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Abstract: In view of the proven link between adult hippocampal neurogenesis (AHN) and learning
and memory impairment, we generated a straightforward adult neurogenesis in vitro model to
recapitulate DNA methylation marks in the context of Alzheimer’s disease (AD). Neural progenitor
cells (NPCs) were differentiated for 29 days and Aβ peptide 1–42 was added. mRNA expression
of Neuronal Differentiation 1 (NEUROD1), Neural Cell Adhesion Molecule 1 (NCAM1), Tubulin
Beta 3 Class III (TUBB3), RNA Binding Fox-1 Homolog 3 (RBFOX3), Calbindin 1 (CALB1), and
Glial Fibrillary Acidic Protein (GFAP) was determined by RT-qPCR to characterize the culture and
framed within the multistep process of AHN. Hippocampal DNA methylation marks previously
identified in Contactin-Associated Protein 1 (CNTNAP1), SEPT5-GP1BB Readthrough (SEPT5-GP1BB),
T-Box Transcription Factor 5 (TBX5), and Nucleoredoxin (NXN) genes were profiled by bisulfite
pyrosequencing or bisulfite cloning sequencing; mRNA expression was also measured. NXN outlined
a peak of DNA methylation overlapping type 3 neuroblasts. Aβ-treated NPCs showed transient
decreases of mRNA expression for SEPT5-GP1BB and NXN on day 9 or 19 and an increase in DNA
methylation on day 29 for NXN. NXN and SEPT5-GP1BB may reflect alterations detected in the brain
of AD human patients, broadening our understanding of this disease.

Keywords: adult hippocampal neurogenesis; NPCs; Alzheimer’s disease; Aβ peptide; DNA methy-
lation; gene expression; NXN; CNTNAP1; SEPT5-GP1BB; TBX5

1. Introduction

Adult neurogenesis (AN) is the process of forming functional neurons de novo. In the
adult mammalian brain, neurogenesis occurs predominantly in specific brain niches: the
subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus and the subventric-
ular zone (SVZ) lining the lateral ventricles [1,2]. During the process of adult hippocampal
neurogenesis (AHN), neural stem cells (NSCs) self-renew and differentiate, giving rise
to transient amplifying progenitors (TAPs), neuroblasts, and eventually mature neurons,
astrocytes, and oligodendrocytes.

AHN regulators can be divided into intrinsic or extrinsic factors, that is, transcription
factors (TFs) synthesized by the developing neural precursors and neurons, and growth
factors and neurotrophins secreted from the surrounding niche, respectively [3]. Epigenetic
mechanisms tightly regulate extrinsic and intrinsic factors [4], controlling both temporal
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and spatial gene expression. Sequential steps of AN are regulated directly or indirectly
by de novo methylation and maintenance of methylation marks [5]. Each distinct human
brain region (cerebral cortex, cerebellum, and pons) has a characteristic DNA methylation
signature [6], and even within brain regions such as the hippocampus, global methylation
varies between neuronal subtypes [7].

During both physiological and pathological aging in humans, AHN clearly emerges as
a robust phenomenon [8]. AHN is involved with the normal functionality of hippocampal
circuits, which demonstrates an important link between AN and cognitive processes [9].
Thus, impaired neurogenesis may negatively impact the survival of adult-born neurons
and contribute to learning and memory failure, as occurs with aging and neurological
disorders, e.g., Alzheimer’s disease (AD) [8,10,11].

AD is the most common neurodegenerative disorder, characterized by progressive
memory loss and cognitive decline caused by widespread loss of neurons and synaptic
connections in the cortex, hippocampus, amygdala, and basal forebrain, and by a gradually
significant loss of brain mass. The amyloid precursor protein (APP) plays a key role in
normal brain development by influencing NSC proliferation, cell fate specification, and
neuronal maturation [10]. However, its derivative, the amyloid β (Aβ) peptide, a cleavage
product of the APP enzymatic processing, is the major component of amyloid plaques,
one of the hallmark pathologies found in brains of AD patients. Monomeric Aβ can self-
aggregate to form oligomers, protofibrils, and amyloid fibrils, which deposit as amyloid
plaques. Although the impact of Aβ on neurogenesis is still controversial, it is well known
that Aβ plaques can cause severe damage to neurons and astrocytes, which results in the
gradual loss of neurons associated with AD symptoms [11].

Remarkable alterations in AHN have been detected at early stages of AD, even before
the onset of hallmark lesions or neuronal loss [8,12]. Impairments in epigenetic mechanisms
lead to the generation of damaged neurons from NSCs, exacerbating the loss of neurons
and deficits in learning and memory that characterize AD pathology [11]. Indeed, we and
others have described epigenetic changes in DNA methylation in the hippocampus of AD
patients at the genome-wide level [6,13]. In a previous study, we reported altered DNA
methylation in the AD hippocampus occurring at specific regulatory regions crucial for
neuronal differentiation; moreover, a set of neurogenesis-related genes were identified in
the damaged tissue [6]. Hence, a better understanding of AHN impairment observed at
the initial and later stages of AD by noninvasive methods may reveal insights into the
pathogenesis of AD. What is more, restoration of normal levels of AHN may provide a
potential therapeutic strategy to delay or halt AD-linked cognitive decline [8,12].

Here, we propose an intuitive in vitro approach to assess a stepwise lineage progres-
sion, as occurs during in vivo neurogenesis, by using human neural progenitor cells (NPCs)
derived from an induced pluripotent stem cell (iPSC) line as the starting source material.
In order to infer whether the differentiation of human NPCs into mature neurons is dis-
rupted in the AD microenvironment, we designed an observational descriptive study by
generating an in vitro model triggered by prolonged exposure to nanomolar concentrations
of Aβ peptide 1–42. Next, we evaluated DNA methylation levels and mRNA expression
changes of specific neurogenesis-related candidate genes.

2. Materials and Methods
2.1. NPCs Culture, Neuronal Differentiation and Aβ Peptide Administration

NPCs Derived from XCL1 DCXpGFP (ACS5005™, American Type Culture Collection,
ATCC, Manassas, VA, USA) were cultured following manufacturer recommendations.
Briefly, 0.30 × 106 NPCs were seeded onto a CellMatrix Basement Membrane Gel (ATCC®

ACS3035™) coated 12-well plate and incubated in NPC expansion medium: complete
growth medium including DMEM/F-12 (Gibco, Fisher Scientific, Waltham, MA, USA),
supplemented with the Growth Kit for Neural Progenitor Cell Expansion (ATCC® ACS3003)
and then maintained in a humidified incubator (5% CO2, 37 ◦C).
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Neuronal differentiation experiments were carried out for 9, 19, and 29 days by plating
NPCs at a seeding density of 80,000 viable cells/cm2 in 6-well coated culture plates. First,
NPCs were incubated in an expansion medium (day 0). From day 1 (post-seeding), half
of the medium was changed for differentiation medium every 2–3 days throughout the
duration of the culture period. Complete Differentiation Medium consisted of serum-free
neuronal basal BrainPhys™ Neuronal Medium, formulated to improve the electrophysio-
logical and synaptic properties of the neurons [14], NeuroCult™ SM1 Neuronal Supplement
(1:50), N2 Supplement-A (1:100), Recombinant Human Brain-Derived Neurotrophic Fac-
tor (BDNF, 20 ng/mL), Recombinant Human Glial-Derived Neurotrophic Factor (GDNF,
20 ng/mL), Dibutyryl-cAMP (1 mM) and ascorbic acid (200 nM) (STEMCELL Technologies,
Vancouver, BC, Canada). Half-fresh medium containing Aβ protein fragment 1–42 (50 nM;
Sigma-Aldrich, St. Louis, MO, USA) or DMSO (Sigma-Aldrich) as a vehicle was added
once a week.

NPCs were harvested on day 0 and 9, 19, and 29 days of differentiation for both
conditions by detaching them with Accutase (Innovative Cell Technologies, San Diego, CA,
USA), then washed with Dulbecco’s phosphate-buffered saline (DPBS, Sigma-Aldrich), cen-
trifuged at 13,000 rpm and frozen at −80 ◦C. All experiments were performed in triplicate.

2.2. Selection of Candidate Epigenetic Marks in AD

A set of differentially methylated positions (DMPs) in AD was produced from a
methylome dataset generated in a previous study described elsewhere [6]. In brief, the
Infinium HumanMethylation450 BeadChip array (Illumina, Inc., San Diego, CA, USA) was
performed at the Roswell Park Cancer Institute Genomics Shared Resource (Buffalo, NY,
USA) to measure DNA methylation levels in CpG sites (also named positions) in a cohort
of 26 pure AD cases and 12 controls. A total of 118 AD-related DMPs were identified
in the hippocampus of AD cases compared to controls. Here, we selected four of the
above-identified DMPs in AD patients compared to controls (absolute β-difference ≥ 0.085
and p-value ≤ 0.05) and analyzed them due to their relationship with neurogenesis (Table 1
and Supplementary Figure S1).

Table 1. Selected differentially methylated positions (DMPs) in AD hippocampus measured by 450 K
Illumina BeadChip array. The table shows four DMPs prioritized by beta difference (delta) criteria.
Each CpG site was annotated by UCSC hg19 build.

DMPs Genomic Coordinates Beta Difference p-Value Genes
cg16308533 17 40838983 0.118 0.004 CNTNAP1
cg04533276 22 19709548 0.117 0.007 SEPT-GP1BB
cg18689332 12 114837666 0.106 0.000 TBX5
cg19987768 17 750306 −0.162 0.043 NXN

2.3. DNA Methylation Levels Assessed by Bisulfite Pyrosequencing

Genomic DNA was isolated from frozen cell pellets of basal NPCs and control or Aβ

peptide treated NPCs incubated in differentiation media for 9, 19, or 29 days by using the
FlexiGene DNA Kit (Qiagen, Redwood City, CA, USA). Next, 500 ng of genomic DNA was
bisulfite converted using the EpiTect Bisulfite Kit (Qiagen) according to the manufacturer’s
protocol. Primer pairs to amplify and sequence the chosen CpG genomic positions were
designed with PyroMark Assay Design version 2.0.1.15 (Qiagen) (Supplementary Table S1)
and bisulfite PCR reactions were carried out on a VeritiTM Thermal Cycler (Applied Biosys-
tems, Foster City, CA, USA). Next, 20 µL of the biotinylated PCR product was immobilized
using streptavidin-coated Sepharose beads (GE Healthcare Life Sciences, Piscataway, NJ,
USA) and 0.4 µM of sequencing primer annealed to purified DNA strands. Pyrosequencing
was performed using PyroMark Gold Q96 reagents (Qiagen) on a PyroMark™ Q96 ID
System (Qiagen). For each particular CpG, DNA methylation levels were expressed as the
percentage of methylated cytosines over the sum of total cytosines. Unmethylated and
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methylated DNA samples (EpiTect PCR Control DNA Set, Qiagen) were used as controls
for the pyrosequencing reaction.

2.4. Extension of NXN Gene Methylation Mapping by Bisulfite Cloning Sequencing

Previously bisulfite-converted genomic DNA was used to validate pyrosequencing
results. Primer pair sequences were designed by MethPrimer [15] (Supplementary Table S1).
PCR products were cloned using the TopoTA Cloning System (Invitrogen, Carlsbad, CA,
USA); a minimum of 10–12 independent clones were sequenced for each triplicate, cell
condition, and region (Sanger sequencing) [16]. Methylation graphs were obtained with
the QUMA software [17].

2.5. Neurogenesis Markers mRNA Expression: Analysis by Real-Time Quantitative PCR
(RT-qPCR)

Total RNA was extracted from frozen pellets of basal NPCs and the control or Aβ

peptide treated NPCs incubated in differentiation media for 9, 19, or 29 days using the
RNeasy Mini kit (QIAGEN, Redwood City, CA, USA) following the manufacturer’s in-
structions. Genomic DNA was digested with DNase I (RNase-Free DNase Set, Qiagen).
RNA concentration and purity were determined using a NanoDrop spectrophotometer.
Complementary DNA (cDNA) was reversely transcribed from 1000 ng total RNA with
SuperScript® III First-Strand Synthesis Reverse Transcriptase (Invitrogen) after priming
with oligo-d (T) and random primers. RT-qPCR reactions were performed in duplicate with
Power SYBR Green PCR Master Mix (Invitrogen) in a QuantStudio 12 K Flex Real-Time
PCR System (Applied Biosystems, Foster City, CA, USA). Sequences of primer pairs were
designed using a real-time PCR tool (IDT, Coralville, IA, USA) (listed in Supplementary
Table S1). Relative mRNA expression levels of lineage-specific genes in a particular sample
were calculated as previously described [18] and the geometric mean of the ACTB and
GAPDH genes used as reference to normalize the expression values.

2.6. Immunofluorescence Staining

NPCs were seeded on Nunc™ Lab-Tek™ II chamber slides (Thermo Fisher Scientific,
Waltham, MA, USA), coated with CellMatrix Basement Membrane Gel. Cells were either
left untreated or treated with Aβ protein fragment 1–42 (50 nM) in differentiation media,
as described above. After 9, 19, or 29 days of incubation, cells were fixed with 4% formalin
(OPPAC, Noain, Spain) for 15 min; next, they were permeabilized using 0.5% TWEEN® 20
(Sigma-Aldrich) in DPBS and blocked with 10% fetal bovine serum (Sigma-Aldrich) con-
taining 0.5% Tween in DPBS for 30 min at room temperature. Rabbit monoclonal anti-NeuN
[EPR12763] (Cat# ab177487, RRID:AB_2532109; 1:300), anti-GFAP [EP672Y] (Cat# ab33922,
RRID:AB_732571; 1:300), anti-Synaptophysin [YE269] (Cat# ab32127, RRID:AB_2286949;
1:200) and anti-Ki67 [SP6] (Cat# ab16667, RRID:AB_302459; 1:500) primary antibodies (Ab-
cam, Cambridge, UK) diluted in blocking buffer were added and incubated overnight at
4 ◦C. After three washing steps, Alexa Fluor® 647 donkey anti-rabbit secondary antibody
(Abcam Cat# ab150075, RRID:AB_2752244; 1:500) was added and incubated for 30 min at
room temperature in the dark. Following three washing steps, the slides were mounted
with ProLong™ Gold Antifade Mountant with DAPI (Molecular Probes, OR, USA). Im-
munofluorescence images were obtained using a Cytation 5 Cell Imaging Multi-Mode
Reader and analyzed with the Gen5™ software (BioTek, Winooski, VT, USA).

2.7. Statistical Data Analysis

Statistical analyses were performed with the SPSS version 21.0 (IBM, Inc., Armonk,
NY, USA) and GraphPad Prism version 6.00 for Windows (GraphPad Software, La Jolla,
CA, USA). We first checked that all continuous variables had a normal distribution using
the one-sample Shapiro–Wilk test. Significance level was set at p-value < 0.05. Differences
between the various time points for mRNA levels of specific genes and percentages of DNA
methylation were assessed by one-way analysis of variance (one-way ANOVA) followed



Cells 2022, 11, 1069 5 of 21

by post hoc Tukey’s honestly significant difference test. In cases where the Levene test
did not show homogeneity of variance, Welch’s ANOVA followed by Dunnett’s T3 were
conducted. Non-parametric data were analyzed using the Kruskal–Wallis test. A paired
t-test was used to analyze differences in methylation or expression levels of the studied
genes between Aβ peptide treated and control groups at each time point. GraphPad Prism
version 6.00 for Windows was used to draw the graphs.

3. Results
3.1. Time-Related Changes in Cultured NPCs during Neural Differentiation

To determine whether neural differentiation was effectively induced, we first examined
any morphological modifications of the cells over time. As shown in Figure 1A, NPCs
exposure to differentiation medium led to an increase in the number and length of neuritic
extensions, which even connected with the extensions of neighboring cells in comparison
with basal cells grown in proliferation medium at Time 0. These changes in cell morphology,
typical of cells undergoing differentiation [19,20], were noticed from the first time point
(day 9), becoming more evident over time in response to directed neurogenesis.

Figure 1. Phenotypic examination of NPCs directed differentiation in culture and Ki67 protein
expression. (A) Phase-contrast images on days 0, 9, 19, and 29 of basal cells incubated in expansion
medium and control cells incubated in differentiation medium (10× magnification with 20× magnifi-
cation inset lens; the scale bar is 100 µm). (B) The graph shows Ki67 proliferation marker expression
for control and Aβ-treated NPCs at 9, 19, and 29 days of culture in differentiation medium. Data
represent the mean value ± standard error of the mean (SEM).

The total cell number in NPC cultures remained steady because of no proliferation,
confirmed by unchanged Ki67 protein marker expression in control or exposed to Aβ

peptide cells (Figure 1B), which was associated with a gradual boost of cell differentiation.
In fact, immunofluorescence (IF) staining revealed neuronal nuclei (NeuN) and synapto-
physin protein expression, which mark neurons and synaptic vesicles in the NPC culture
(Figure 2).
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Figure 2. Immunofluorescence staining of NPC differentiation. (A) Representative images show
NeuN and synaptophysin protein expression on days 9, 19, and 29 in NPCs incubated in differentia-
tion medium (20× magnification (the scale bar is 100 µm) with 10× magnification 4 × 4 montage
inset (the scale bar is 300 µm)). (B) The graphs show NeuN and synaptophysin markers expression
for control and Aβ treated NPCs at 9, 19, and 29 days of culture in differentiation medium. Data
represent the mean value ± SEM.

To confirm the above observations, we explored if gene expression profiles of different
TFs and molecular markers had changed in our in vitro model across consecutive stages of
driven neuronal differentiation. For that, we measured mRNA expression levels of the Neu-
ronal Differentiation 1 (NEUROD1), Neural Cell Adhesion Molecule 1 (NCAM1), Tubulin
Beta 3 Class III (TUBB3), RNA Binding Fox-1 Homolog 3 (RBFOX3), Calbindin 1 (CALB1),
and Glial Fibrillary Acidic Protein (GFAP) genes by RT-qPCR (Figure 3). Expression levels
of all genes but CALB1 changed over time.

NEUROD1 mRNA expression levels of NPCs increased in differentiation medium.
Statistically significant increases of mRNA expression for this basic helix-loop-helix (bHLH)
TF on days 9 (p-value < 0.05), 19 (p-value < 0.05) and 29 (p-value < 0.001) were observed in
comparison to basal cells.

In our in vitro model, NCAM1 mRNA expression overlapped that of NEUROD1. We
found a statistically significant increase from the addition of differentiation medium to the
cell culture (F(3,17) = 31.85, p-value = 3.3634 × 10−7), which was more pronounced on day
19 (p-value < 0.001). Significant differences were also seen between days 9 and 19 (p-value
< 0.001), days 9 and 29 (p-value < 0.01) and between basal cells and any of the other time
points: from day 0 to day 9 (p-value < 0.01) and from day 0 to day 29 (p-value < 0.001).

Once the proliferation medium was changed for differentiation medium, NPCs began
to express TUBB3 mRNA, a gene marker with a key role for proper axon guidance and
maintenance. This increase remained constant over time in comparison to basal cells (p-value <
0.01). However, no changes were observed between the first, second, and third time points.

RBFOX3 encodes the NeuN antigen, which has been widely used as a marker for post-
mitotic neurons. In our study, RBFOX3 mRNA expression progressively rises over time, proving
the successful achievement of progenitor-to-neuron differentiation. Statistically significant
differences in the rise of mRNA expression between day 0 and day 9 (p-value < 0.01), day 9 and
day 19 (p-value < 0.01) and day 9 and day 29 (p-value < 0.05) were seen. Likewise, all other
differences between any time point with respect to basal cells were also statistically significant:
from day 0 to day 19 (p-value < 0.01) and from day 0 to day 29 (p-value < 0.05).
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Figure 3. NEUROD1 (A), NCAM1 (B), TUBB3 (C), RBFOX3 (D), CALB1 (E), and GFAP (F) gene expression
profiles. Bar graphs show mRNA percentages of relative expression for each gene relative to the geometric
mean of ACTB and GAPDH housekeeping gene expression for NPCs at each time point of culture. Data
represent the mean value± SEM; * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001.
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Regarding CALB1 mRNA expression, and given that this gene encodes a protein
expressed in mature granule cells, no significant changes were detected.

A statistically significant rise in GFAP mRNA expression was observed on day 29 in
comparison with basal cells (p-value < 0.01) and day 9 of differentiation (p-value < 0.01).
This suggested the presence of NPCs-derived astrocytes in the culture.

None of the neuronal lineage-specific genes showed significant mRNA expression
differences between day 19 and day 29.

3.2. Assessment of Epigenetic Markers Involved in Neurogenesis in Differentiating NPCs

DNA methylation levels of four neurogenesis-related genes previously found to be
altered in the AD hippocampus [6] were quantified by bisulfite pyrosequencing. The
same genomic loci identified in the human hippocampus were used to assess DNA methy-
lation levels, corresponding to the genes Contactin-Associated Protein 1 (CNTNAP1),
SEPT5-GP1BB Readthrough (SEPT5-GP1BB), T-Box Transcription Factor 5 (TBX5), and
Nucleoredoxin (NXN) (Table 1 and Supplementary Figure S1).

No significant differences in DNA methylation levels were observed for CNTNAP1,
SEPT5-GP1BB, and TBX5 throughout the differentiation process within the time frame of
this study (Figure 4A–C).

Figure 4. CNTNAP1 (A), SEPT5-GP1BB (B), TBX5 (C), and NXN (D) DNA methylation levels in dif-
ferentiating NPCs. Graphs represent percentages of methylation levels measured by pyrosequencing
on days 0, 9, 19, and 29. Vertical lines: SEM. ** p-value < 0.01.
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Nonetheless, changes in NXN methylation levels were observed. Two CpG positions
were assessed for the NXN gene. For the first one, DNA methylation levels increased on day
9 (p-value < 0.01) and were maintained over time; statistically significant differences were
also seen on day 19 (p-value < 0.01) and day 29 (p-value < 0.01) with respect to basal cells
(Figure 4D). Regarding the CpG following cg19987768, the pyrogram revealed a similar
methylation pattern (day 9 vs. day 0: p-value < 0.05; day 19 vs. day 0: p-value < 0.01; day 29
vs. day 0: p-value < 0.05) (Supplementary Figure S2A). The same differences in methylation
levels were observed for both CpGs together (day 9 vs. day 0: p-value < 0.001; day 19 vs.
day 0: p-value < 0.001; day 29 vs. day 0: p-value < 0.001) (Supplementary Figure S2B).
These findings led us to extend the methylation local mapping for the NXN gene using
bisulfite cloning sequencing. We confirmed that average DNA methylation levels across
all CpG sites for the amplicon were statistically significantly higher at every time point in
comparison to day 0 (day 9 vs. day 0: p-value < 0.001; day 19 vs. day 0: p-value < 0.001;
day 29 vs. day 0: p-value < 0.05) (Figure 5). Additionally, this approach revealed a decrease
in NXN DNA methylation levels on day 29, which was statistically significant with respect
to day 9 (p-value < 0.01).

Figure 5. NXN DNA methylation levels by bisulfite cloning sequencing. (A) Percentages of DNA
methylation for NXN over time. (B) NXN extended mapping is illustrated by black/white circle-style
figures. Black and white circles denote methylated and unmethylated cytosines, respectively. Each
column represents a single CpG site in the examined amplicon, and each line represents an individual
DNA clone. Average percentages of methylation for each analyzed sample are indicated at the bottom.
* p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001.

We also measured mRNA expression levels of these markers by RT-qPCR (Figure 6).
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Figure 6. mRNA expression profiles for the CNTNAP1 (A), SEPT5-GP1BB (B), TBX5 (C), and NXN
(D) genes. Bar graphs represent the percentages of relative mRNA expression for each gene relative
to the geometric mean of the ACTB and GAPDH housekeeping gene expression for NPCs at each
time point of culture. Mean values ± SEM. * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001.

CNTNAP1 mRNA expression levels progressively increased over time with statistically
significant differences on day 19 (p-value < 0.05) and day 29 (p-value < 0.001) in comparison
to basal cells. Moreover, significant expression differences were noticed between day 9 and
day 29 (p-value < 0.01) (Figure 6A).

From day 19, a significant increase in mRNA expression for SEPT5-GP1BB was de-
tected (p-value < 0.01) and maintained on day 29 (p-value < 0.01). Furthermore, mRNA
expression on day 19 (p-value< 0.001) and day 29 (p-value< 0.001) was also significantly
higher than for day 0 (Figure 6B).

mRNA levels for the TBX5 gene increased on day 29 with statistically significant
differences in comparison to the cells in culture on day 0 (p-value < 0.05) and day 9 (p-value
< 0.05) (Figure 6C).

Finally, significant differences were observed from the addition of the differentiation
medium for the NXN gene in terms of gene expression (day 9 vs. day 0: p-value < 0.01; day
19 vs. day 0: p-value < 0.01); day 29 vs. day 0: p-value < 0.05) (Figure 6D). The increase in
mRNA expression continued to day 19 (0.384 ± 0.117; p-value < 0.05).

Overall, similar transcriptional patterns for the TBX5 and GFAP genes and the NXN,
NCAM1 and RBFOX3 genes during the NPCs culture period, were observed.
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3.3. Effect of Aβ Peptide Addition on Cultured NPCs during the Stages of Neurogenesis

To mimic the cell environment in AD, we exposed NPCs to Aβ peptide 1–42 once a
week during the differentiation period. First, we assessed whether the expression levels of
the genes selected to characterize each stage of neurogenesis in culture were altered due to
the addition of the Aβ peptide (Figure 7).

Figure 7. Effect of the addition of Aβ peptide 1–42 during the differentiation period. mRNA
expression of the NCAM1 (A), TUBB3 (B), RBFOX3 (C), and SEPT5-GP1BB (D) genes relative to
the geometric mean of ACTB and GAPDH housekeeping genes expression was determined for the
controls and Aβ peptide treated NPCs on days 9, 19, and 29. Vertical lines represent the SEM. *
p-value < 0.05; ** p-value < 0.01.

We found transient and mild treatment-specific differences in mRNA expression for
some of the studied lineage-specific genes. The Aβ peptide reduced NCAM1 expression (p-
value < 0.05) on day 19 (Figure 7A), and TUBB3 (p-value < 0.05) and RBFOX3 (p-value < 0.01)
expression on day 9 (Figure 7B,C). Interestingly, such decreases occurred at the beginning
or in between the studied time window, but these differences were no longer significant at
the end time point (day 29).

Next, we assessed how the addition of Aβ peptide affected mRNA expression of
neurogenesis-related genes and if the changes had any relationship with their methyla-
tion status.

We observed a statistically significant decrease in SEPT5-GP1BB mRNA on day 19
(p-value < 0.05) (Figure 7D) and an increase in the percentage of DNA methylation with a
trend towards statistical significance on day 29 (p-value = 0.082) with the addition of the
Aβ peptide to the culture.

Finally, the Aβ peptide slightly reduced NXN mRNA expression on day 9 (p-value
< 0.05) which is maintained until day 19 (p-value < 0.05) (Figure 8A). NXN methylation
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seems to decrease on day 9 but does not reach statistical significance (p-value = 0.11). One
possible explanation for this is that the sample size is insufficient to show statistical signifi-
cance. Interestingly, a rise in the percentage of NXN methylation level of Aβ peptide-treated
cells was seen on day 29, measuring all amplicon CpG sites (p-value < 0.05) (Figure 8B),
when the decrease in NXN mRNA expression is no longer observed.

Figure 8. Effect of Aβ peptide 1–42 addition on the NXN gene during the differentiation period.
mRNA expression relative to the geometric mean of ACTB and GAPDH housekeeping genes expres-
sion (A). DNA methylation level in the extended mapping amplicon (B) were determined for the
controls and Aβ peptide-treated neural progenitor cells on days 9, 19, and 29. Vertical lines represent
the SEM. * p-value < 0.05.

4. Discussion

To date, a broad overview of the stages of AHN exists. This complex multistep
process can be divided into four phases: a precursor cell phase, an early survival phase,
a postmitotic maturation phase, and a late survival phase. Type 1 radial glia-like cells
(RGLs) represent the NSC population that can differentiate into TAPs (type 2 cells), which
initially have a glial (type 2a) and then a neuronal (type 2b) phenotype. Through a migratory
neuroblast-like stage (type 3), lineage-committed cells exit the cell cycle ahead of maturation
into dentate granule neurons functionally integrated into the hippocampal circuitry [21,22].
Based on cell morphology TFs expression and a set of marker proteins, distinct milestones
have been established [21]. In this study, we examined the expression dynamics of key
markers in order to characterize a directed human NPCs differentiation model across
distinct differentiation stages (Figure 9) to test new AHN epigenetic and expression markers
that might be associated with AD.

During stage 1 (proliferation phase), type 1 RGL cells express GFAP. However, no
differences in GFAP expression are detected until day 19 after the addition of the differ-
entiation medium. This suggests that our in vitro NPCs culture window starts after the
proliferative phase, during stage 2, when type-2 cells (differentiation phase) lose the GFAP
marker [22]. Thus, in contrast to their in vivo counterparts in the SGZ of the brain (some
authors describe that the in vitro expanded NSCs are less neurogenic and mainly biased
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towards an astrocytic fate upon differentiation [20]), GFAP expression on day 19 would
correspond to a subset of astrocytes present in our NPCs culture [23].

Figure 9. Expression pattern of AHN lineage-specific genes, assessed to characterize our NPCs
in vitro model. The diagram illustrates NEUROD1, NCAM1, TUBB3, RBFOX3, CALB1, and GFAP
gene expression profiles during directed neuronal differentiation for our time window NPCs culture
model, based on the developmental stages of AHN within the neurogenic niche of the DG.

In stage 3 (migration phase), migrating neuroblasts display the polysialylated form of
NCAM (PSA-NCAM), a marker that appears at the late stage of AN and seems to persist in
young postmitotic neurons [24]. Accordingly, our results suggest the presence of a plateau
between day 19 and day 29 for NCAM1 mRNA expression. Most PSA-NCAM-positive
cells express NeuroD and NeuN, but not GFAP, which supports the abovementioned
findings [24]. bHLH TF NEUROD1 plays an essential role in the differentiation and
survival of neuronal precursors in the SGZ. NeuroD1 deletion leads to new granule neurons
depletion and their failure to integrate into the DG [25]. In line with findings by Xuan
Yu et al. [26], we observed a rise of NEUROD1 gene expression during our culture time
window. Moreover, expression of NeuroD can also be detected in PSA-NCAM-positive
cells, precedes it [24], and reaches the highest point in late-stage type 2b and type 3 cells [2].
Once the newly generated neurons become postmitotic, they begin to express the NeuN
marker, which is consistent with an earlier RBFOX3 mRNA expression in our model. We
found that RBFOX3 expression increases until days 19 and 29 of differentiation, showing
an expression profile similar to that of NCAM1.

Next, cells become postmitotic entering stage 4 (axonal and dendritic targeting). Im-
mature neurons still express PSA-NCAM and, at the same time, can also be marked by
NeuN. TUBB3, involved in axon guidance and maintenance, is expressed simultaneously;
it encodes a class III member of the beta-tubulin protein family, characteristic of early
postmitotic and differentiated neurons and some mitotically active neuronal precursors.
This is consistent with the increase in TUBB3 mRNA detected in our model, prior to its
translation into protein. TUBB3 mRNA expression persists in neurons displaying high
complexity and electrophysiological properties, such as very low capacitance, high input
resistance, depolarized resting membrane potential, and lack of synaptic activity, which
show immunoreactivity for NeuN and thus represent postmitotic neurons [24,27].

Finally, mature granule cells establish their synaptic contacts and become functionally
integrated into the hippocampus in stage 5 (synaptic integration), expressing calbindin
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along with NeuN but without co-expressing PSA-NCAM [24]. We do not find variations in
CALB1 mRNA expression within the analyzed culture time window, which may occur later
in time. We indeed detect synaptophysin in the IF study on day 29, which suggests that
our time window ends early at the synaptic integration phase.

Hence, by culturing NPCs as a monolayer in a medium that accelerates neuronal
differentiation by enhancing synaptic activity [14], we achieve a less time-consuming differ-
entiation strategy that resembles the in vivo developmental program of human hippocampal
DG, which differs from that of the SVZ [28], as we are able to generate developing neurons
potentially expressing relevant features of the AHN process.

Once the first objective was accomplished, we evaluated whether a set of AD-related
differentially methylated genes targeted specific AHN milestones. These genes had been
identified in a previous study of the human hippocampus and annotated as neurogenesis
genes following a curated review of the literature [6]. No differences in DNA methylation
for the CNTNAP1, SEPT5-GP1BB, and TBX5 genes were identified within the period of
this study. Only one or two CpGs were analyzed for each gene, those that had been
identified as differentially methylated in the hippocampus of AD patients, so changes in
DNA methylation may be present in other regions of the gene and may not have been
detected with our approach. Still, changes in DNA methylation may occur before or after
our time window.

However, it is worth noting that all the above genes undergo mRNA expression
changes, suggesting they could be considered potential molecular markers of different
AHN stages (Figure 10). Further studies should be carried out to confirm this.

Figure 10. Expression patterns of neurogenesis-related genes evaluated in our in vitro model on
NPCs. The illustration depicts the expression profiles of the CNTNAP1, SEPT5-GP1BB, TBX5, and
NXN genes during directed neuronal differentiation of our time window culture model on NPCs,
according to the developmental stages of AHN within the neurogenic niche of the DG.

CNTNAP1 and SEPT5-GP1BB mRNA expression levels increase on day 19/29, possi-
bly identifying immature neurons, when axonal and dendritic targeting occurs. Indeed,
CNTNAP1 encodes a type I integral membrane protein that regulates the intracellular
processing and transport of contactin to the cell surface [29,30], also known as contactin-
associated protein (CASPR), which is present in synapses and interacts with AMPA (α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) glutamate receptors that mediate
fast excitatory synaptic transmission in the central nervous system (CNS) [31]. CASPR is an
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adhesion molecule crucial to forming axoglial paranodal junctions surrounding the nodes
of Ranvier in myelinated axons [32].

Known to be a negative regulator of neurite outgrowth in CNS neurons [30], CASPR1
plays an essential role in the timing of neuron and astrocyte development in the mouse
cerebral cortex by repressing the transcription of the Notch effector Hes1. In radial glial
cells, CASPR1 deficiency delays the generation of cortical neurons and induces the early
formation of cortical astrocytes without affecting the number of progenitor cells. Thus,
during the neurogenic period, CASPR1 is highly expressed, while during the gliogenic
period its expression decreases [32,33]. Moreover, CASPR1 has been reported to be under
the regulation of the astrocytic methyl-CpG-binding protein 2 (MeCP2) along with key
myelin genes and proteins [34].

For its part, SEPT5-GP1BB is originated from naturally occurring read-through tran-
scription between the neighboring SEPT5 (SEPTIN5) and GP1BB (Glycoprotein Ib Platelet
Subunit Beta) genes on chromosome 22. Inefficient use of an imperfect polyA signal in the
upstream SEPT5 gene causes transcription to continue into the GP1BB gene. The Genotype
Tissue Expression (GTEx) Project established by the National Institutes of Health (NIH)
Common Fund shows the highest median expression of this gene in the brain cortex, but to
the best of our knowledge, this is the first study describing SEPT5-GP1BB as a possible key
marker of temporal specification of cell fate in neurogenesis.

The TBX5 gene displays the highest level of mRNA expression on day 29. It belongs
to a phylogenetically conserved family of genes sharing a common DNA-binding domain,
the T-box, which encodes TFs involved in the regulation of developmental processes. Ac-
cordingly, it is considered pivotal in the establishment of the cardiac lineage [35]. Moreover,
TBX5 regulates the development of the vertebrate eye [36] and limb skeletogenesis [37].
Here, we observe a statistically significant increase in TBX5 mRNA at the end time point of
our culture (day 29), and therefore, we propose it as a transcriptional candidate marker of
postmitotic differentiating cells that may exhibit a peak of expression in the transition of
immature to mature neurons.

The most relevant findings of our study relate to the NXN gene. At CpG site resolution,
NXN shows differential methylation at every time point in comparison to basal cells.
Moreover, when we extend the mapping and further average across all CpG sites of the
amplicon, we confirm these findings and show that peak methylation of NXN occurs on
day 9. Such curve outlined by the percentage of NXN DNA methylation would range from
type-2a/2b TAPs to immature neurons, peaking at type 3 neuroblasts. This may allow to
discriminate the migration stage of neurogenesis.

Interestingly, the increase in NXN methylation is associated with higher mRNA expres-
sion levels during our culture time window. DNA methylation at gene promoter regions
usually represses gene expression through the recruitment of methylated DNA-binding
protein family members, such as methyl-CpG-binding protein 1 (MBD1) and MeCP2. Nev-
ertheless, DNA methylation roles in gene regulation appear complex and multi-faceted
and genome structure integration becomes of major importance [38]. In the same way
that CG-rich and CG-poor regulatory elements may undergo distinct modes of epigenetic
regulation [38], DNA methylation has been linked to gene activation within the transcribed
regions and the highest levels of gene body methylation may enhance transcription [39].
Indeed, it is precisely in this region where the studied DMPs are located (Supplementary
Figure S1). Thus, DNA methylation has been previously correlated with increased expres-
sion in human embryonic stem (ES) cells in an in vitro-induced differentiation work [40,41].
Furthermore, gene expression is not only regulated by methylation in the same region,
but by other epigenetic mechanisms or methylation in other regulatory areas. Several
gene regulatory elements seem to communicate on the same or different chromosomes.
Enhancers and insulators participate in this higher-order organization of chromatin [42]. In
fact, sequential recruitment of lineage-restricted transcription factors leads to enhancers
being activated or maintained in a poised state upon stem cell differentiation [43].
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NXN is a ubiquitously expressed endogenous antioxidant, member of the thioredoxin
antioxidant superfamily [44,45]. In brain sections of mice, there is a predominant neuronal
expression of NXN in septal nuclei and the hippocampus, in which its deletion results
are embryonically lethal, mainly due to cranial defects and deformities [46]. Specifically,
immunoreactive signals of NXN were found in fibers in the cortex, hippocampus, and
cerebellum [46].

In proliferating cells, NXN sequesters dishevelled segment polarity protein 2 (DVL2).
Upon the increase in ROS, NXN releases DVL2, relaying the WNT signal to downstream
effectors. As a result, cytosolic β-catenin accumulates and shuttles to the nucleus where
it drives specific expression of target genes relevant to neuronal differentiation [44,45,47].
NXN also retains a pool of inactive Dvl by preventing the possible interaction of Dvl
and kelch-like protein 12 (KLHL12) and its subsequent ubiquitination and degradation,
ensuring a prompt activation upon Wnt stimulation [46]. In agreement with this, it has
been proved that NXN knockdown of SH-SY5Y human neuroblastoma cells increases
proliferation and cell cycle reentry [48]. Accordingly, in our in vitro model, the increased
expression of NXN mRNA levels is consistent with the absence of cell proliferation.

The literature points to interactions with further partners that include histone deacety-
lase 6 (HDAC6), heat shock protein 90 kDa (HSP90), and calcium calmodulin kinase 2a
(Camk2a), a postsynaptic kinase crucial for neuronal plasticity [46,48]. Moreover, NXN
may be implicated in transcriptional regulation, promoting the induction of the TFs CREB
(cAMP response element-binding protein), NFκB (nuclear factor kappa B), and AP-1 (acti-
vator protein-1) [46].

In the context of AD, it is known that Aβ peptides are generated after the cleavage of
APP by γ-secretase in the amyloidogenic pathway [10]. In previous models, the physiologi-
cal concentration of Aβ peptides in the brain revealed a positive effect on neuroplasticity
and learning, showing improved hippocampal long-term potentiation (LTP), while high
nanomolar Aβ administration resulted in impaired cognition [49,50], suggesting a hormetic
nature [51]. Because low picomolar levels of extracellular concentrations of Aβ in the nor-
mal brain have been estimated, in our experiments we chose a concentration of Aβ peptide
1–42 in the nanomolar range (50 nM), added once a week during the 29 days of culture, a
single dose determined by the average of concentrations used by Gulisano et al. [52] and
Malmsten et al. [53].

It has been reported that the synthetic Aβ peptide 1–42 oligomer decreases human
NSC proliferative potential and appears to favor glial differentiation; it reduces neuronal
cell fates [10] or suppresses the number of functional human ES cells-derived neurons [54].
Nonetheless, Bernabeu-Zornoza et al. showed that 1 µM monomeric Aβ peptide 1–42
promoted human NSCs proliferation by increasing the pool of glial precursors, without
affecting neurogenesis [55]. On the other hand, differentiating neurospheres exposed to
fibrillar Aβ decreased neuronal differentiation and induced gliogenesis [54]. The existing
controversies may be due to Aβ isoforms, peptide concentrations, aggregation state, ad-
ministration times, or type of NSCs/NPCs from different species or culture systems used
in each experiment [55].

In our work, some of the analyzed genes show a mild decrease in mRNA expression
after Aβ 1–42 addition. This transient effect is evident on day 9 or day 19, not occurring
on day 29, suggesting that, despite affecting genes involved in the fate of neurogenesis,
probably before cells maturation and leading to a decrease in differentiation, the addition
of nanomolar concentrations of Aβ is somehow counteracted in the long-term. A time-
dependent reversal of the effects of picomolar Aβ on synaptic plasticity and memory had
been already seen by Koppensteiner et al., attributable to the enzyme neprilysin, whose
levels are reduced with aging and in the brains of AD patients [56]. In fact, a study in which
mutant APP was overexpressed to ensure Aβ release exclusively by mature neurons, found
neither a positive nor a negative effect in AHN [57]. Hence, our simplistic model may shed
light on early AD neurogenesis events, before Aβ deposition cannot be overcome.
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A transcriptomic analysis of several human AD profiles demonstrated upregulation
of neural progenitor markers expression and downregulation of later neurogenic markers,
implying that neurogenesis is reduced in AD due to compromised maturation [58]. Inter-
estingly, the authors showed downregulation of NCAM1 expression in the hippocampus of
early-stage AD, as well as of NCAM1, TUBB, and RBFOX3 in late-stage AD, which is in
line with our results after the addition of Aβ to the culture. Moreover, Moreno-Jimenez
et al. recently provided evidence for substantial maturation impairment underlying AD
progression. They identified a decline in doublecortin-expressing cells that co-expressed
PSA-NCAM in the DG starting at Braak stage III, followed by a reduction in the expres-
sion of NeuN and βIII-tubulin, among others, at some of the subsequent stages of the
disease [12].

Our results also show a decrease in SEPT5-GP1BB mRNA expression on day 19 when
Aβ 1–42 was added to the culture. Again, this suggests that even low levels of Aβ peptide
deposit may already have an effect on neuronal fate. For NXN, such a decrease in mRNA
expression was also observed on day 9 and day 19 cultures. No changes were seen on day 29
when the percentage of methylation levels in the NXN amplicon increased in differentiating
cells with Aβ 1–42.

Thus, NXN emerges as a candidate gene that needs to be further studied to address its
ability to determine not only the temporal sequence of neurogenesis but simultaneously
the differences in the AD brain due to Aβ peptide deposition.

AHN confers a unique mode of plasticity to the mature mammalian brain. Research
in this field requires non-invasive monitoring to understand the lifelong impact [59]. Easier
than manipulating NSCs, in part because of the time saving, our NPCs model facili-
tates studying gene expression levels in an in vitro cell culture platform within a human
context [60]. Moreover, this straightforward approach may help further understand the
alterations affecting specific lineage cell types in presence of the Aβ peptide, including
early pathological changes, possibly associated with prodromal phases. On the other hand,
other cell types are involved in pathogenesis, particularly microglia, which play a major
role, together with neuroinflammation, in the risk of developing AD and its progression.
In consequence, co-cultures with other cell types present at neurogenic niches, such as
microglia, may be implemented to overcome the limitations presented by the characteristics
of an in vivo niche environment.

Finally, the development of AHN monitoring methods as biomarkers for cognitive
function in live individuals will be crucial to staging AD progress. Moreover, studying the
utility of TF reprogramming to preserve endogenous AHN may contribute to cognitive
resilience in AD [58]. However, despite the enthusiasm, the prospect of using adult NSCs
therapeutically as a regenerative source needs to address neuronal integration and its
impact on host mature neural circuits [59]. It will involve strategies to accomplish the NSC
pool maintenance, generation of correct neuronal subtypes, suppression of glial fates, and
differentiation and survival of immature neurons [2].

5. Conclusions

In this work, we present the transcriptional profiles of a number of genes involved in
specific stages of the AHN process for a thorough understanding of the lineage-restricted
fate during human neuronal differentiation. The addition of Aβ peptide 1–42 to our human
NPCs culture model, generates results that are similar to those obtained in human AD
samples regarding the expression of the NCAM1, TUBB3, and RBFOX3 genes, offering
an in vitro opportunity to study AHN impairment in the AD context. Considering this
approach, the NXN gene shows a rise in DNA methylation, the maximum being coincident
in time with type 3 neuroblasts and displays differential DNA methylation in immature
neurons in presence of the Aβ peptide. Moreover, CNTNAP1, SEPT5-GP1BB, TBX5, as well
as NXN were revealed as mRNA expression molecular markers for specific stages of AHN.
Finally, differentiating NPCs decrease their SEPT5-GP1BB or NXN mRNA expression at
different neurogenesis time points with the addition of the Aβ peptide to the culture.
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