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ABSTRACT: The indispensability of a base in Suzuki−Miyaura
coupling (SMC) employing organoboronic acids/esters is well
recognized, which occasionally induces competitive protodebor-
ylation in organoboron reagents. This phenomenon is particularly
pronounced in fluorine-substituted aryl and heteroaryl boron
compounds. Here, we show that direct SMC of naphthalene-1,8-
diaminato (dan)-substituted aryl boron compounds, Ar−B(dan),
characterized by its remarkable stability toward protodeborylation
due to their diminished boron-Lewis acidity, occurs utilizing a weak
base in conjunction with a palladium/copper cooperative catalyst system. The approach delineated in this study enables the efficient
incorporation of various perfluoroaryl− and heteroaryl−B(dan) reagents, while maintaining high functional group tolerance.
Furthermore, the inherent inertness of the B(dan) moiety allowed sequential cross-coupling, where other metallic moieties
chemoselectively undergo the reaction, thus leading to the concise, protection-free synthesis of oligoarenes. Our results provide a
potent approach to a delicate dilemma between a protodeborylation-resistant property and SMC activity intimately linked to boron-
Lewis acidity.
KEYWORDS: C−C coupling, cross-coupling, direct Suzuki−Miyaura coupling, Lewis acidity-diminished organoboron reagents, weak bases

■ INTRODUCTION
Biaryl skeletons are key motifs frequently encountered in
pharmaceuticals and materials science. Nitrogen-containing
heteroaryl groups, including pyridyl, thiazolyl, and pyrazolyl,
alongside fluorine-substituted aryl groups, feature prominently
in a vast array of valuable molecules that substantially enhance
our quality of life.1−3 Such molecules span diverse applications,
from cancer therapeutics and anti-inflammatory drugs to ligands
for organic electroluminescent materials (Figure 1).4 Con-
sequently, the development of efficient and reliable synthetic
routes to these compounds remains a pivotal focus in chemical
synthesis.

Cross-coupling techniques utilizing organometallic reagents
have significantly advanced as powerful methods for the efficient
and streamlined construction of biaryl structures.5−7 The
Suzuki−Miyaura coupling (SMC) with organoboron com-
pounds stands out as the most prevalent cross-coupling in both
industrial applications and laboratory-scale synthesis. This
prominence is due to the exceptional chemoselectivity, func-
tional group compatibility, and practicality afforded by the
manageable properties of organoboron compounds.2,8−12

However, despite its established status in synthetic organic
chemistry, SMC faces persistent challenges. Notably, while most
arylboronic acids/esters are relatively stable, nitrogen-contain-
ing heteroaryl and fluorine-substituted aryl compounds often
undergo rapid protodeborylation under aqueous or basic
conditions, leading to inefficient SMC in most cases (Scheme

1a).13−31 To address the “protodeborylation problem”, various
strategies have been employed, including the use of highly active
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Figure 1. Selected biaryl skeletons encountered in pharmaceuticals and
material science.
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ligands,32−35 precatalysts,27,36−40 and suitable addi-
tives30,31,41−43 (e.g., silver(I) salt,44−49 copper(II) salt,50,51

copper(I) salt/phenanthroline52 or micellar systems),53−57

where the SMC process significantly outpaces protodeboryla-
tion. It has also been reported that the protodeborylation can be
significantly overcome by using an excess of aryl halides.58

Another promising approach, particularly beneficial for
heteroaryl compounds, is the boron-masking strategy using
stable, SMC-inactive MIDA boronates, which are slowly
deprotected in situ to yield boronic acids under SMC
conditions.29,50,51,59−61 Despite these significant advances in
SMC, there remains room for improvement, as all these
reactions involve the use of potentially unstable arylboronic
acids/esters that are susceptible to protodeborylation (Scheme
1b).

The propensity for protodeborylation in organoboron
compounds is closely associated with their boron-Lewis acidity,
which can be quantified by computed ammonia affinity (AA)
(Figure 2).62−64 A reduction in Lewis acidity, achieved by
modifying boron substituents, leads to significant stabilization.2

In this context, we have focused on 1,8-diaminonaphthalene-
substituted boron moieties [B(dan)], characterized by markedly
diminished Lewis acidity, for boron-based synthetic chemistry.
We observed that various heteroaryl−B(dan) compounds,
including 2-pyridyl, 5-thiazolyl, and 5-pyrazolyl, exhibit excep-
tional resistance to protodeborylation, enabling their isolation
even via column chromatography.65−69 However, dan-sub-
stituted organoboron compounds typically exhibit inactivity
toward transmetalation in SMC, as the reduced Lewis acidity
impedes interaction between B (dan) moieties and Lewis bases
(Scheme 1a). This behavior was highlighted in Suginome’s

iterative SMC, where “protected” B (dan) moieties remained
unreacted (Scheme 2a).70,71 In 2020, Saito and our team
independently demonstrated that a variety of aryl−B(dan)
compounds could be activated by strong bases like t-BuOK for
efficient SMC.72,73 This activation was also found effective for
cyclopropyl−B (dan) (Scheme 2b).74 This method, wherein
protodeborylation-resistant R−B(dan) compounds directly
participate in SMC, presents a powerful solution to the
aforementioned protodeborylation challenge. Indeed, com-
pounds such as 2-pyridyl− and pentafluorophenyl−B(dan)
have been successfully converted into their respective coupling
products.75 However, this process comes at the expense of
reduced tolerance for various functional groups. Another
significant drawback of these strongly basic conditions is the
rapid decomposition of certain heteroaryl−B(dan) compounds,
such as 5-thiazolyl−B(dan) (1i), rendering them unsuitable for
direct SMC (vide inf ra). In this study, we report the first
successful direct SMC of a diverse range of heteroaryl− and
perfluoroaryl−B (dan) under mild base conditions, despite their
significantly diminished boron-Lewis acidity. The addition of a
copper(I) salt as a cocatalyst is crucial to this transformation.

Scheme 1. Suzuki−Miyaura Coupling (SMC)

Figure 2. Computed ammonia affinity.
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This approach offers a reliable and convenient solution to the
protodeborylation problem in SMC, utilizing stable, easy-to-
handle organoboron reagents (Scheme 2c). In the context of
sustainability aspects, the use of protodeborylation-resistant,
bench-stable B(dan) compounds is promising; avoidance of
contamination by protodeborylation-derived side-products
suppresses isolation cost in purifying the cross-coupling
products, and storage cost (glovebox, inert gas, refrigerator,
etc.) is also significantly reduced. Furthermore, the direct SMC
in the organic solvent-only system is preferable in solvent
recovery since mixed, aqueous solvent systems, frequently
employed for the conventional and slow-release SMC, require
costly, higher energy-consuming processes.

■ RESULTS AND DISCUSSION
Our initial experiment involved the reaction of pentafluor-
ophenyl−B(dan) (1a) with 4-bromotoluene (2a), using Pd-
(PPh3)4 (5 mol %) and CuTC (10 mol %) as cocatalysts in
various solvents in the presence of Cs2CO3, a weak base
commonly used in conventional SMC.10 Remarkably, 1a
underwent direct SMC without in situ deprotection of the
B(dan) moiety, yielding the coupling product (3aa) (vide inf ra).
Among the solvents with varied polarities tested, DME proved
to be the most effective, achieving an 83% yield (Table 1, Entries
1−9). The use of Cs2CO3 was essential for this transformation,
as other weak bases, including potassium carbonate (Table 1,
Entry 10) and potassium phosphate (Table 1, Entry 11), were
ineffective. Optimal results were achieved at a reaction

temperature of 70 °C, with a 98% yield (Table 1, Entry 13).
Significantly lower yields were observed under conditions using
only palladium or copper, underscoring the importance of Pd/
Cu cocatalysis in this SMC (Table 1, Entries 14 and 15). While
the use of CuBr (Table 1, Entry 16) or [Cu(NCMe)4]PF6
(Table 1, Entry 17) instead of CuTC also promoted the SMC
efficiently,76 the reaction in the presence of 2-thiophenecarbox-
ylic acid sodium salt (NaTC) was sluggish (Table 1, Entry 18),
showing that counteranions of Cu(I) salts including thiophene
carboxylate were not important factors in promoting the
reaction. Notably, omitting Cs2CO3 resulted in only a 10%
yield of 3aa (Table 1, Entry 19), corresponding to the amount of
CuTC used, highlighting the base’s role in regenerating a
transmetalation-active Cu(I) salt (vide inf ra). The critical role of
the diminished Lewis acidity in the success of the SMC was
further demonstrated by using pentafluorophenyl−B(OH)2
(1a’); the reaction primarily led to protodeborylation, without
yielding the desired coupling product (3aa).77

We examined the direct SMC of a range of aryl−B (dan)
compounds under optimal conditions (Scheme 3). Various
fluorine-containing aryl−B(dan) compounds, typically prone to
protodeborylation in their boronic acid forms,15,17−20,26

smoothly produced high yields of their respective coupling
products (3aa, 3ca−3ea). An exception was observed with
2,3,5,6-tetrafluorophenyl−B(dan) (1b), where concurrent C−
H arylation78 at the reactive 4-position led to a p-teraryl side-

Scheme 2. SMC with Aryl−B(dan) Table 1. Optimization of Reaction Conditionsa

entry base solvent temp/time (°C/h) 3aa (%)b

1 Cs2CO3 CH2Cl2 40/24 18
2 Cs2CO3 p-xylene 100/24 20
3 Cs2CO3 DMSO 100/24 25
4 Cs2CO3 toluene 100/24 33
5 Cs2CO3 DMF 100/24 35
6 Cs2CO3 THF 60/24 43
7 Cs2CO3 CH3CN 80/24 57
8 Cs2CO3 DEE 100/24 53
9 Cs2CO3 DME 80/24 83
10 K2CO3 DME 80/24 28
11 K3PO4 DME 80/24 11
12 Cs2CO3 DME 60/24 91
13 Cs2CO3 DME 70/24 98(88)
14c Cs2CO3 DME 70/24 21
15d Cs2CO3 DME 70/24 0
16e Cs2CO3 DME 70/24 quant(90)
17f Cs2CO3 DME 70/24 70
18g Cs2CO3 DME 70/24 0
19 no base DME 70/24 10

aReaction conditions: 1a (0.18 mmol, 1.2 equiv), 2a (0.15 mmol, 1.0
equiv), base (0.18 mmol, 1.2 equiv), Pd(PPh3)4 (7.5 μmol, 5 mol %),
CuTC: copper(I) thiophene-2-carboxylate (15 μmol, 10 mol %) in
indicated solvent (1.0 mL). bDetermined by GC using bis(2-
butoxyethyl) ether as an internal standard. A value in parentheses
indicates an isolated yield. cWithout CuTC. dWihout Pd(PPh3)4.
eCuBr was used instead of CuTC. f[Cu(NCMe)4]PF6 was used
instead of CuTC. gNaTC; Sodium thiophene-2-carboxylate was used
instead of CuTC.
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product.77 This suggests that in situ protodeborylation of 1a or
1b, followed by arylation of the resulting acidic C−H bonds,
might be a dominant pathway for generating 3aa or 3ba.
However, treating 1a with Cs2CO3 in DME at 70 °C scarcely
caused protodeborylation (Scheme 4a). Furthermore, the
reaction of pentafluorobenzene (1a”) with 2a under optimal
conditions yielded only a 9% of 3aa (Scheme 4b), confirming
that the reaction proceeds via direct SMC at the B(dan) moiety.
In reactions involving 2,4,6-trifluorophenyl−B(dan) (1c), no
side-products from C−H arylation were observed, ruling out the
protodeborylation−C−H arylation pathway for 1c−1e, which
have less acidic C−H bonds. The versatility of this system was
exemplified by its application to diverse heteroaryl−B(dan)
compounds, such as 2-pyridyl (1f), 2-thienyl (1g), 2-furyl (1h),
5-thiazolyl (1i), and 5-pyrazolyl (1j). These substrates, typically
unstable in their Lewis acidic forms, yielded high-yield products
(3fa−3ja) despite being challenging in conventional
SMC.14,15−17,20−29 Notably, our previous strongly basic
conditions using t-BuOK72 were ineffective for 5-thiazolyl−

B(dan) (1i), leading to its decomposition, which underscores
the practicality and reliability of the present weak base
conditions (Scheme 4c). However, lower yields were observed
with 2,6-dichlorophenyl− (1k) and phenyl−B(dan) (1l),
especially with electronically neutral 1l. This suggests that
increased Lewis acidity of the B(dan) moiety (AA of 1l = 12.09
kJ/mol; cf. 1a = 23.86 kJ/mol; 1b = 24.07 kJ/mol; 1c = 19.41 kJ/
mol; 1d = 19.57 kJ/mol; 1e = 25.12 kJ/mol), induced by
electron-deficient aryl groups and directing heteroatoms,79,80

facilitates transmetalation between Ar−B(dan) and a Cu(I) salt.
The weak base conditions also preserved various reactive

functional groups on aryl bromides during coupling. Penta-
fluorophenyl− (1a) and 5-thiazolyl−B(dan) (1i) were success-
fully cross-coupled with aryl bromides featuring acidic protons
[NH2 (2b), Ac (2f)], electrophilic centers [CN (2d), CO2Et
(2e), CHO (2i)], or other substituents [OMe (2c), NMe2 (2g),
NO2 (2h)], yielding products (3ab−3af, 3jg−3ji) in moderate
to high yields. Notably, NH2, Ac, and CO2Et functionalities,
vulnerable under strong base conditions, were successfully

Scheme 3. Substrate Scopea

aReaction conditions: aryl−B(dan) (1) (0.18 mmol, 1.2 equiv), aryl−Br (2) (0.15 mmol, 1.0 equiv), Cs2CO3 (0.18 mmol, 1.2 equiv), Pd(PPh3)4
(7.5 μmol, 5 mol %), CuTC: copper(I) thiophene-2-carboxylate (15 μmol, 10 mol %) in DME: 1,2-dimethoxyethane (1.0 mL) at 70 °C, 24 h.
Isolated yields were given in all cases.
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incorporated in the B(dan)-based direct SMC. Additionally, the
protodeborylation-resistant nature of heteroaryl−B(dan) facili-
tated smooth heteroaryl−heteroaryl coupling, often challenging
in standard SMC with Lewis acidic heteroarylboron com-
pounds.25,33 For instance, treating 2-pyridyl−B(dan) (1f) with
2-bromo-5-methoxypyridine (2j) produced a 66% yield of 2,2′-
bipyridine (3fj).

The inherently “protected” and inert nature of B (dan)
moieties, due to their significantly diminished Lewis acidity, can
be leveraged for chemoselective cross-coupling sequences,
effectively differentiating between various metallic function-
alities (Scheme 5a). Initially, 5-(tributylstannyl)-2-thienyl−
B(dan) (1m), easily synthesized from 2,5-bis(tributylstannyl)-
thiophene via a one-pot installation of a B(dan) moiety,69

underwent Migita−Kosugi−Stille coupling (MKSC) with 4-
B(pin)-substituted phenyl bromide. This process yielded
compound 4 in an 83% yield, with both boron moieties
remaining intact. Subsequently, the B(pin) moiety of 4 was used
for chemoselective cross-coupling under standard SMC
conditions,71 resulting in a B(dan)-containing teraryl (5). The
differing reactivities can be attributed to their respective Lewis
acidities, as measured by the computed ammonia affinity
technique62 [37.62 kJ/mol for B(pin) vs. 17.17 kJ/mol for
B(dan)]. The direct SMC at the remaining B(dan) moiety, using
an aryl bromide with a base-sensitive ketone group, was then
conducted under our Pd/Cu cocatalysis conditions, yielding a
tetraaryl (6) in 88% yield (45% overall yield across three steps).
Furthermore, as depicted in Scheme5b, the direct SMC was
successfully applied to 5-isoxazolyl− (1n) and 2-indolyl−
B(dan) (1o), synthesized via our [3 + 2] cycloaddition or Pd-
catalyzed heteroannulation using ethynyl−B(dan).81 This

yielded chemoselectively bromine-substituted coupling prod-
ucts (7 and 9) in high yields when treated with 4-iodoanisole.
The residual bromine moieties were subsequently utilized in
further SMC with 3,5-dimethylphenyl boronic acid, efficiently
producing isoxazole- or indole-containing π-extended com-
pounds (8 and 10).

A copper(I) cocatalyst has been suggested to facilitate SMC
(with organoboronates) through transmetalation with organo-
boron reagents, yielding more reactive organocopper inter-
mediates.82 −90 We conducted a stoichiometric reaction of
pentafluorophenyl−B(dan) (1a) with CuTC in the presence of
cesium carbonate. As shown in Scheme 6a-A, the 19F NMR
spectrum revealed the formation of a pentafluorophenylcopper
species and its protonated product, pentafluorobenzene (1a”),
with complete consumption of 1a. The downfield-shifted signal
(ca. −113 pm), characteristic of the pentafluorophenylcopper
species,91 also synthesized by a different method (Scheme 6a-
C), which strongly supports that the direct SMC proceeds via
transmetalation between aryl−B(dan) and a copper catalyst.
The formation of 1a” as a side-product in the transmetalation
between 1a and CuTC (Scheme 6a-A) may be due to the
protonation of C6F5−Cu by the N−H moiety of B(dan);
treatment of C6F5−Cu, generated according to the method of
Scheme 6a-C, with 1a actually resulted in the complete
conversion of C6F5−Cu to 1a” via the protonation.77 In
contrast, without cesium carbonate, transmetalation was
significantly hindered, leaving most of 1a unreacted (Scheme
6a-B), thus highlighting the necessity of a base for efficient
transmetalation.92 As shown in Scheme 6b, the pentafluor-
ophenylcopper species generated according to Scheme 6a-C was
found to be an effective coupling partner with 4-bromotoluene

Scheme 4. Additional Experimentsa

aReaction conditions: pentafluorophenyl−B(dan) (1a) (30 μmol, 1.0 equiv), Cs2CO3 (36 μmol, 1.2 equiv) in DME: 1,2-dimethoxyethane (0.6
mL) at 70 °C. After the reaction mixture was cooled to room temperature, 19F NMR was measured. (b) Reaction conditions: pentafluorobenzene
(1a”) (0.18 mmol, 1.2 equiv), 4-bromotoluene (2a) (0.15 mmol, 1.0 equiv), Cs2CO3 (0.18 mmol, 1.2 equiv), Pd(PPh3)4 (7.5 μmol, 5 mol %),
CuTC: copper(I) thiophene-2-carboxylate (15 μmol, 10 mol %) in DME: 1,2-dimethoxyethane (1.0 mL) at 70 °C, 24 h. GC yield was given. (c)
Reaction conditions: 5-thiazolyl−B(dan) (1i) (0.15 mmol, 1.0 equiv), 4-bromotoluene (2a) (0.15 mmol, 1.0 equiv), t-BuOK (0.23 mmol, 1.5
equiv), Pd(PPh3)4 (7.5 μmol, 5 mol %) in 1,4-dioxane (1.0 mL) at 100 °C, 1 h. GC yield was given.
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(2a) under palladium catalysis to yield 3aa, providing further
evidence to suggest that transmetalation from Ar−B(dan) to
copper is required for this coupling to occur. To investigate the
role of cesium carbonate in enhancing transmetalation, we
performed an11B NMR experiment using 1a. Contrary to
expectations, an up-field shifted signal indicative of a
tetracoordinate borate species72 was not observed when 1a
was treated with cesium carbonate, even at a temperature of 70
°C. Instead, the original signal for 1a remained stable at 27.3
ppm (Scheme 6c). These findings suggest that the active species
in this transmetalation process is copper carbonate, formed from

CuX (X = Br, TC) and cesium carbonate, which undergoes the
transmetalation not with a tetracoordinate borate but rather
with a neutral Ar−B (dan), resulting in the formation of an
arylcopper species. Moreover, a B(dan)-derived by-product
generated in the boron-to-copper transmetalation (Scheme 6a-
A) was determined by an11B NMR experiment: an up-field
shifted (4.7 ppm) signal at 22.6 ppm, being in a typical range of
O−B(dan) species (cf. 22.4 ppm: HOB (dan) and (dan)BOB-
(dan), Scheme 6d), was observed. This could be assigned as a
B(dan)−carbonate species, which further supports that the

Scheme 5. Applications
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transmetalation occurs between copper carbonate and Ar−
B(dan).

Moreover, we confirmed that the SMC directly proceeds
without any deprotection of the B(dan) moieties: 1H NMR
analysis of the crude reaction mixture (1a + 2a) after aqueous
workup showed the presence of B(dan)-derived byproducts
HOB(dan) and (dan)BOB(dan) (Scheme 6d),72 while 1,8-

diaminonaphthalene, a potential deprotection product, was
undetectable via GC, further supporting the direct activation
pathway in SMC.

Based on these findings, we propose dual Pd/Cu catalytic
cycles for the process (Scheme 6e). Initially, transmetalation-
active copper carbonate [1] forms via counteranion exchange
between CuX (X = Br, TC) and cesium carbonate. This is

Scheme 6. Mechanistic Studies and Proposed Catalytic Cycles
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followed by transmetalation from an aryl−B(dan) to copper
carbonate [1], yielding an arylcopper species [2] through a six-
membered transition state. The enhanced Lewis acidity of
B(dan), attributable to electron-deficient aryl groups, and
directing heteroatoms aid in the approach of copper carbonate
[1] toward aryl−B(dan),79,80 thereby facilitating smooth
transmetalation. The highly active arylcopper species [2] then
undergoes transmetalation with an oxidative adduct (ii), derived
from an aryl bromide (i) and a palladium(0) complex. This leads
to the formation of iii, culminating in the production of a cross-
coupling product (iv) via reductive elimination.

The validity of the key elementary step, transmetalation
between an aryl−B(dan) and copper carbonate [1], was
evaluated by DFT calculations at the B3LYP/6-311+G (d,p)−
SDD(Cu, Cs)/SMD(THF)//B3LYP/6-31+G(d,p)−SDD(Cu,
Cs)/SMD(THF) level of theory on Gaussian 16 Rev. A.03
program (Figure 3).93 First, copper carbonate approaches a C−
C double bond of a model compound, vinyl−B(dan), to give a π-
coordinated vinyl−B(dan)−Cu complex (INT1). One of the
carbonate anions then starts to interact with the boron center
and the other is connected to the copper (the O−Cu bond
length = 1.89 Å) to form TS1, which is converted into a six-
membered borate (INT2). Finally, the vinyl group in INT2
transmetalates from B(dan) to Cu through a six-membered
transition state (TS2), providing a vinylcopper species; the
overall trasmetalation process (from copper carbonate to
vinylcopper) was calculated to be 14.0 kcal/mol exergonic.

■ CONCLUSIONS
In summary, we have effectively resolved a challenging balance
between protodeborylation resistance and transmetalation
activity, both of which are closely related to boron-Lewis
acidity. We demonstrated that various protodeborylation-
resistant Ar−B(dan) compounds efficiently undergo direct
SMC with a weak base under Pd/Cu cocatalysis, despite their
significantly diminished Lewis acidity. Notably, this method is
particularly effective for perfluoroaryl− and heteroaryl−B(dan),
offering a promising solution to the protodeborylation problem

in SMC; their Lewis acidic counterparts, − B(OH)2 and −
B(pin), are typically prone to protodeborylation under conven-
tional SMC conditions. Furthermore, the inherent inertness of
the B(dan) moiety, except under the present conditions, can be
harnessed for chemoselective cross-coupling sequences, dis-
tinguishing between different metal functionalities and yielding
heteroaryl-containing π-extended compounds. The success of
this SMC approach is largely due to the efficient formation of
highly active arylcopper species via transmetalation between
neutral Ar−B(dan) and in situ-generated copper carbonate.
This process is particularly enhanced by the increased Lewis
acidity of B(dan) induced by electron-deficient aryl groups and
the presence of directing heteroaryl groups on the B(dan)
center.

■ METHODS

General Procedure for Direct SMC of Ar−B(dan)
A Schlenk tube charged with a magnetic stirring bar and Cs2CO3
(1.2 equiv) was heated under vacuum for 5 min using a heating
gun, cooled to room temperature, and backfilled with argon.
Pd(PPh3)4 (5 mol %), CuTC (10 mol %), an aryl−B(dan) (1.2
equiv), an aryl−Br (1.0 equiv), and DME (0.15 M) were then
added. After stirring at 70 °C for 24 h, the reaction mixture was
quenched with brine, allowing the organic layer to separate. The
aqueous layer was extracted with ethyl acetate. The combined
organic solution was washed with brine, dried over Na2SO4,
filtered, and concentrated by rotary evaporation. The crude
material was purified by column chromatography on silica gel
(hexane/EtOAc as an eluent) to give a cross-coupling product.
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Figure 3. DFT calculation on transmetalation. DFT calculations were performed at the B3LYP/6-311+G(d,p)−SDD(Cu, Cs)/SMD(THF)//
B3LYP/6-31+G(d,p)−SDD(Cu, Cs)/SMD(THF) level of theory.
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