chemical forms, and sample matrices (food, biological fluid, or protein hydrolysis) of many
samples are quite different. AAs play a significant role in forming vital biomolecules such
as hormones, neurotransmitters, antibodies, and signaling molecules. Since AAs are the
precursors of many biomarkers, determining the amount of AAs in biological fluids is
essential for the early diagnosis of many diseases. Studies have reported that many AAs
play a role in forming diseases such as phenylketonuria, citrullinemia, and homocystinuria
diseases [58,59].

Determining the separation and amount of AAs is very important to provide in-
formation about polypeptides’ and proteins′ characterization and structural properties.
However, these compounds are difficult to identify and separate because of their high
polarity and lack of strong chromophoric groups. Since many commonly used AAs cannot
be determined directly by spectroscopic methods (UV–visible spectrophotometry or flu-
orometry), the amino groups of AAs are selectively modified with substances that show
fluorescence or visible-light absorption prior to their determination [60]. Mass spectrometry
(MS) and chromatography combination are currently used as analysis platforms. The sepa-
ration and quantitative analysis of free AAs before or after protein hydrolysis is carried
out with the aid of modern methods such as ion-exchange chromatography (IEC), gas
chromatography/mass spectrometry (GC/MS), and liquid chromatography-mass spec-
trometry/mass spectrometry (LC–MS/MS). Each method comes with its own advantages
and disadvantages.

Using the GC/MS method instead of GC with flame ionization or electron capture
makes AA analysis more attractive. GC provides short analysis times, but AAs need to be
derivatized into GC-detectable forms. However, this process also prolongs the analysis
time. Substances such as N,O-bis-(trimethylsilyl), trifluoroacetamide (BSTFA), or N-methyl-
N-(trimethylsilyl) trifluoroacetamide (MSTFA) can be used for derivatization. Still, steric
hindrance due to the formation of bulky groups can be developed [61]. In 1998, Husek
described rapid derivatization (about 1 min) of AAs with alkyl chloroformates. In this
method, the esterification of carboxylic acids, amino groups, and hydroxyl groups was
carried out to form alkyl esters or N(O)-alkoxycarbonyl ethers, and AA analysis could be
performed in less than 10 min [62,63].

Moore and Stein were the first to develop an IEC-based AA analyzer in the 1960s [64].
In today’s methods, IEC and gas/liquid chromatography techniques are applied using
different detectors. IEC coupled to the postcolumn ninhydrin derivatization method is the
most widely used technique in the clinical field. It is considered a gold standard for detect-
ing AAs in biological samples because of its wide dynamic range and linearity. The major
disadvantage is that it is a time-consuming method (usually 2–3 h per sample) that requires
high sample volumes (>200 µL). In addition, detecting interfering compounds that react
with ninhydrin and cannot be determined by spectrophotometric detection generates prob-
lems [65,66]. The LC-MS/MS technique has become a compelling tool because of its better
selectivity and shorter analysis times compared to IEC. In 2018, Casado and coworkers
aimed to develop an ultraperformance liquid chromatography–tandem mass spectrometry
(UPLC–MS/MS) procedure to identify 25 AAs and 17 related compounds in plasma, urine,
cerebrospinal fluid (CSF), and dried bloodstains. The comparison of the results obtained
from this procedure with those derived from IEC revealed a good correlation between
the two techniques except for 4-hydroxyproline, aspartate, and citrulline [66]. In 2020,
Carling and coworkers investigated and compared the analytical performance of three
commercially available reagent kits for LC–MS, IEC, and LC–MS/MS, used for plasma AA
analysis. According to their results, the LC–MS test showed a low correlation with IEC,
while LC–MS/MS showed a good correlation with IEC. It was stated that IEC should no
longer be defined as the gold standard method for plasma AA analysis, as LC-MS/MS
offered superior specificity and faster analysis time. Although the sensitivity of the chro-
matographic techniques is high, they are expensive, do not allow point-of-care analysis, and
require killed personnel. Detection of proteins by direct protein electrochemistry makes
them suitable for ‘point of care’ or ‘in-field testing’ applications. Also, the electrochemistry
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of direct protein enables the detection of conformational changes and modifications in
proteins [67].

3. Different Nanomaterials as Nanosensors for Detecting AAs, Proteins, and Peptides

Nanomaterials are promising materials with at least one size in the range of 1–100 nm.
Outstandingly high surface areas can be attained via the intelligent design of nanomateri-
als. Furthermore, nanomaterials can be synthesized with outstanding electrical, optical,
catalytic, and mechanical properties that are superior to those of their bulk counterparts.
Nanomaterial properties can be adjusted as desired via controlling the synthesis conditions
and adequate functionalization [68].

Nanomaterials can be categorized into three classes according to their content: (i)
organic-carbon-based nanomaterials-carbon nanotubes (CNTs), carbon nanofibers (CNFs),
fullerenes (C60), and graphene (GR). Chemical vapor deposition (CVD) [69], laser abla-
tion [70,71], and arc discharge techniques [72,73] are used for the production of organic-
carbon-based nanomaterials; (ii) inorganic-based nanomaterials—quantum dots, gold NPs,
and magnetic NPs. These nanomaterials can be synthesized into metals such as Au or
AgNPs, metal oxides such as TiO2 and ZnO NPs, and semiconductors such as silicon
and ceramics; (iii) hybrid nanomaterials, which can be any combination of carbon-based,
metal-based, or organic-based nanomaterials with any form of metal, ceramic, or polymer
bulk materials [74].

A sensor is an analytical device that can detect and quantify the presence of an analyte
in a sample. It includes receptors, transducers, and reading systems. The biological
receptor interacts specifically with the target analyte, and the transducer converts this
information into a measurable signal [75]. For example, piezoelectric transducers are
involved in measuring the change in mass after the formation of analyte–bioreceptor
complexes, while optical transducers and electrochemical transducers measure the changes
in light intensity and conductivity, current, or potential, respectively. Finally, the magnitude
of the change is measured by the reading system. Figure 1 shows a schematic diagram of a
typical biosensor.

Figure 1. Schematic diagram of a typical biosensor. Reprinted with permission from ref. [76].

Bio-based analysis systems have recently become the most used and desired devices
for diagnosis in the clinical field because of their fast response times and reliable features.
In biosensors, a biological element (the receptor) is immobilized on the transducer using
different strategies [77]. Analyte detection is performed using the high affinity between
the receptor and its ligands, such as antigen-antibody, enzymatic (enzyme–substrate), or
cellular (microorganisms, proteins) interactions. The ability to detect important biomarkers
such as nucleic acids, AAs, and proteins associated with a disease is essential for the clinical
field [78]. The technique of immobilization of the biofunctional component on the working
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electrode dramatically affects the performance of biosensors. It is important to note that a
biosensor’s stability is not lost while forming a close relationship between the biological
component and the sensor surface (transducer). Therefore, the selection of immobilization
matrices that support the performance of the sensor system is very critical.

Nanosensors are sensing devices with at least one sensing size smaller than
100 nm [79]. The use of nanoscale materials as reinforcement increases the interface
area of the resulting composites. For this reason, various reinforcement elements such
as hydroxyapatite, gold NPs, GR, CNTs, and CNFs are used to increase the surface area
and especially the conductivity in sensor applications [80]. Carbon-based nanomaterials
are widely used as reinforcements because of their stable, mechanically robust, flexible,
electrical, and thermally conductive properties. Thus, these nanomaterials are promising
in the development of high-performance devices [81].

Macro- and microscale sensors such as electrochemical and optical sensors are cur-
rently being used in the clinical field. For example, electrochemical and optical sensors
such as blood gas and pH are frequently used in intensive care. Likewise, disposable
electrodes are used in the clinical field to record biopotentials such as electrocardiograms
and electroencephalograms [82]. Nevertheless, the use of nanosensors in the early-stage di-
agnosis of diseases and preclinical studies is increasing. In particular, whole-cell behaviors,
adhesion processes of cells to the extracellular matrix, and cell-cell interactions can be eas-
ily monitored in vitro thanks to label-free electrochemical nanosensors [83]. For example,
in vitro studies can be performed in the presence of components (drug or toxic substance)
that can affect cell adhesions to the biofunctional surface of a nanosensor developed on
a cell-based platform under the electrochemical measurements. This sheds light on the
studies carried out before the transition to in vivo applications, which is the next step
of preclinical studies. This also reduces animal experiments by using these developed
nanosensors. At the same time, nanosensors are attracting much attention as an alternative
to the invasive methods currently used to diagnose diseases in the clinical field. Recently
developed wearable nanosensors are promising for noninvasive monitoring of biomarkers.
It is crucial that some compounds that serve as disease biomarkers can be determined from
saliva, sweat, or tears. At the same time, electrochemical nanosensors with increased stabil-
ity are being developed for real-time monitoring of small molecules in blood or drug-active
substances in plasma in a continuous flow environment [84].

3.1. Metal NP-Based Sensors

With the development of nanoscience and nanotechnology, metal NPs are highly de-
sirable in areas such as nanosensors, biomedicine, biological labeling, and microelectronics
because of their unique properties such as sizeable surface-to-volume ratio and high electri-
cal conductivity, biocompatibility, catalytic activity, etc. [85]. Signal-generating molecules
are usually used to bind bioreceptors to the biosensor recognition surface for labeling.
Enzymes such as horseradish peroxidase are labeled agents and require an additional dye
or substrate in affinity-based sensors. Enzyme labels are not stable, since they are affected
by environmental conditions. Additionally, they are expensive. Nanoprobes have become
quite popular as an alternative. Usage of electroactive NPs as nanolabels contributes to
improving biosensor performance. Furthermore, electroactive NPs are inexpensive and
stable [86].

Gold NPs (AuNPs) are widely used as colorimetric aptasensors, electrochemical ap-
tasensors, and fluorescent aptasensors because of their high extinction coefficient and
chemical stability, strong localized surface plasmon resonance absorption, and optical
properties. Since AuNPs show different colors according to their size and morphology,
they are used to detect analytes such as proteins and small molecules by using colorimetric
techniques. The combination of AuNPs with specific ligands is quite common [87,88].
In 2017, Khezri and coworkers developed a nanosensor by using the inner filter effect (IFE)
of AuNPs on CdS quantum dots (QDs) to detect arginine. This AA caused an increase
in the size of the NPs due to their aggregation. Changing color (red to blue) triggered
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turn-on of the IFE-decreased CdS QDs’ fluorescence. The linear detection range of the
CdS QD/AuNP system for detecting arginine in human serum and other samples con-
taining arginine was 7–215 µg L−1, and the limit of detection (LOD) was found to be
2.4 µg L−1 [89]. In 2018, Hai and coworkers developed a nanosensor using AuNPs in
core-shell structures combined with reduced graphene quantum dots (r-GQDs) to detect
cysteine. The resulting core-shell AuNPs@r-GQDs exhibited an intensive surface plasma
band at 525 nm due to their excellent dispersion. Cysteine was used as the crosslink-
ing agent that triggered the aggregation of AuNPs@r-GQDs, leading to a color change.
Based on this, the colorimetric determination of cysteine was performed, and the LOD in
human plasma was found to be 5.6 nM [90]. Bai and coworkers developed an ultrasen-
sitive electrochemical sensor to determine Mycobacterium tuberculosis IS6110 fragment
(MTB) based on AuNPs with modified C60 NPs/nitrogen-doped graphene nanosheets as a
signal enhancer [91]. In this study, nitrogen-doped graphene nanosheets modified with
nano-C60 and AuNPs showed high conductivity and improved redox activity. The devel-
oped electrochemical biosensor showed a broad linear detection range for MTB detection
(10 fM–10 nM). The LOD of the developed DNA biosensor system was determined as 3
fM. In 2020, Beitollahi and coworkers developed a label-free aptasensor using AuNPs for
the detection of homocysteine. In this study, homocysteine-binding-aptamer (HBA) was
immobilized on an AuNP-modified glassy carbon electrode (Au/GCE) surface to produce
an aptasensor. The linear detection range of the system was found to be 0.05–20.0 µM,
while the LOD was determined as 0.01 µM [92]. In 2021, Morawski and coworkers created
an electrochemical platform to assess norepinephrine and dopamine in human blood serum
and urine samples using mesoporous silica/titania (SiTi) and AuNPs. It was reported that
surface modification of SiTi material with AuNPs led to a significant improvement in low
charge transfer resistance and redox peak current. The LODs were 0.35 µmol L−1 and
0.57 µmol L−1 for norepinephrine and dopamine, respectively [93].

Although silver NPs (AgNPs) offer better properties than AuPs, they are less desirable
in sensor applications because of their lower chemical stability. However, recent studies
have been carried out to strengthen the chemical stability of AgNPs. The advantages of
these nanoparticles include their low cost and an efficient combination with proteins by
reacting with their thiol group (–SH) [94]. Zhu and Lee developed a sandwich-type im-
munosensor for the detection of α−1 antitrypsin (AAT), a biomarker of Alzheimer’s disease.
The developed biosensor was based on 3,4,9,10-perylene tetracarboxylic acid/carbon nan-
otubes (PTCA–CNTs) as a sensing surface, and AgNPs modified with alkaline phosphatase-
labeled AAT antibody (ALP-AAT Ab–Ag NPs) as a signal tag. The peak current values
obtained by using AgNPs in this sandwich-type immunosensor system were much higher
than the peak current values obtained in the absence of the NPs. These results were proof
that the AgNPs improved the sensor performance as signal enhancers. The linear detection
range for AAT was 0.05–20.0 pM, and the LOD was 0.01 pM [95].
Kumar and Sundramoorthy developed an AgNP-decorated nitrogen-doped single-walled
carbon nanotube-modified glassy carbon electrode (GCE) for nonenzymatic electrochem-
ical detection of urea, a non-protein nitrogen compound. The linear detection range of
the developed sensor system was 66 nM–20.6 mM, and the LOD was 4.7 nM [96]. In 2019,
Meng and coworkers prepared a peptide cleavage-based electrochemical biosensor to
detect prostate-specific antigens using graphene oxide and AgNPs for signal generation.
Nyquist diagrams proved that AgNPs effectively supported the electron transfer rate.
PSA concentration was determined from the electrochemical signal change that occurred
because of the cleavage of the specific peptide used on the sensor surface in the presence
and the absence of PSA. The linear detection range of the developed sensor system was
5 pg mL−1–20 ng mL−1, and the LOD was 0.33 pg mL−1 [97]. One year later, Awan
and colleagues designed a sandwich-type immunosensor by antibody functionalized-
silver-NPs (Ab–AgNPs) to determine NS1 (dengue biomarker). The linear detection range
using AgNPs as signal enhancers was 3–300 ng mL−1, and the LOD for NS1 detection was
0.5 ngmL−1 [86]. In 2021, Nycz and coworkers prepared an electrochemical biosensor based
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on AgNPs and titanium urea dioxide nanotubes to determine heat shock protein 70 (HSP70)
as a potential tumor marker. Titanium dioxide (TiO2) exhibits outstanding properties such
as biocompatibility, large surface area, high stability, and good electrical conductivity [98].
Usage of TiO2 nanotubes with AgNPs increased the electrical conductivity of the sensor
system, thereby improving its analytical performance. The linear detection range of the
developed biosensor was 0.1–100 ng mL−1, and the LOD was 0.48 ng mL−1 [99].

NPs such as platinum (PtNPs) cause a compatible effect with hydrogen peroxide
(H2O2) on electrocatalytic activity to increase electrical conductivity, catalytic activity,
and biocompatibility. Thus, rapid diffusion of target analytes occurs on the electro-
chemical biosensor surface, where the enzyme or antibody is immobilized. A sandwich-
type electrochemical immunosensor was developed by Liu and coworkers for alpha-
fetoprotein (AFP) detection using PtNPs anchored on cobalt oxide/graphene nanosheets
(PtNPs/Co3O4/graphene). The combination of these nanomaterials resulted in better
electrochemical performance and improved catalytic activity for reducing H2O2. The linear
detection range of the developed electrochemical immunosensor was 0.1 pg mL−1–60 ng
mL−1, and the LOD was 0.029 pg mL−1 [100]. The following year, Gao et al. synthesized a
novel label-free electrochemical immunosensor for the detection of monocyte chemoattrac-
tant protein-1 (MCP-1) by using single-walled carbon nanohorns (SWCNHs) functionalized
with PtNPs (PtNPs–SWCNHs). After modification of SWCNH with PtNPs, antibody im-
mobilization efficiency and electron transfer rate effectively increased due to the increased
surface area and conductivity of PtNPs. Furthermore, high catalytic activity for the re-
duction of H2O2 was obtained in the presence of these NPs. The linear detection range of
the developed electrochemical immunosensor was 0.06–450 pg mL−1, and the LOD was
0.02 pg mL−1 [101]. Similarly, Thirumalraj and coworkers developed an electrochemical
sensor based on PtNPs supported graphite/gelatin hydrogel to determine H2O2 in bio-
logical samples; the sensor showed improved electrocatalytic activity and high sensitivity
for the detection of this analyte. The linear detection range was 0.05–870.6 µM, and the
LOD was 37 nM [102]. In 2020, Oliveira and colleagues developed a flexible platinum
electrochemical immunosensor to detect Parkinson’s disease biomarkers (dopamine and
the Parkinson’s disease protein 7 (PARK7/DJ-1). Pt is a noble metal that exhibits similar
properties to Au; hence, Pt electrodes are a good alternative to Au electrodes. Pt electrodes
are also cheaper compared to gold ones. In a study performed with Pt electrodes, the
conductivity capacity results revealed that they had identical properties to those of Au elec-
trodes. The linear detection range of dopamine detected by voltametric measurements was
3.5 × 10−5–8.0 × 10−4 mol L−1, and the LOD was 5.1 × 10−6 mol L−1. The linear detection
range of PARK7/DJ-1 by electrochemical impedance spectroscopy was 40–150 ngmL−1,
and the LOD was 7.5 ngmL−1 [103]. In 2021, Tian and coworkers developed a dual-aptamer
biosensor for detecting COVID-19 nucleocapsid protein (2019-nCoV-NP) by using metal-
organic frameworks MIL-53(Al) modified with enzymes and Au@PtNPs. Firstly, the Au
glassy electrode (GE) surface was modified with two thiol-modified aptamers (N48 and
N61). Subsequently, the nanomaterial-based composites (Au@Pt/MIL-53(Al)) were synthe-
sized, and HRP and hemin/G-quadruplex DNAzyme were used as modification agents.
This nanoprobe was developed to amplify the signal of the aptasensor by the increased
hydroquinone oxidation in the presence of H2O2. Finally, the nanoprobe with protein-
aptamer was developed on the GE surface. The linear detection range of the developed
sandwich-type electrochemical sensor system was 0.025–50 ng mL−1, and the LOD was
8.33 pg mL−1 for early diagnosis of 2019-nCoV-NP [104].

3.2. Carbon-Based Nanomaterials

Carbon-based nanomaterials display outstanding properties such as high electrical
conductivity, fast electron transfer capability, and high specific surface area, making them
highly interesting for developing high-performance biosensors [105]. Commonly used
carbon nanomaterials are carbon nanotubes (CNTs) and graphene and its derivatives, in
the forms of nanotubes and platelets, respectively.
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3.2.1. Carbon Nanotubes

CNTs increase the sensitivity of biosensor systems by allowing a large number of
biomolecular interactions on their large surface area while reducing the response time
through their excellent electrical conductivity. Delocalized π electrons in the Z-axis give
CNTs unique electrical properties. Therefore, they are potential candidates for label-free
point-of-care protein detection [106]. Single-walled carbon nanotubes (SWCNT) are ob-
tained by rolling a single layer of graphene, and multiwalled carbon nanotubes (MWCNT)
are prepared by rolling multiple layers of graphene. The van der Waals forces between the
CNT layers and the presence of highly polarized π-electron clouds cause CNT aggregation.
The oxidation of CNTs leads to the formation of carboxyl and hydroxyl groups on their
surface. Thus, their hydrophilicity, level of exfoliation, and solubility increase in polar me-
dia. Furthermore, different chemical agents can be used to further modify their surface via
linking/interaction with these groups [107]. Figure 2 demonstrates the oxidation process
of MWCNT.

Figure 2. The oxidation process of MWCNT.

In 2017, Reddy and coworkers developed an electrochemical sensor based on func-
tionalized multiwall carbon nanotube–chitosan biopolymer nanocomposite (Chit–fCNT) to
detect epinephrine (Epn) in urine and pharmaceutical samples. MWCNTs were oxidized
using nitric acid to yield fCNT with hydroxyl groups. Then, a bionanocomposite was
prepared by dispersing the fCNTs in a chitosan solution, which was deposited on the
electrode surface to conduct electrochemical measurements. The linear detection range of
the developed electrochemical sensor system was 0.05–10 µM, and the LOD was 30 nM
for Epn detection [108]. In 2018, Sobhan et al. developed a biosensor based on SWCNTs
by using linear sweep voltammetry (LSV) measurements to detect the protein Ara h1,
which induces peanut allergy. In this regard, 1-pyrenebutanoic acid succinimidyl ester
(1-PBSE) was used to link the SWCNTs and Ara h1 antibody through noncovalent bonding
(π-π stacking interactions). The linear detection range of the developed biosensor was
1–1.000 ng mL−1, and the LOD was 1 ng mL−1 for protein Ara h1 detection [109]. The follow-
ing year, Dudina and coworkers developed a monolithic biosensor platform by using carbon-
nanotube field-effect transistors (CNTFETs) for glutamate determination. The CNTFETs
were functionalized with glutamate oxidase through 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC) and N-hydroxysulfo-succinimide (sulfo-NHS). The developed biosen-
sor showed a detection range between 250 and 500 µM, and the LOD was 10 µM [110].
In 2020, Palomar and coworkers prepared an electrochemical sensor based on peptide-
modified AuNP/CNTs to detect a proteolytic enzyme named matrix metalloproteinase-7
(MMP-7). This enzyme is overexpressed in cancer and cardiovascular diseases. Enzy-
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matic cleavage of peptides immobilized on the nanocomposite-modified electrode surface
was carried out to increase the system’s stability. The linear detection range of the de-
veloped biosensor was 1 × 10−2−1 × 103 ng mL−1, and the LOD was 6 pg mL−1 [111].
Recently, Silva and coworkers developed a label- and probe-free immunosensor based on
Prussian blue@carbon nanotube–polypyrrole (PB@CNT–PPy) nanocomposite for the deter-
mination of the NS2B protein of Zika virus (ZIKV) by using an amperometric technique.
Modification of a carbon nanotube–polypyrrole composite with Prussian blue (PB) caused
redox catalytic activity. Thus, electrochemical analysis was performed without adding any
redox probe solution to the medium (probe-free detection). Covalent immobilization anti-
NS2B was carried out through EDC/NHS chemistry on the screen-printed electrode (SPCE).
This sensor had the advantage of using a point-of-care diagnosis. Good selectivity was
obtained between negative and positive ZIKV serum using this immunosensor (Figure
3) [85].

Figure 3. Schematic representation of ZIKV immunosensor. (a) Electrode preparation stage and (b) principle of analytical
measurement. Reprinted with permission from ref. [112].
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3.2.2. Graphene-Based Nanomaterials

Graphene (GR) is a two-dimensional (2D) carbon nanomaterial with a single atomic
layer of sp2 carbon atoms arranged in a honeycomb lattice. Owing to its high surface area
and high electrical conductivity, it has a high potential to be the world’s thinnest electrode
material used in electrochemical applications. In addition, GR, with its extensive π-electron
system, has a strong affinity for carbon-based cyclic structures found in drugs, pollutants,
and biomolecules. GR has a specific surface area of ~2630 m2 g−1, larger than that of CNTs
(1315 m2 g−1) and raw graphite (10 m2 g−1) [113]. Furthermore, the electrical conductivity
of GR is 60 times higher than that of SWCNTs [114]. Since GR-modified electrodes exhibit a
wide electrochemical potential window, the determination of molecules in a wide potential
range is feasible.

For this reason, GR is the most commonly used material for electrodes in biosen-
sors [115]. GR has two main derivatives with different degrees of oxidation: graphene
oxide (GO) and reduced graphene oxide (rGO). The increased solubility of GO in an
aqueous solution is mainly due to its functional groups such as epoxides, hydroxyls, and
carboxylic acids. These surface functional groups can interact with the functional groups
of other biomolecules to be attached to their surface, providing many reaction sites [116].
However, the presence of oxygen-rich functional groups in GO causes a decrease in elec-
trical conductivity. In this regard, GO is reduced with the desired modification for sensor
applications. After reduction, most of the functional groups in GO are removed, and
π-conjugation-rich graphene is formed, which is called rGO. Thus, the conductivity of
graphene is restored via π-conjugation, although its solubility in aqueous solutions or polar
solvents decreases. Figure 4 depicts the oxidation and reduction steps to synthesize rGO
from graphite.

Figure 4. Oxidation and reduction steps to obtain reduced graphene oxide (rGO) from graphite.
Reprinted with permission from ref. [117].

In 2017, Settu and coworkers developed an aptamer biosensor to detect engrailed-2
(EN2, a biomarker for prostate cancer) based on carboxylated SPCE. The reactive sur-
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face area was increased with the incorporation of GR into a carbon paste electrode.
This increased the electrical conductivity, resulting in the development of a high-sensitivity
biosensor system. The linear detection range was 35–185 nM, and the LOD was
38.5 nM. However, the calculated LOD value was not enough for the clinical diagno-
sis of EN2 protein. Therefore, more research on signal enhancement is needed to improve
the LOD [118]. One year later, Baluta and coworkers prepared an electrochemical biosensor
to sense epinephrine (EP) by using graphene quantum dots (GQDs) and glassy carbon
electrodes (GC) modified with laccase. Catecholamine was oxidized in the presence of
the laccase, and an electrochemical signal was obtained. The linear detection range was
1 × 10−6–120 × 10−6 M, and the LOD was 83 nM, to detect EP in labeled pharmacological
samples [119]. The following year, Karimi and coworkers developed a molecularly im-
printed polyaniline-based sensor with rGO to determine human cardiac troponin T (cTnT).
MIP was obtained via electropolymerization on the rGO-modified SPCE in the presence of
cTnT and carboxylated aniline monomers. Then, cTnT was removed by oxalic acid solution.
The linear detection range of the developed biosensor was 0.02–0.09 ng mL−1, and the
LOD was 0.008 ng mL−1. This study suggests that the developed biosensor system and
HPLC have an excellent correlation [120]. In 2020, Sharma and coworkers (2020) developed
a label-free aptasensor based on rGO modified with polyethylenimine (PEI) thin films for
detection of cardiac myoglobin (cMbi, cardiac biomarker). PEI, a cationic polymer, was
used for the reduction of graphene oxide (GO). In this way, a positive charge was formed
on the rGO surface. The negatively charged single-stranded DNA aptamers were directly
immobilized to the sensor surface by electrostatic interaction without any binding agent.
The linear detection range of the developed biosensor was 0.001−1000 ng mL−1, and the
LOD was 0.97 pg mL−1 (phosphate-buffered saline) and 2.1 pg mL−1 (10-fold-diluted
human serum) for detection of cMb [121]. More recently, Jozghorbani and coworkers
produced a label-free immunosensor based on rGO to detect carcinoembryonic antigen
(it is well known that labeling methods may lead to steric hindrance on the electrode
surface). The linear detection range of this biosensor was 0.1–5 ng mL−1, and the LOD was
0.05 ng mL−1, to detect carcinoembryonic antigen. In addition, the developed sensor was
examined in human blood serum for CEA detection, and the results correlated well with
those obtained using the standard enzyme-linked immunosorbent assay (ELISA) [122].

3.3. Electrospun Nanofibers (ESNFs)

Electrospinning is defined as the production of nanofibers from polymer solutions
under a high electric field (kV) [123]. It is the only method for mass production of con-
tinuous long nanofibers [124]. Among the numerous nanomaterials, ESNFs are building
materials in drug delivery systems, biosensors, biomedicine, food textile, and environmen-
tal applications because of their large surface areas, controllable surface conformations,
porous structures, and high concentrations adsorption capacity, and good biocompatibil-
ity [125–127]. Because of these properties, electrospun nanofibers have better sensitivity
than sensors formed with other materials. In addition, biomimetic coatings can prevent
biofouling, thereby extending the life of biosensors [128]. ESNFs are produced via electro-
spinning, which is a simple, effective, controlled, and economical method. Fibers can be
obtained from various materials; solutions or melt forms of organic polymers are among
the most common sources. In particular, the production of nanofibers is possible from
composite materials obtained by the appropriate combination of components with different
morphologies in the nano size (e.g., NPs, nanorods, nanowires, nanotubes, and nanosheets)
with organic polymers. Figure 5 shows a schematic representation of a conventional
electrospinning setup.
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Figure 5. Representation of a conventional electrospinning setup.

In 2017, Soares and coworkers developed two different immunosensors by using
electrospun polyamide 6 and poly(allylamine hydrochloride) nanofibers assembled with
CNTs and AuNPs for the determination of the biomarker CA19-9. The detection limits
calculated using impedance spectroscopy were 1.84 and 1.57 U mL−1 for electrospun
nanofibers containing MWCNTs and AuNPs, respectively [129]. In the following year,
Wang and coworkers developed an electrochemiluminescence (ECL) immunosensor to
determine p53 (TSP53, tumor suppressor protein). AuNP-decorated, MWCNT-doped
chitosan (CTS) electrospun nanofibers (MWCNT–CTS) were used for antibody (CAb)
immobilization for the detection of TSP53. The linear detection range of the developed
ECL immunosensor was 1 pg mL−1–1 ng mL−1, and the LOD was 0.5 pg mL−1 to detect
the carcinoembryonic antigen in normal human cubital vein blood samples [130]. Two
years later, Asmatulu and coworkers developed label-free electrochemical nanobiosen-
sors to determine cyclooxygenase-2 (COX-2) in human serum samples and phosphate-
buffered saline (PBS) using polyaniline nanofibers. Fibers with different average diameters
(256, 481, 575, and 641 nm) were fabricated using the electrospinning technique to compare
their nanobiosensor performance, which was examined using electrochemical impedance
spectroscopy (EIS). The MWCNT–CTS–AuNP nanofibers were used as a supporting immo-
bilization matrix for antibody (CAb) to detect TSP53 in PBS and human serum solutions.
The LODs were 0.01, 0.1, 1.0, and 50.0 pg mL−1 for the nanofibers with the diameters
of 256, 481, 575, and 641 nm, respectively. The highest sensitivity was obtained for the
lowest average diameter of 256 nm because of its increased surface area [131]. In 2020,
Arshad and coworkers developed a molecularly imprinted polymer (MIP)-based impedi-
metric sensor to detect NS1 (nonstructural protein 1, a specific biomarker for dengue
virus infection). Polysulfone (PS) nanofibers were used for the modification of SPCE.
Dopamine was used as a monomer, and self-polymerization was carried out in the pres-
ence of NS1 (template molecule). The linear detection range of the developed biosensor was
1–200 ng mL−1, and the LOD was 0.3 ng mL−1, for sensing NS1 in real human serum
samples [132]. In 2021, Gobalu and coworkers developed a nanobiosensor system us-
ing biotin–aptamer linker immobilization on molybdenum disulphide/cellulose acetate
(MoS2/CA) nanofiber composite for the detection of troponin I by EIS. Troponin I was
detected up to 10 fM with a stability value of 90% after 6 weeks [133].

3.4. Molecularly Imprinted Polymers

Molecular imprinting is a promising method for developing affinity-based nano-
materials with high specific recognition ability [134,135]. Molecularly imprinted poly-
mers (MIPs) provide many properties such as selectivity, stability, reusability, and low
cost compared with biological recognition materials such as enzymes and antibodies.
They have some drawbacks, such as a high diffusion barrier and low space accessibility,
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given that most of the imprinted areas are formed inside the MIP. To overcome these issues,
the surface printing technique, which involves the production of a MIP layer on the surface
of nanomaterials, has been developed in recent years. This method provides the advan-
tages of higher bonding capacity and faster bonding kinetics on the material surface [136].
The applications of MIPs combined with electrochemical studies have increased in the sen-
sor field because of their ease of use and low cost [137]. However, some problems still need
to be overcome before MIP-based sensors can enter the sensor market. The most significant
change is in the distance of the imprinted cavities to the sensor surface and, accordingly,
low signal reception [138]. Therefore, researchers have focused on improving the surface
of nanosized support materials such as GR with ultrathin polymeric films. Through this
method, higher selectivity is provided for thin MIP layers [115]. In 2017, Cheng-Jun and
coworkers developed a MIP-based electrochemical sensor using the C-terminal polypep-
tide of insulin as a template molecule and o-phenylenediamine (o-PD) as a functional
monomer via electropolymerization on an Au electrode for the determination of insulin.
The steric hindrance on the electrode surface was reduced by using C-insulin polypeptide
as a template molecule instead of insulin. The linear detection range of the developed
biosensor was 1.0× 10−14–5.0× 10−13 M, and the LOD was 7.24× 10-15 M for the detection
of insulin. Furthermore, good selectivity and stability were obtained with the developed
sensor in serum samples [139]. The next year, Parlak and coworkers developed another
MIP-based wearable organic patch-type electrochemical device for noninvasive real-time
cortisol determination from sweat. A cortisol imprinted biomimetic polymeric membrane
was coated on top of poly(ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) by
spin coating. The performance of molecularly selective organic electrochemical transistors
(MS-OECTs) was examined, and the results were compared with those of non-molecularly
selective organic electrochemical transistors (NS-OECTs). Rapid response time of less than
1 s was obtained by using the MS-OECTs, while the NS-OECTs did not give any response
to increased cortisol concentration. Furthermore, MS-OECTs exhibited reversibility of the
binding process. For measurements performed with both ex situ and wearable MS-OECTs,
the developed wearable sensor system showed a sensitivity of 2.68 µA dec−1 (current per
order of magnitude in cortisol) over the range of 0.01 to 10.0 µM cortisol concentrations.
Simultaneously, the MIP-based wearable sensor developed in the selectivity studies carried
out in the presence of analogs in sweat, which may interfere with the system, showed a
good selectivity [140]. In 2019, Sun et al. used MIPs and a hybridization chain reaction
to develop microfluidic paper-based analytical devices (µPADs) to detect glycoprotein
ovalbumin (OVA). First, a SiO2@Au/dsDNA/CeO2 composite was used as a signal tag.
The use of SiO2@Au improved the electron transfer efficiency and provided a larger surface
area. Hybridization chain reaction (HCR) was carried out in the presence of two hairpin
DNAs to obtain double-stranded DNA (dsDNA) on the SiO2@Au surface. Boronate affinity-
based MIPs were prepared on the µPAD surface in the presence of Au nanorods (NRs) and
4-mercaptophenylboronic acid. 1-naphthol was used as a redox-active catalytic amplifier
for the electrochemical measurement. The linear detection range was 1 pg mL−1–1000 ng
mL−1, and the LOD was 0.87 pg mL−1, for the detection of OVA [141]. In 2020, Mugo
and coworkers produced another MIP-based flexible electrochemical sensor for detect-
ing cortisol in sweat. Cortisol-imprinted poly(glycidylmethacrylate-co ethylene glycol
dimethacrylate) (poly(GMA-co-EGDMA)) was synthesized. The sensor layers consisted of
stretchable polydimethylsiloxane (PDMS) based on carbon nanotube–cellulose nanocrystal
(CNC/CNT) conductive nanofilms. The cortisol-imprinted poly(GMA-co-EGDMA) was
synthesized as a cortisol biomimetic receptor on the CNC/CNT. The linear detection range
was 10–66 ng mL−1, and the LOD was 2.0 ± 0.4 ng mL−1. The MIP sensor also exhibited
high specificity in the presence of glucose, epinephrine, β-estradiol, and medroxypro-
gesterone as selected interfering species [142]. Raziq and colleagues prepared a portable
electrochemical sensor based on a MIP film with ncovNP to sense SARS-CoV-2 antigen
(ncovNP). The developed sensor was examined with samples of the nasopharynx swabs
of patients. For this purpose, m-phenylenediamine was used as a monomer to obtain
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ncovNP-imprinted polymer, and 4-aminothiophenol (4-ATP) was used as a modification
agent for thin-film electrodes with gold (Au-TFE). 3′-dithiobis (sulfosuccinimidyl propi-
onate) (DTSSP) was used as the cleavable linker monolayer on the 4-ATP/Au-TFE surface
to yield the ncovNP–MIP film. The linear detection range was 0–111 fM, the LOD was
15 fM, and the limit of quantitation (LOQ) was 50 fM [143].

4. Peptide, Protein, and AA-Based Nanomaterials for Targeted Drug Delivery

Proteins, amines, and peptide-based drug delivery are opening new eras for drug
delivery according to the synergism of nanotechnology [53]. It has been proved that protein-
based ligands are excellent targeted agents with multifaceted features of biodegradability,
stability, biocompatibility, and most importantly, flexibility in binding with various biolog-
ical agents and polymers to develop multifunctionalization [52,144]. The most essential
features of AAs, peptides, and proteins for targeted drug delivery are given in Table 1.
Moreover, a visual representation of various strategies employed in using NPs to enhance
intracellular drug delivery across the mucosal membrane is depicted in Figure 6.

Table 1. Critical features of various AA- and protein-based nanocarriers.

Nanocarrier Key Feature Ref.

Glutathione-targeted
nanocarriers

Codelivery platforms for
targeted killing by inducing

chemosensitivity.
[121]

Transferrin-linked polymeric
nanocarriers

DOX release in the
intravacuolar compartments

following endocytosis,
favoring better targeting

efficiency against leukemia

[122]

Polydopamine-layered zein
nanocarriers

Increased cellular uptake,
ROS production, and

induction of apoptosis in the
glioma cells, approaching

efficient therapy against GBM.

[123]

Poly-L-lysine-based SEDDS
Proficient targeting with

eradication of Salmonella typhi
and 100% survival.

[124]

Vancomycin-loaded thiolated
nanocarriers

Effective targeted ocular
delivery system against

Staphylococcal blepharitis with
improved retention time,

sustained drug release, and
targeted anti-inflammatory

action.

[125]

Arginine-based nanocarriers

Decreased bacterial burden
and increased survival

because of synchronized
antibacterial, targeted, and

ROS cellular response against
S. typhi.

[126]

DOX: doxorubicin; ROS: reactive oxygen species; GBM: glioblastoma multiforme; SEDDS: self-emulsifying drug
delivery system.
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Figure 6. Visual representation of various strategies employed in using protein-based NPs for
enhancement of targeted drug delivery.

4.1. Glutathione Nanocarriers

Glutathione (GSH) is a tripeptide that helps induce strong antioxidant action via re-
versing the damages caused by reactive oxygen species (ROS) [145]. The utilization of GSH
as a ligand in drug delivery is highly productive for multidimensional diseases [146,147].
Therefore, polyethylene glycol and polypropylene sulfide block copolymer (PEG–PPS)
were synthesized by Wu et al. [148] through previously developed methods. PEG–PPS
block copolymer was further attached to the S-nitroso-glutathione (GSNO) prodrug, and
its release was triggered by ROS and GSH. The concept of this strategy can be utilized for
reversing the chemoresistance in tumors via increasing targeted accumulation of the drug
in the tumor via following the mechanistic approaches of ROS and GSH. The amphiphilic
conjugate of the PEG–PPS–GSNO was attached to the doxorubicin (DOX) therapeutic
moiety. The DOX-loaded amphiphilic nanocarriers were successfully synthesized and
characterized for NP size estimation, and amphiphilic polymer conjugation was confirmed
by NMR, FTIR, and gel permeation chromatography. In vitro dissolution, cell cytotoxicity,
biocompatibility and chemosensitivity of DOX were also evaluated. However, most impor-
tantly, the cellular uptake studies were carried out via various advanced techniques like
confocal microscopy, flow cytometry, and in-vitro. Flow cytometry for analyzing apoptotic
cell death was also performed. Overall, it was proved that GSNO nanocarriers showed
the highest loading capacity for NO, stabilized, and redox-triggered drug release in the
tumor microenvironment with improved biocompatibility. These multifunctionalized GSH
tripeptide-based NPs can serve as effective codelivery platforms for NO and DOX in the
targeted killing of chemoresistant cancer cells by inducing chemosensitivity [148].
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4.2. Transferrin-Linked Polymeric Nanocarriers

Leukemia is a blood cancer categorized by genetic mutations in the development
of leucocytes, which heavily damaged the bone marrow and lymphatics by triggering
the hematopoietic stem cells in uncontrolled proliferation of bones, thus producing im-
mature leucocytes [149,150]. Among other anticancer drugs, DOX is still preferable in
treating leukemia, but its therapeutic potential is compromised by its induced nonspecified
cardiotoxicity and poor solubilization. Therefore, Fang et al. [151] developed a novel
protein-based ligand and transferrin functionalized biocompatible polymeric nanocarrier
system for advanced treatment against leukemia. First, a novel polymeric block was
synthesized composed of distearoyl phosphatidylethanolamine (DSPE) and polyethylene
glycol (PEG). The DPSE–PEG block polymer was conjugated with transferrin (TF) protein
to achieve tumor-targeted delivery. The transferrin ligand was immobilized onto the poly-
meric block conjugate to finally form DPSE–PEG–TF, and DOX was subsequently added
to yield DPSE–PEG–TF–DOX. The transferrin-conjugated nanocarriers were character-
ized via physical analysis, dissolution, cell viability, NPs uptake, and TF targeting assays.
Furthermore, activated partial thromboplastin time (APTT) and prothrombin time (PT)
assays were performed in parallel with hemolysis and apoptosis assays.

The results showed that TF-functionalized nanocarriers had a spherical morphology
with a hydrodynamic size of 80 nm for 75% drug encapsulation. Moreover, the essential
feature was the DOX release in the intravacuolar compartments following endocytosis,
which improved targeting efficiency [151].

4.3. Polydopamine-Layered Zein Nanocarriers

Glioblastoma multiforme (GBM) is a damaging primary tumor of the brain, caus-
ing several morbidity and mortality cases worldwide [152]. GBM is often resistant to
conventional therapies. However, a significant barrier in successful drug delivery is the
blood-brain barrier (BBB) that bypasses the chemotherapeutics’ intratumoral delivery [153].
Zein is currently important because of its safety, biodegradation capabilities, and sustained
drug release characteristics [154]. Novel research indicated that surface functionalization of
zein NPs with polydopamine (PD) layers resulted in enhanced solubility, biocompatibility,
stability, and flexibility for attachment of various biological functional groups. However,
curcumin has been proven to induce strong anticancer activity. Therefore, Zhang et al. [155]
developed polyamine-rich protein zein-based nanocarriers for efficient, targeted therapy
against GBM. In this research, curcumin was attached with PD-layered zein NP to form
(CUR–Z–PD) NPs through a modified phase separation technique. Furthermore, CUR–
Z–PD NPs were characterized for size determination and other physicochemical features,
transcytosis assay, uptake mechanistic features in deep glioma cells, ROS determination,
apoptosis, cell migration assay, different antimicrobial assays, and intravesicular quantifica-
tion of zein functionalized NPs in zebrafish larvae. After a detailed set of experimentation,
it was concluded that the NPs markedly inhibited the proliferation and migration in glioma
cells and increased cellular uptake and ROS production with induced apoptosis in the
glioma cells, approaching efficient therapy against GBM.

4.4. Poly-L-Lysine Based Lipid Self-Emulsifying Nanocarriers

Salmonella typhi (S. typhi) resistant strains are a significant economic and public health
burden for developing and underdeveloped countries [156]. Moreover, all classes of an-
tibacterial drugs showed resistance owing to nontargeted delivery and poor solubilization.
Arshad et al. introduced the unique concept of indulging cell-penetrating peptide poly-l-
lysine as a multifunctional flexible ligand for targeted M-cell therapy [157]. The authors
further utilized lipid NPs as a vehicle for targeted drug delivery [158]. Lipid-based nanocar-
riers use the mechanistic approaches of lipid exchange, absorption, fusion, and endocytosis
to overcome intestinal barriers, as shown in Figure 7. However, among other lipids, NPs,
self-emulsifying drug delivery systems (SEDDS) have optimistic prospects owing to their
easy industrial scaling and improved thermodynamic stability.
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Figure 7. Mechanism followed by lipid-based nanocarriers for overcoming the intestinal barrier in order to improve targeted
delivery against S. typhi.

The strategy behind the synthesis of novel poly-L-lysine (PLL) SEDDS was to enhance
highly specified targeted drug delivery against S. typhi by generating ROS and disrupting
bacterial DNA [159,160], as shown in Figure 8. The researchers further conjugated PLL with
mannose, preactivated hyaluronic acid, and Pluronic to develop amphiphilic conjugate
PLL–M–PTHA–F127 via reductive amination. Biconjugation of mannose with PLL and
hyaluronic acid resulted in advancement in treatment against S. typhi. Characterization
tests, including physicochemical, in vitro, and in vivo tests, were performed. It was proved
that enhanced recognition by receptor scavenging cells and intracellular trafficking facili-
tated the internalization of PLL multifunctionalized SEDDS of ciprofloxacin into intestinal
epithelial cells, resulting in proficient targeting with the eradication of S. typhi and 100%
survival. Moreover, the exciting fact relating to PLL is its capability of forming a stabilizing
ligand for successful and targeted delivery of SEDDS in the intestine and increasing the
efficacy of an antimicrobial drug via preventing multibacterial drug resistance [161,162].



Nanomaterials 2021, 11, 3002 18 of 36

Figure 8. Mechanism of interaction of poly-L-lysine with the Salmonella typhi.

4.5. Vancomycin-Loaded Thiolated Nanocarriers

Vancomycin belongs to a class of glycopeptide antibiotics produced by the actino-
mycete bacterium Streptomyces Orientalis that has bactericidal action for all Gram-positive
bacteria, including methicillin-resistant staphylococcal strains (MRSA) [163]. According
to reports, it is the most preferred drug for treating bacteria-related infections of Staphylo-
coccus aureus, especially MRSA and other methicillin-resistant Staphylococcus strains [164].
Blepharitis is the anterior or posterior inflammation of eyelids, which can be subacute or
chronic, caused by S. aureus and seborrheic bacteria [165]. Linezolid and vancomycin were
reported to be most effective against the staphylococcus bacteria and overcame resistance
towards penicillin, erythromycin, and ciprofloxacin [166]. The ocular barriers, such as
involuntary eye muscle movement, tears, etc., remove foreign particles, including drugs,
coming across the eye surface, which means that ocular drugs require frequent admin-
istration. To exert local effect to the cul de sac, overcoming these barriers is important,
which can be addressed by increasing the time of retention of a drug in tears [167]. Ocular
delivery systems have proven advantageous and preferred routes for local and systemic
drug administration. Jahan et al. [168] addressed the above-related problems in the oc-
ular delivery of drugs by fabricating thiolated Pluronic-based polymeric nanomicelles
of vancomycin against blepharitis. Thiolated Pluronic-based vancomycin nanomicelles
were successfully synthesized via thin-film hydration technique and characterized via
physicochemical, in vitro, and in vivo histopathological assays. The initial results of this
research indicated that these vancomycin nanomicelles were effective targeted ocular de-
livery systems against staphylococcal blepharitis with improved retention time, sustained
drug release, and targeted anti-inflammatory action.

4.6. Arginine-Based Nanocarriers

Multidrug resistance is the primary cause of the severity of infectious diseases such
as Salmonella typhi. Pathogenic organisms have developed various resistance mechanisms
such as genetic mutations, target site modifications, enzyme inactivation, and efflux pump
activation [149]. In 2017, Mudakavi et al. developed arginine-coated nanocarriers by
conjugating L-arginine (Arg) with pectin and protamine, followed by complete coating
with mesoporous silica NPs (MSNs) through a layer-by-layer coating method. Arginine
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is also crucial for targeting infectious diseases such as Mycobacterium tuberculosis and
S. typhi because of its innate cellular responses against macrophages. However, it is also a
dietary component of the S. typhi pathogen. In cellular responses, arginine produces nitric
oxide (NO), inducing cytotoxic activities in macrophages against S. typhi. As far as the
conceptualization of the uptake regulation of arginine is concerned, S. typhi infections lead
to the upregulation of cationic transporters, which is accountable for augmented uptake of
arginine. Therefore, the Arg–MSN-based nanocarriers of ciprofloxacin were successfully
synthesized and characterized for size, shape, zeta potential, localization of NPs, cellular
trafficking, and uptake via advanced confocal microscopy and in vivo survival assays [169].
However, detailed experimentation decreased bacterial burden and increased survival
because of synchronized antibacterial, targeted, and ROS cellular response against S. typhi.

5. Peptide, Protein, and AA-Based Nanomaterials for Targeted Gene Delivery

Gene delivery systems are essential for treating gene disorders in humans via gene
therapy [170]. Gene therapy can be explained as transferring genetic material directly
to tissues and cells to treat acquired or inherited disorders [171]. The optimal results
of a gene delivery system depend on the customization and targeting of the respective
system. Usually, a gene is inserted into affected patients in lieu of drugs or surgeries. Other
approaches that have been utilized include:

- Replacement of a mutated gene with a healthy gene;
- Introduction of new genes;
- Knocking out malfunctioning mutated genes.

A gene delivery system usually has three parts or constituents:

- A gene encoding a particular therapeutic protein;
- A plasmid-based gene expression system, which regulates the behavior of genes

within the targeting cell;
- A system for controlled delivery of gene expression plasmid to the targeted site in the

body [170].

5.1. Proteins as Nanomaterials for Gene Delivery

The use of proteins and peptides for synthesizing and assembling functional nanoma-
terials is an active area of research. A large variety of nanoscale materials with interesting
properties can be developed by merging molecular biology and biochemistry. These
bioenabled materials offer more advantages over their nonbiological counterparts [172].
Protein-based nanocarriers are of particularly great interest because of their renewable
sources. They provide reduced cytotoxicity, while the uptake to target cells is significant.
Hence, these protein-based nanomaterials are promising candidates for gene delivery [53].
Nucleic acids such as siRNA, mRNA, or pDNA have promising applications therapeuti-
cally. Therapies based on nucleic acids are versatile because of their design, which offers
promising treatments. Nevertheless, a particular delivery system is required for their
delivery [54].

AAs are building blocks of structures such as proteins and peptides. Around 20
naturally occurring AAs exist; they enable the synthesis of these structures in living cells.
AAs are sequenced together via amide linkages or peptide bonds, leading to thousands
of proteins that differ in structure and functions. A one-letter code usually refers to
the primary structure provided by the AA sequence. These AAs can be classified into
hydrophilic, hydrophobic, charged, and other categories, depending on the characteristics
of the ‘R’ group. Hence, a relationship exists between the AA sequence and the structure.
This accounts for the fact that the specific configuration depends on the R groups that are
close to each other in a peptide chain. The endless number of sequences can be explained
because even a short peptide of 5 AAs has about 3.2 million possible sequences. However,
despite this fact, a minority of peptide sequences are utilized in biological systems [173,174].

Proteins can be obtained from plants and animals. Only those relevant to gene delivery
are discussed herein. Among various examples of proteins, gelatin is commonly utilized
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in gene delivery [175]. It is a denatured protein that can be obtained by alkali or acid
hydrolysis of collagen, has been safely used in pharmaceuticals in the past, and has been
regarded as GRAS (generally recognized as safe) by the Food and Drug Administration
(FDA). Furthermore, it is a polyampholyte, since it contains both anionic and cationic
groups. The helical structure of gelatin is due to the repeating sequence of glycine, proline,
and alanine AA triplets [53]. Gelatin NPs have been used successfully in gene therapy in
the past [176,177].

A group of researchers designed poly-siRNA-thiolated gelatin (psi-tGel). First, they
prepared tGel NPs, then polymerized the siRNA with thiol groups. The polymerization
occurred at 5′ of both sense and antisense strands, resulting in enhanced interactions
between siRNA and tGel. The researchers demonstrated the efficacy of psi(RFP)-tGel NPs
for gene silencing induction in RFP/B16F10 melanoma cells [178]. In another study, Moran
et al. used gelatin B and protamine sulfate (PS) to deliver DNA. Gelatin B is fascinating,
since it becomes negatively charged at physiological pH because of its isoelectric point in
the range of 4.8–5.2. This results in interactions with molecules of opposite charges. When
gelatin B comes in contact with an endosome, its charge becomes positive, thus releasing
therapeutic agents. For efficient gene delivery, protamine sulfate traps the DNA inside the
gelatin B–PS complex. This is attributed to the highly positive charged PS, which binds
DNA. The researchers also showed that two things affected the release of DNA: (i) the
gelatin’s gel strength and (ii) the initial concentration of DNA [179].

Albumin is utilized for assisting other molecules in gene delivery. The primary sources
of albumin are human serum albumin (HSA) or bovine serum albumin (BVA) [180]. It is
the main protein of blood plasma and has various reactive groups on its surface that aid in
easy modifications. Its ability to accumulate in tumors makes it an innovative cellular car-
rier [170]. Prajapati et al. wrote a detailed review on different kinds of albumin nanocarriers
and highlighted different approaches for enhancement of transfection efficiency as well
as targeted delivery to tumor sites by modification of albumin surface [181]. Karimi and
coresearchers used a core-shell structure to design a novel Alb–CS–DNA complex. The core
and shell were made of albumin and chitosan, respectively, and show interactions with
DNA. The fabricated complex was introduced into HeLa cells to deliver plasmid shRNA
(short-hairpin RNA) against the GL3 luciferase. Their results indicated that the synthesized
complex NPs were present in 85% of HeLa cells with minimal toxicity. They also suggested
that albumin imparted biocompatibility to the complex NP compared to plain Alb–NP or
CS–NP [182]. Han et al. synthesized cationic bovine serum albumin (CBSA) by modifying
the surface of BSA with ethylenediamine. Mixing siRNA with CBSA caused electrostatic
interactions that led to the formation of CBSA/siRNA NPs. The results demonstrated
efficient delivery of siRNA to B16 lung metastatic cells. Also, CBSA protected siRNA from
RNA degradation [183].

Elastin is a protein that provides elasticity and exists in connective tissues. For appli-
cations in gene delivery, both the ELPs and α-elastin have been used. The artificial peptide,
ELP, has a protein sequence (Val-Pro-Gly-X-Gly)n, where ‘X’ can be any AA and ‘n’ is
the number of repeating units [180]. Dash et al. synthesized a dual ELP-based injectable
system for the delivery of two different genetic cargos. The dual system consisted of an ELP
gel scaffold and ELP hollow spheres, previously used in gene delivery. The dual system
contained two different plasmids for modulation of angiogenesis and inflammation to treat
critical limb ischemia. One plasmid, contained in the ELP gel scaffold, encoded interleukin-
10 (IL-10), while the other plasmid, in the ELP hollow spheres, encoded eNOS (endothelial
nitric oxide synthase). The results indicated that release occurred in a controlled manner
with reduced inflammation and increased density in a blood vessel [184,185].

Silk is another protein obtained from the silkworm Bombyx mori and spiders (Nephila
clavipes and araneus diadematus). The AAs present in silk are highly repetitive, which causes
mechanical characteristics in silk [186]. Current investigations have demonstrated ultrathin
silk fibroin (SF) as a potential gene delivery system [187]. For example, Li et al. designed
SF vector using a polystyrene template. The purpose of designing SF was transfection of
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NIH/3T3 fibroblasts via pDNA. Optimal coatings of SF required for adsorption of pDNA
were determined by zeta potential. The researchers suggested the efficiency of plasmid
DNA loaded onto SF microcapsules for transfecting fibroblasts. They also indicated that the
transfection efficiency was affected by the method of loading DNA, either pre- or post-SF
deposition [188].

Zein is a plant protein found in maize seeds. Plant storage proteins (prolamine) contain
high levels of proline, an AA. As a result of its high AA content, zein has hydrophobic side
chains, making it insoluble in water. The sustained delivery of DNA has been achieved
using this property [189]. Zein is also considered a GRAS polymer by the FDA. Researchers
extended the work of Regier et al. [190], synthesized zein nanofibers, and showed controlled
release of siRNA for up to 72 h in skin fibroblasts for gene silencing. Gene silencing was
reported after 72 h due to the presence of a significant amount of siRNA entrapped in
fabricated nanofibers [191].

5.2. Peptide-Based Nanomaterials for Targeted Gene Delivery

Designing nanomaterials with peptides is already well established as a versatile
method. Two approaches that had been successful. First, one involved the exploitation of
AAs with specific properties as chemical moieties. Second, based on the concept of natural
motifs, AA sequences can be utilized to design or create structures [174].

The past years have seen a rapid increase in the synthesis and development of peptide-
based nanomaterials. The applications of these nanostructures are trending in gene therapy
because of their properties such as biological barrier penetration, high stability, enhanced
loading rate, and targeting ability. For genetic therapy, AA monomer-based peptides
with amide bonds are considered principal units in the development of bionanomaterials.
Because of different ‘R’ groups, different AA has different structures and functions [192].

5.3. Combination of Peptide-Based Nanomaterials with Different Molecules for Genetic Delivery

Three individual functional components and peptide-based self-assembled nanoma-
terials have been discussed for gene delivery (Figure 9). Unlike pure peptides, these
peptide-based nanomaterials show good biocompatibility, high loading rate, and good
multifunctionality [192].

Figure 9. Peptide-based nanomaterials for genetic delivery. Reprinted with permission from ref. [192],
Copyright 2021, Royal Society of Chemistry.
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5.3.1. Small Molecules

Small molecules can reach the target area because their diffusion through cell mem-
branes is easy. The efficiency of the transfection, targeting ability, and loading capacity
of peptide-based nanomaterials can be improved by the ability of small molecules and
peptides that are positively charged to combine with nucleic acids that are negatively
charged [193–195]. AIEgens (aggregation-induced emission iluminogens) are small flu-
orescent molecules that emit fluorescence at a high aggregated state and do not require
concentration control [196]. A group of researchers found out that covalently bonded
peptides and AIEgens exhibited properties of both substances, i.e., the biological properties
of peptides and the luminescence of AIEgens. They fabricated self-assembled NPs, called
TNCP/ASO-NPs, by peptide-conjugated AIEgen (TNCP) and ASO to deliver antisense
single-stranded DNA oligonucleotide (ASO) efficiently. The AIEgen part of TNCP was
hydrophobic PyTPE, which promoted the self-assembly of NPs between 76 and 198 nm.
The peptide sequence can be further divided into three parts:

i) DGR or RGD, for targeting integrin αvβ3;
ii) KRRRR, a nuclear localization sequence, siding the entry of antisense oligonucleotide

into the nucleus;
iii) RRRR, a cell-penetrating peptide, for aiding in endosomal escape and assisting NPs

to enter cells.

The correlation coefficient of ASO-Cy5 and TNCP, along with microscopy techniques
and in vivo testing, demonstrated successful delivery of ASO to a tumor target site in
mice and inhibition of Bcl-2 expression for tumor growth inhibition [197]. The same
group carried out further research and showed that a triple combination therapy, named
FCsiRNA-PyTPA, efficiently stopped tumor growth by down-regulating the expression of
antiapoptotic proteins [198].

Kostorelos et al. prepared self-assembled peptide nanofibers (PNFs) using palmitoyl
and peptide (GGGAAAKRK) and reported the ability of the prepared self-assembled PNFs
to silence Bcl-2 in loci of the brain by delivering siRNA [199].

5.3.2. NPs

Certain NPs, such as gold, porous silicon, and nanodiamonds, are used in gene therapy
for their specific good characteristics. Combining NPs with peptides can further enhance
the efficacy while reducing toxicity [200,201]. Strouse et al. designed a solid AuNP complex
for genetic delivery into MSC (mesenchymal stem cells) of rats utilizing Ku70 peptide. Ku70
peptide is a pentapeptide from Ku70, a DNA repair binding sequence. The researchers
modified the surface of AuNPs with BDNF/mCherry fusion gene (6.6kbp) and the N-
terminal of Ku70 peptide with cysteine via thiol linkage. This instigated the development
of an AuNP complex with a size of about 130 nm. Modification of the Ku70 peptide
made it zwitterionic, which aided in reducing electrostatic interactions between the fusion
gene and the AuNP peptide surface. This enhances the efficacy of the gene’s transfection.
Different analyses and in vivo testing showed that the AuNP complex inhibited apoptotic
response [202].

Another group of researchers fabricated cationic functionalized nanodiamonds to
increase cellular uptake and deliver antisense oligodeoxynucleotides (ODNs) to the nucleus.
Cationic TAT–NLS peptides were used to modify 30 nm nanodiamonds (NDs). Then,
ANA4625 nucleic acid was loaded via electrostatic interactions. Optical imaging, MTT
assay, and Western blot analysis were performed. The results indicated ANA4625 loaded in
TAT–NLS–NDs inhibited Bcl-xL and Bcl-2 gene expression through enhanced cytotoxicity
in MCF-7 cells. Hence, the designed TAT–NLS–NDs proved to be more efficient carriers
than uncoated NDs [203]. Lang et al. used cell-penetrating peptides (CPPs) with magnetic
NPs (MNPs, FE3O4) for transfection of plasmid (pGL3), SCO, and siRNA [204].
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5.3.3. Polymers

Specific polymers are easily precipitated, and aggregation occurs in vivo because of
their hydrophobic nature. Combining them with other polymers that are hydrophilic in
nature forms self-assemblies that demonstrate in vivo stability and improved uptake by tar-
get cells due to enhanced hydrophilicity [192]. Leong and coworkers used cationic α-helical
peptide (PPABLG) to self-assemble PEGylated NPs (P-HNPs). The purpose of designing
it was to deliver Cas9 expression plasmid with sgRNA [205]. Unlike CPPs, PPABLG was
able to bind and concentrate plasmid DNA and short siRNA enhanced endosomal escape
and cellular internalization by maintaining the ability of increased membrane penetration.
PEG-polythymine40 (PEG-T40) was used to modify sgRNA complexes and PPABLG-Cas9
expression plasmid to enhance stability extracellularly. Three pathways were found related
to the internalization of P-HNPs: (i) caveolae-mediated uptake, (ii) micropinocytosis, and
(iii) clathrin-mediated pathway. In vitro testing showed 46.2% cell apoptosis at the target
site in HeLa cells by P-HNPPCas9+sgPlk1, while in vivo results and Western blot analysis
confirmed tumor suppression greater than 71% and reduced the expression level of Plk1
protein up to 67% [205].

A great deal of research has been conducted on polymers because of their excellent
properties. To deliver siRNA/microRNA for selectively targeting osteoblasts, Wang et al.
used osteoblast targeting peptides to modify and develop polyurethane nanomicelles.
The design was intended to avoid over toxicity and/or immune response [206].

Micelles, vesicles, nanotubes, NPs, and nanofibers can be combined with amphiphilic
and peptide conjugates to yield nanoassemblies that offer a significant number of specific
properties. Peptide-based nanomaterials are suitable candidates in biomedical applications
such as carriers for gene delivery, as they combine the properties of both nanoscale systems
and peptides and can conjugate or condense DNA/RNA [207].

Three primary constituents are present in these supramolecular structures:

i) hydrophobic AAs;
ii) hydrophilic AAs;
iii) positively charged AAs [208].

The hydrophobic AAs control the self-assembly and development of secondary struc-
tures via molecular interactions that are noncovalent in nature. The hydrophilic AAs
residues impart stability while positively charged AAs electrostatically interact with the
negatively charged nucleic acids [208]. However, if these interactions exist between nega-
tively charged nucleic acids and positively charged peptide residues (lysine, histidine, and
arginine), peptiplexes are formed spontaneously [209].

5.3.4. Micelles

Peptide-based micelles can be described as nanoassemblies that are closed monolayers.
The outer shell is hydrophilic, while the inner core is hydrophobic. Two general methods
of their fabrication include solvent switch and direct dissolution. These well-ordered struc-
tures are spontaneously formed in nano range above CMC (critical micelle concentration)
and are regulated by temperature [210,211].

These micelles offer significant properties in gene delivery systems, including high
stability and a size range that facilitates deep penetration into tumors and cellular uptake.
Their practical gene loading ability offers high therapeutic potency. It is important to
note here that micelle nanoassemblies that are cationic in nature support efficient DNA
condensation by increasing the positive charge density in the solution. Also, these cationic-
based micelles can be customized to specific target cells and can facilitate endosomal escape,
transport to the nucleus, and cellular uptake [212].

Ryu et al. synthesized self-assembling multifunctional peptides (MP, CR8GPLGVH5-
Pal). Dimerization was performed to create a gene delivery system. The MPP can be self-
assembled to prepare micelle structures, and pDNA condensation occurs via electrostatic
interactions. The potential of MPP for use as a gene delivery platform was demonstrated
by high transfection efficiency in cancer with high expression of MMP-2 [213].
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Peptide-based micelles are now being designed as smart nanomaterials for tuning gene de-
livery. The stimuli responsiveness in these micelles should control the release of a gene, improve
cellular uptake, and control the destiny of nucleic acids intracellularly [214–216]. For example,
(Fmoc) 2KH7-TAT is a pH-responsive chimeric peptide that can mediate transfection of PGL-3
reporter plasmid with or without the existence of serum in 293T and HeLa cell lines. These
pH-responsive micelles can synergistically deliver drugs and genes [217].

5.3.5. Vesicles

Vesicles can be described as spherical assemblies that are bilayer delimited and hollow.
Hydrophilic regions are exposed to external and interior aqueous environments, while the
hydrophobic residues are packed together between hydrophilic interfaces [218]. Hydropho-
bic molecules are trapped between hydrophobic bilayers, whereas hydrophilic moieties are
entrapped in the inner aqueous phase [219]. Adjustment of chain length of building blocks
and composition can tune the size of vesicles [220].

The assembly of peptides either into vesicles or nanotubes is governed by the hy-
drophobic nature of peptides’ tails. Surfactant-like peptides with hydrophobic tails con-
sisting of 4–10 glycine residues and hydrophilic heads of aspartic acid were shown to
self-assemble into vesicles. The diameter of the self-assembled vesicles was in the range of
30–50 nm. Peptide-based nanovesicles provide several advantages. However, targeting
mediated by peptides and preservation of contents from extracellular factors is the prime
factor for in vivo delivery of DNA. Organ distribution is improved if DNA stability is
maintained and circulation time is prolonged [221,222].

Cationic SPVs (GE11-GHDC/HQCMC/Chol) were synthesized for the delivery of
genes or siRNAs. These SPVs showed high zeta potential. Functionalization of GE11-
GHDC-based vesicles demonstrated desirable properties, e.g., gene transfer, targeting of
epidermal growth factor receptor (EGFR), and in vivo suppression of tumor growth with
high potency [223].

Like micelles, peptide building blocks can be used to create smart vesicles respon-
sive to external and internal stimuli. For example, poly (L-lysine hydrochloride) (PLL)
and poly(gamma-benzyl-d7-L-glutamate) copolypeptides, upon combining with plasmid
DNA, assembled to form stimuli-responsive vesicles, i.e., pH- and temperature-responsive
nanocarriers. The increased protection of pDNA can be attributed to partial condensation
on the PLL phase and partial encapsulation inside the formed vesicles [224].

5.3.6. Nanofibers

Nanomedicine is the medical application of nanotechnology, ranging from the med-
ical applications of nanomaterials and biological devices to nanoelectronic biosensors
and even possible future applications of molecular nanotechnology such as biological
machines [225–227]. Nanofibers (NFs) are long 1D cylindrical nanostructures usually
5-20 nm wide. They show a high loading capacity for nucleic acids owing to their high
surface-to-volume ratio [208,228].

Peptides that can self-assemble into NFs include amyloid peptides, collagen-like
triple-helical peptides, amphiphilic peptides, and ionic self-complementary peptides [229].
Interactions of the side chains and the secondary structure and the customization of AAs
while contemplating hydrophilic–hydrophobic interactions play a significant role in the
self-assembly and formation of NFs [230].

The aspects that confer distinct characteristics for gene delivery in peptide-based NFs
(PNFs) are:

i) A hydrophilic head constituted of some positively charged essential AAs in physio-
logical states;

ii) The capability of a peptide sequence that is responsible for β-sheet formation for
intermolecular hydrogen bonding;

iii) A hydrophobic tail, primarily an alkyl chain [231].



Nanomaterials 2021, 11, 3002 25 of 36

Electrostatic interactions between negatively charged nucleic acids and positively
charged AAs make PNFs a propitious tool for gene delivery. A group of scientists syn-
thesized PNFs for siRNA delivery as a nonviral vector system. In vitro results showed
effective destruction of Bcl-2 expression and generated apoptosis. In vivo administration
of PNF/siRNA complexes to rat brain demonstrated enhanced biological activity and
residence time of siRNA [199].

5.3.7. Nanotubes

Peptide nanotubes (PNTs) are highly organized 3D systems. The amphiphilic building
blocks maintain a cylindrical hollow shape via interactions at the molecular level [232].
PNTs are relatively new in nanomedicine research; therefore, few examples have been
reported [233].

Ghadiri et al. first reported cyclic polypeptide-based organic nanotubes. Also, the
transmembrane channels proposed PNTs as potential gene delivery systems into biological
cells [234]. Another group of researchers synthesized an oral gene delivery system by
self-assembly of nanotubes using cyclic cyclo-(D-Trp-Tyr) in the presence of pDNA. Results
indicated increased duodenal permeability of pDNA in vitro and in vivo. The researchers
also suggested the potential applications of these systems for genetic treatment of stomach,
kidney, liver, and duodenum-related diseases [235].

Surfactants such as peptides can also self-assemble into these nanotubes. The hy-
drophilic tail is sequestered from contact with water through the generation of a polar
interface, facilitating nanotubes’ assembly [236]. Researchers assembled nanotubes using
surfactant-like peptides with hydrophobic tail (6 Ala, Val, Leu) residues and cationic heads
(1-2 Lys and His) when the isoelectric point of a peptide was lower than the value of the
pH. The synthesized PNTs were potential gene delivery systems because of their cationic
nature, which binds negatively charged DNA or siRNA [237].

5.3.8. Peptiplexes

Peptiplexes are formed via electrostatic interactions between positively charged pep-
tide residues and nucleic acid’s negatively charged phosphate backbone. These complexes
are compact and stable in nature and have been recognized as efficient carriers in the past
years [238,239]. Compared to polyplexes or lipoplexes, peptiplexes offer many advan-
tageous properties such as ease of synthesis at large scales, biocompatibility, stability in
case of oxidation, and numerous customization possibilities [240,241]. As for the synthesis
of peptiplexes, around six to eight positive charges per peptide are needed to condense
pDNA into NPs. However, to form more stable peptiplexes, 13 or more positive charges
are required [242]. Different combinations of AAs, such as histidine, arginine, and lysine in
specific cationic peptides, have already been studied for condensing nucleic acids. Out of
these examples, lysine-rich peptides are more efficient and strongly dependent on genetic
cargo concentration. This was attributed to the existence of protonatable amine groups on
these residues [243]. For example, nanosized peptiplexes were synthesized when branched
amphiphilic peptides with oligo lysine segments condensed pDNA-encoded green fluo-
rescent protein (GFP). The formation of peptiplexes occurred through strong electrostatic
interactions at low peptide/pDNA ratios [244].

Arginine-rich peptides are also effective delivery systems because of compact gene
condensation [245]. For example, siRNA and pDNA peptiplexes were formed using RALA.
RALA has seven arginines in the backbone and is an amphipathic CPP [246–248].

Similarly, in the case of histidine residues, protonation of the imidazole ring occurs
at low pH. As a result, endosomal escape and gene release occur, making it an efficient
gene delivery mediator system. This DNA transfection efficiency can be increased by
using branched peptides with higher histidine density than short linear peptides [242,249].
Interestingly, a combination of histidine and arginine improved transfection efficacy by
promoting cell penetration of NPs [250].
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K12H6V8, a cationic amphiphilic peptide used in genetic delivery, consists of
three molecules:

i) A histidine block responsible for the endolysosomal release;
ii) A hydrophilic valine block;
iii) A DNA-binding lysine block [251].

5.4. Barriers in Using AAs, Peptides, and Proteins for Gene Delivery

It is important to consider certain aspects when delivering genes to humans, e.g.,
which carriers are required to transfer DNA into the target cell’s nuclei, whether the
carriers are efficient enough for transfection, whether these can be safely used in humans,
whether they can protect DNA from factors like degradation before it enters the target cell,
and most importantly, whether they can deliver a gene to target cells and tissues.

The possible rate-limiting steps for efficient delivery of genetic cargo are intracellular
and extracellular barriers. Nucleolytic degradation in the cytosol, lysosomal degradation,
and inefficiency of delivering to nuclei are critical intracellular barriers [252]. Nucleolytic
degradation in serum by the reticuloendothelial system (RES), along with nonspecific
delivery, are included among extracellular barriers [253]. Gene vectors should be able
to navigate through many intracellular and extracellular barriers to achieve high gene-
transfection efficiency [254].

6. Summary and Outlook

The current review summarizes the latest advancements over the last five years in
developing nanosensors to determine proteins, AAs, and metabolic biomarkers, including
NPs, carbon nanotubes, graphene, electrospun fibers, and molecularly imprinted polymers.
With the development of nanotechnology, the integration of nanosized materials into
sensor systems has enabled the production of sensitive, low-cost analytical devices that
do not require expert personnel and allow point-of-care analysis. Modifying a sensor
surface with stable nanomaterials greatly improves the performance indexes of the system,
such as sensitivity, stability, repeatability, and signal-to-noise ratio. The development of
nanosensors offers significant advantages in the clinical field, especially as an alternative
to systems with high-sensitivity gold standards such as GC–MS, LC-MS/MS, IEC, which
are fairly expensive and do not allow point-of-care analysis.

Drug delivery has been radically improved by the application of proteins, AAs, and
peptides. A new polymer with increased biocompatibility and tumor targeting abilities may
help overcome numerous shortcomings of conventional delivery systems. Emerging trends
of protein-based multifunctionalized nanocarriers with biocompatible and biodegradable
polymers against various cancers and infectious diseases have tremendously improved
drug delivery.

Nonviral vectors have attracted considerable interest because of their safety and
stability profile as compared to viral vectors. Proteins, peptides, and AAs are not only
renewable resources but abundant in nature. Nanomaterials based on these natural re-
sources for targeted delivery of genetic load represent an active area of research. Several
research and review articles in this regard have provided critical and valuable information.
This review summarizes some protein-based nanomaterials for targeted gene delivery.
It also highlights individual functional components of peptide-based nanomaterials and
sheds light on different peptide-based nanoassemblies for genetic delivery. Although
in vivo studies have shown promising results, more research is required to analyze the
complex nature of AA sequences in proteins and peptides. Studies on the limitations of
these nanomaterial-based genetic delivery systems are also necessary to advance clinical
trials and approval by the FDA.



Nanomaterials 2021, 11, 3002 27 of 36

Author Contributions: Conceptualization, A.R. and S.S.; writing—original draft preparation, S.E.,
R.A., U.L., S.S. and A.R.; writing—review and editing, S.S., A.R., V.K.T., S.P. and A.M.D.-P.; supervi-
sion, A.R. and A.M.D.-P. All authors have read and agreed to the published version of
the manuscript.

Funding: Financial support from the Community of Madrid within the framework of the Multiyear
Agreement with the University of Alcalá in the line of action “Stimulus to Excellence for Permanent
University Professors”, Ref. EPU-INV/2020/012, is gratefully acknowledged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lubec, G.; Rosenthal, G.A. Amino Acids: Chemistry, Biology and Medicine; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2012.
2. Idrees, M.; Mohammad, A.R.; Karodia, N.; Rahman, A. Multimodal role of amino acids in microbial control and drug development.

Antibiotics 2020, 9, 330. [CrossRef] [PubMed]
3. Ladmiral, V.; Charlot, A.; Semsarilar, M.; Armes, S.P. Synthesis and characterization of poly (amino acid methacrylate)-stabilized

diblock copolymer nano-objects. Polym. Chem. 2015, 6, 1805–1816. [CrossRef]
4. Wu, G. Functional amino acids in growth, reproduction, and health. Adv. Nutr. 2010, 1, 31–37. [CrossRef] [PubMed]
5. De Koning, T. Treatment with amino acids in serine deficiency disorders. J. Inherit. Metab. Dis. 2006, 29, 347–351. [CrossRef]

[PubMed]
6. Vong, L.B.; Trinh, N.-T.; Nagasaki, Y. Design of amino acid-based self-assembled nano-drugs for therapeutic applications. J.

Control. Release 2020, 326, 140–149. [CrossRef]
7. Shakeri-Zadeh, A.; Zareyi, H.; Sheervalilou, R.; Laurent, S.; Ghaznavi, H.; Samadian, H. Gold nanoparticle-mediated bubbles in

cancer nanotechnology. J. Control. Release 2020, 330, 49–60. [CrossRef] [PubMed]
8. Norouzi, M.; Yasamineh, S.; Montazeri, M.; Dadashpour, M.; Sheervalilou, R.; Abasi, M.; Pilehvar-Soltanahmadi, Y. Recent

advances on nanomaterials-based fluorimetric approaches for microRNAs detection. Mater. Sci. Eng. C 2019, 104, 110007.
[CrossRef]

9. Shirvalilou, S.; Khoei, S.; Esfahani, A.J.; Kamali, M.; Shirvaliloo, M.; Sheervalilou, R.; Mirzaghavami, P. Magnetic Hyperthermia as
an adjuvant cancer therapy in combination with radiotherapy versus radiotherapy alone for recurrent/progressive glioblastoma:
A systematic review. J. Neuro-Oncol. 2021, 152, 419–428. [CrossRef] [PubMed]

10. Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Mohajeri, A.; Fattahi, A.; Sheervalilou, R.; Zarghami, N. An overview on application
of natural substances incorporated with electrospun nanofibrous scaffolds to development of innovative wound dressings. Mini
Rev. Med. Chem. 2018, 18, 414–427. [CrossRef]

11. Irajirad, R.; Ahmadi, A.; Najafabad, B.K.; Abed, Z.; Sheervalilou, R.; Khoei, S.; Shiran, M.B.; Ghaznavi, H.; Shakeri-Zadeh, A.
Combined thermo-chemotherapy of cancer using 1 MHz ultrasound waves and a cisplatin-loaded sonosensitizing nanoplatform:
An in vivo study. Cancer Chemother. Pharmacol. 2019, 84, 1315–1321. [CrossRef]

12. Kafshdooz, L.; Pourfathi, H.; Akbarzadeh, A.; Kafshdooz, T.; Razban, Z.; Sheervalilou, R.; Ebrahimi Sadr, N.; Khalilov, R.;
Saghfi, S.; Kavetskyy, T. The role of microRNAs and nanoparticles in ovarian cancer: A review. Artif. Cells Nanomed. Biotechnol.
2018, 46, 241–247. [CrossRef]

13. Kafshdooz, L.; Kahroba, H.; Kafshdooz, T.; Sheervalilou, R.; Pourfathi, H. Labour analgesia; Molecular pathway and the role of
nanocarriers: A systematic review. Artif. Cells Nanomed. Biotechnol. 2019, 47, 927–932. [CrossRef]

14. Davarpanah, F.; Yazdi, A.K.; Barani, M.; Mirzaei, M.; Torkzadeh-Mahani, M. Magnetic delivery of antitumor carboplatin by using
PEGylated-Niosomes. DARU J. Pharm. Sci. 2018, 26, 57–64. [CrossRef]

15. Ebrahimi, A.K.; Barani, M.; Sheikhshoaie, I. Fabrication of a new superparamagnetic metal-organic framework with core-shell
nanocomposite structures: Characterization, biocompatibility, and drug release study. Mater. Sci. Eng. C 2018, 92, 349–355.
[CrossRef]

16. Hajizadeh, M.R.; Maleki, H.; Barani, M.; Fahmidehkar, M.A.; Mahmoodi, M.; Torkzadeh-Mahani, M. In vitro cytotoxicity assay of
D-limonene niosomes: An efficient nano-carrier for enhancing solubility of plant-extracted agents. Res. Pharm. Sci. 2019, 14, 448.
[PubMed]

17. Asadi, L.; Shirvalilou, S.; Khoee, S.; Khoei, S. Cytotoxic effect of 5-fluorouracil-loaded polymer-coated magnetite nanographene
oxide combined with radiofrequency. Anti-Cancer Agents Med. Chem. 2018, 18, 1148–1155. [CrossRef]

http://doi.org/10.3390/antibiotics9060330
http://www.ncbi.nlm.nih.gov/pubmed/32560458
http://doi.org/10.1039/C4PY01556H
http://doi.org/10.3945/an.110.1008
http://www.ncbi.nlm.nih.gov/pubmed/22043449
http://doi.org/10.1007/s10545-006-0269-0
http://www.ncbi.nlm.nih.gov/pubmed/16763900
http://doi.org/10.1016/j.jconrel.2020.06.009
http://doi.org/10.1016/j.jconrel.2020.12.022
http://www.ncbi.nlm.nih.gov/pubmed/33340564
http://doi.org/10.1016/j.msec.2019.110007
http://doi.org/10.1007/s11060-021-03729-3
http://www.ncbi.nlm.nih.gov/pubmed/33713248
http://doi.org/10.2174/1389557517666170308112147
http://doi.org/10.1007/s00280-019-03961-9
http://doi.org/10.1080/21691401.2018.1454931
http://doi.org/10.1080/21691401.2019.1573736
http://doi.org/10.1007/s40199-018-0215-3
http://doi.org/10.1016/j.msec.2018.07.010
http://www.ncbi.nlm.nih.gov/pubmed/31798662
http://doi.org/10.2174/1871520618666180404151218


Nanomaterials 2021, 11, 3002 28 of 36

18. Mirzaghavami, P.S.; Khoei, S.; Khoee, S.; Shirvalilou, S.; Mahdavi, S.R.; Mahabadi, V.P. Radio-sensitivity enhancement in HT29
cells through magnetic hyperthermia in combination with targeted nano-carrier of 5-Flourouracil. Mater. Sci. Eng. C 2021,
124, 112043. [CrossRef] [PubMed]

19. Al-Maqdi, K.A.; Bilal, M.; Alzamly, A.; Iqbal, H.; Shah, I.; Ashraf, S.S. Enzyme-Loaded Flower-Shaped Nanomaterials: A Versatile
Platform with Biosensing, Biocatalytic, and Environmental Promise. Nanomaterials 2021, 11, 1460. [CrossRef] [PubMed]

20. Munir, H.; Bilal, M.; Khan, M.I.; Iqbal, H.M. Gums-Based Bionanostructures for Medical Applications. Polysacch. Prop. Appl. 2021,
17, 385–398.

21. Bilal, M.; Rasheed, T.; Iqbal, H.M.; Li, C.; Hu, H.; Zhang, X. Development of silver nanoparticles loaded chitosan-alginate
constructs with biomedical potentialities. Int. J. Biol. Macromol. 2017, 105, 393–400. [CrossRef]

22. Rasheed, T.; Bilal, M.; Li, C.; Iqbal, H. Biomedical potentialities of Taraxacum officinale-based nanoparticles biosynthesized using
methanolic leaf extract. Curr. Pharm. Biotechnol. 2017, 18, 1116–1123. [CrossRef]

23. Rasheed, T.; Bilal, M.; Iqbal, H.M.; Li, C. Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and
their potential biomedical applications. Colloids Surf. B Biointerfaces 2017, 158, 408–415. [CrossRef]

24. Bilal, M.; Mehmood, S.; Rasheed, T.; Iqbal, H. Bio-catalysis and biomedical perspectives of magnetic nanoparticles as versatile
carriers. Magnetochemistry 2019, 5, 42. [CrossRef]

25. Bilal, M.; Iqbal, H. Marine seaweed polysaccharides-based engineered cues for the modern biomedical sector. Mar. Drugs 2020,
18, 7. [CrossRef]

26. Munir, S.; Shah, A.A.; Rahman, H.; Bilal, M.; Rajoka, M.S.R.; Khan, A.A.; Khurshid, M. Nanozymes for medical biotechnology
and its potential applications in biosensing and nanotherapeutics. Biotechnol. Lett. 2020, 42, 357–373. [CrossRef]

27. Bilal, M.; Iqbal, H.M.; Adil, S.F.; Shaik, M.R.; Abdelgawad, A.; Hatshan, M.R.; Khan, M. Surface-coated magnetic nanostructured
materials for robust bio-catalysis and biomedical applications-A review. J. Adv. Res. 2021, in press.

28. Hanif, M.; Khan, H.U.; Maheen, S.; Shafqat, S.S.; Masood, S.A.; Shah, S.; Abbas, G.; Rizwan, M.; Rasheed, T.; Bilal, M. Formulation,
Characterization, and Pharmacokinetic Evaluation of Ivabradine-Nebivolol Co-Encapsulated Lipospheres. J. Mol. Liq. 2021,
344, 117704. [CrossRef]

29. Zain, M.; Yasmeen, H.; Yadav, S.S.; Amir, S.; Bilal, M.; Shahid, A.; Khurshid, M. Applications of nanotechnology in biological sys-
tems and medicine. In Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood; Elsevier: Amsterdam, The Netherlands,
2022; pp. 215–235.

30. Zhao, Y.; Bilal, M.; Qindeel, M.; Khan, M.I.; Dhama, K.; Iqbal, H. Nanotechnology-based immunotherapies to combat cancer
metastasis. Mol. Biol. Rep. 2021, 23, 6563–6580. [CrossRef] [PubMed]

31. Mao, Y.; Qamar, M.; Qamar, S.A.; Khan, M.I.; Bilal, M.; Iqbal, H.M. Insight of nanomedicine strategies for a targeted delivery of
nanotherapeutic cues to cope with the resistant types of cancer stem cells. J. Drug Deliv. Sci. Technol. 2021, 64, 102681. [CrossRef]

32. Oliveira, B.; de Assis, A.C.C.; Souza, N.M.; Ferreira, L.F.R.; Soriano, R.N.; Bilal, M.; Iqbal, H.M. Nanotherapeutic approach to
tackle chemotherapeutic resistance of cancer stem cells. Life Sci. 2021, 2, 119667. [CrossRef]

33. Villalba-Rodríguez, A.M.; Martínez-González, S.; Sosa-Hernández, J.E.; Parra-Saldívar, R.; Bilal, M.; Iqbal, H. Nanoclay/Polymer-
Based Hydrogels and Enzyme-Loaded Nanostructures for Wound Healing Applications. Gels 2021, 7, 59. [CrossRef] [PubMed]

34. Shirvalilou, S.; Khoei, S.; Khoee, S.; Emamgholizadeh Minaei, S. Magnetic Graphene Oxide Nanocarrier as a drug delivery vehicle
for MRI monitored magnetic targeting of rat brain tumors. Iran. J. Med. Phys. 2018, 15, 134.

35. Karimipour, K.; Rad, J.K.; Shirvalilou, S.; Khoei, S.; Mahdavian, A.R. Spiropyran-based photoswitchable acrylic nanofibers:
A stimuli-responsive substrate for light controlled C6 glioma cells attachment/detachment. Colloids Surf. B Biointerfaces 2021,
203, 111731. [CrossRef] [PubMed]

36. Changizi, O.; Khoei, S.; Mahdavian, A.; Shirvalilou, S.; Mahdavi, S.R.; Rad, J.K. Enhanced radiosensitivity of LNCaP prostate
cancer cell line by gold-photoactive nanoparticles modified with folic acid. Photodiagnosis Photodyn. Ther. 2020, 29, 101602.
[CrossRef]

37. Shirvalilou, S.; Khoei, S.; Khoee, S.; Mahdavi, S.R.; Raoufi, N.J.; Motevalian, M.; Karimi, M.Y. Enhancement radiation-induced
apoptosis in C6 glioma tumor-bearing rats via pH-responsive magnetic graphene oxide nanocarrier. J. Photochem. Photobiol. B Biol.
2020, 205, 111827. [CrossRef]

38. Afzalipour, R.; Khoei, S.; Khoee, S.; Shirvalilou, S.; Raoufi, N.J.; Motevalian, M.; Karimi, M.Y. Thermosensitive magnetic
nanoparticles exposed to alternating magnetic field and heat-mediated chemotherapy for an effective dual therapy in rat glioma
model. Nanomed. Nanotechnol. Biol. Med. 2021, 31, 102319. [CrossRef]

39. Kobayashi, N.; Yanase, K.; Sato, T.; Unzai, S.; Hecht, M.H.; Arai, R. Self-assembling nano-architectures created from a protein
nano-building block using an intermolecularly folded dimeric de novo protein. J. Am. Chem. Soc. 2015, 137, 11285–11293.
[CrossRef]

40. Ulijn, R.V.; Jerala, R. Peptide and protein nanotechnology into the 2020s: Beyond biology. Chem. Soc. Rev. 2018, 47, 3391–3394.
[CrossRef] [PubMed]

41. Hajizadeh, M.R.; Parvaz, N.; Barani, M.; Khoshdel, A.; Fahmidehkar, M.A.; Mahmoodi, M.; Torkzadeh-Mahani, M. Diosgenin-
loaded niosome as an effective phytochemical nanocarrier: Physicochemical characterization, loading efficiency, and cytotoxicity
assay. DARU J. Pharm. Sci. 2019, 27, 329–339. [CrossRef]

http://doi.org/10.1016/j.msec.2021.112043
http://www.ncbi.nlm.nih.gov/pubmed/33947543
http://doi.org/10.3390/nano11061460
http://www.ncbi.nlm.nih.gov/pubmed/34072882
http://doi.org/10.1016/j.ijbiomac.2017.07.047
http://doi.org/10.2174/1389201019666180214145421
http://doi.org/10.1016/j.colsurfb.2017.07.020
http://doi.org/10.3390/magnetochemistry5030042
http://doi.org/10.3390/md18010007
http://doi.org/10.1007/s10529-020-02795-3
http://doi.org/10.1016/j.molliq.2021.117704
http://doi.org/10.1007/s11033-021-06660-y
http://www.ncbi.nlm.nih.gov/pubmed/34424444
http://doi.org/10.1016/j.jddst.2021.102681
http://doi.org/10.1016/j.lfs.2021.119667
http://doi.org/10.3390/gels7020059
http://www.ncbi.nlm.nih.gov/pubmed/34068868
http://doi.org/10.1016/j.colsurfb.2021.111731
http://www.ncbi.nlm.nih.gov/pubmed/33831752
http://doi.org/10.1016/j.pdpdt.2019.101602
http://doi.org/10.1016/j.jphotobiol.2020.111827
http://doi.org/10.1016/j.nano.2020.102319
http://doi.org/10.1021/jacs.5b03593
http://doi.org/10.1039/C8CS90055H
http://www.ncbi.nlm.nih.gov/pubmed/29761188
http://doi.org/10.1007/s40199-019-00277-0


Nanomaterials 2021, 11, 3002 29 of 36

42. Motamedi, N.; Barani, M.; Lohrasbi-Nejad, A.; Mortazavi, M.; Riahi-Medvar, A.; Varma, R.S.; Torkzadeh-Mahani, M. Enhancement
of thermostability of aspergillus flavus urate oxidase by immobilization on the Ni-based magnetic metal–organic framework.
Nanomaterials 2021, 11, 1759. [CrossRef]

43. Zeraati, M.; Kazemzadeh, P.; Barani, M.; Sargazi, G. Selecting the appropriate carbon source in the synthesis of SiC nano-powders
using an optimized Fuzzy Model. Silicon 2021, 1–12.

44. Cai, D.; Ren, L.; Zhao, H.; Xu, C.; Zhang, L.; Yu, Y.; Wang, H.; Lan, Y.; Roberts, M.F.; Chuang, J.H. A molecular-imprint nanosensor
for ultrasensitive detection of proteins. Nat. Nanotechnol. 2010, 5, 597–601. [CrossRef]

45. Yu, X.; Munge, B.; Patel, V.; Jensen, G.; Bhirde, A.; Gong, J.D.; Kim, S.N.; Gillespie, J.; Gutkind, J.S.; Papadimitrakopoulos, F.
Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J. Am. Chem. Soc. 2006, 128,
11199–11205. [CrossRef] [PubMed]

46. Shui, Z.; Li, J.; Yang, P.; Huo, D.; Hou, C.; Shen, C. Amino acid-modulating gold nanoparticle sensor array: An express metal ion
recognition system. Anal. Methods 2019, 11, 5691–5698. [CrossRef]

47. Tang, X.; Liu, Y.; Hou, H.; You, T. Electrochemical determination of L-Tryptophan, L-Tyrosine and L-Cysteine using electrospun
carbon nanofibers modified electrode. Talanta 2010, 80, 2182–2186. [CrossRef]

48. Roma-Rodrigues, C.; Rivas-García, L.; Baptista, P.V.; Fernandes, A.R. Gene Therapy in Cancer Treatment: Why Go Nano?
Pharmaceutics 2020, 12, 233. [CrossRef]

49. Labhasetwar, V. Nanotechnology for drug and gene therapy: The importance of understanding molecular mechanisms of delivery.
Curr. Opin. Biotechnol. 2005, 16, 674–680. [CrossRef] [PubMed]

50. Zhu, Q.; Chen, Z.; Paul, P.K.; Lu, Y.; Wu, W.; Qi, J. Oral delivery of proteins and peptides: Challenges, status quo and future
perspectives. Acta Pharm. Sin. B 2021, 11, 2416–2448. [CrossRef]

51. Hong, S.; Choi, D.W.; Kim, H.N.; Park, C.G.; Lee, W.; Park, H.H. Protein-based nanoparticles as drug delivery systems.
Pharmaceutics 2020, 12, 604. [CrossRef] [PubMed]

52. Martínez-López, A.L.; Pangua, C.; Reboredo, C.; Campión, R.; Morales-Gracia, J.; Irache, J.M. Protein-based nanoparticles for
drug delivery purposes. Int. J. Pharm. 2020, 581, 119289. [CrossRef]

53. Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Protein-based nanocarriers as promising drug and gene delivery systems. J. Control.
Release 2012, 161, 38–49. [CrossRef]

54. Boisguérin, P.; Konate, K.; Josse, E.; Vivès, E.; Deshayes, S. Peptide-Based Nanoparticles for Therapeutic Nucleic Acid Delivery.
Biomedicines 2021, 9, 583. [CrossRef] [PubMed]

55. Gibson, R.B. The Determination of Nitrogen by the Kjeldahl Method. J. Am. Chem. Soc. 1904, 26, 105–110. [CrossRef]
56. Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951,

193, 265–275. [CrossRef]
57. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of

protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [CrossRef]
58. Sandlers, Y. Amino acids profiling for the diagnosis of metabolic disorders. In Biochemical Testing-Clinical Correlation and Diagnosis;

IntechOpen: London, UK, 2019.
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