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Abstract: Pulse palpation is an effective method for diagnosing arterial diseases. However, most
pulse measurement devices use preconfigured pressures to collect pulse signals, and most pulse
tactile simulators can only display standard or predefined pulse waveforms. Here, a portable
interactive human pulse measurement and reproduction system was developed that allows users
to take arbitrary pulses and experience realistic simulated pulse tactile feedback in real time by
using their natural pulse-taking behaviors. The system includes a pulse tactile recorder and a pulse
tactile player. Pulse palpation forces and vibrations can be recorded and realistically replayed for
later tactile exploration and examination. To retain subtle but vital pulse information, empirical
mode decomposition was used to decompose pulse waveforms into several intrinsic mode functions.
Artificial neural networks were then trained based on intrinsic mode functions to determine the
relationship between the driving signals of the pulse tactile player and the resulting vibration
waveforms. Experimental results indicate that the average normalized root mean square error and
the average R-squared values between the reproduced and original pulses were 0.0654 and 0.958
respectively, which indicate that the system can reproduce high-fidelity pulse tactile vibrations.

Keywords: artificial neural network; empirical mode decomposition; intrinsic mode functions; pulse
tactile player; pulse tactile recorder

1. Introduction

Human pulses often reveal a person’s health conditions. Health care personnel and
rescuers frequently use pulse palpation first to detect patients’ vital signs. Pulse taking also
plays a prominent role in traditional Chinese medicine (TCM). TCM physicians typically
take pulses directly by placing their index, middle, and ring fingers at the Cun, Guan, and
Chi points on a patient’s wrists, respectively, by using light (<0.9 N), moderate (0.9–1.5 N),
or heavy (>1.50 N) forces. Based on pulse depth, rate, shape, and strength, physicians can
perceive the patient’s health conditions [1–3]. Pulse depth describes the vertical position of
a pulse. Pulse rate describes the number of pulses per unit time. Pulse shape describes the
width and length of a pulse. Pulse strength describes the forcefulness of the pulse against
the finger pressure. Accurate pulse taking often requires rich clinical experience. Because
pulse palpation is largely based on the individual’s finger tactile perception, it might be
affected by numerous subjective and objective factors. Therefore, training entry-level health
care personnel or TCM physicians in pulse taking and reading is extremely challenging.

Computer-aided pulse analysis tools have recently been developed to identify rela-
tionships between pulse features and diseases [4–8]. However, the accuracy of an analytical
result is often based on the accuracy of the pulse signal acquisition device. With advances
in sensor technology, small and lightweight sensors have been developed and applied to
pulse measurement, such as optical [9,10], strain-gauge [9,11,12], pressure [11–16], piezo-
electric [17], piezoresistive [18,19], and polyvinylidene-fluoride (PVDF) [20,21] sensors.
Most research has used one or more of these sensors to detect cardiovascular disease or
blood pressure. Prior studies have used mechanical methods or preconfigured pressures
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to collect pulse signals. Users only needed to follow certain steps to operate the devices
to record pulse signals. However, TCM physicians and health care personnel often take
pulses by switching back and forth between different pressures. Prior pulse taking devices
lacked direct tactile interactions between patients and physicians and thus differed from
the general practice of health care personnel and TCM physicians. Therefore, a more inter-
active pulse-taking system allowing users to take pulses by using their natural pulse-taking
behaviors and preferred palpation pressures is needed.

In contrast to pulse measurement devices, relatively few studies on pulse tactile dis-
play have been conducted. Because of blood pressure against the vascular wall and the
contraction and relaxation of heart muscles, a typical pulse waveform is composed of
a percussion wave caused by early systolic pulse pressure, a tidal wave caused by late
systolic pulse pressure, and a dicrotic notch caused by the rebound of blood [8,15,20].
Therefore, an effective pulse tactile display should present similar pulse features. The most
common pulsation simulators are liquid based. For instance, the ViVitro Endovascular
Simulator from ViVitro Labs uses pumps to deliver pulsatile flow. Lee et al. [1] devel-
oped a cardiovascular simulator using a stepping motor, slider-crank mechanism, piston
pump, water, and glycerin to generate pulsatile flow for simulating typical TCM pulse
waveforms. Koo et al. [22] built a radial pulsation simulator using a peristaltic pump
and magnetorheological (MR) fluids. By controlling the viscosity and motion of the MR
fluids with user-defined magnetic fields, arbitrary pulse waveforms were generated. Yang
et al. [23] built a radial pulsation simulator using stepping motors and pistons to generate
radial artery pressure waveforms reflecting the physiological characteristics of a human
cardiovascular system. By carefully controlling the inflow of the fluid, the liquid-driven
pulsation simulator created various standard pulse waveforms based on the cardiovascular
conditions.

In addition to liquid-driven simulators, researchers have built pneumatic-driven
pulsation simulators. A pneumatic-driven mechanism could avoid the problems of liquid-
driven pulsation simulators, for example, sporadic pressure waves, bubbles, and leakage.
For example, Santos-Carreras et al. [24] used five pneumatic balloon actuators to generate a
pulse-like tactile sensation for teleoperated surgery. Although their device conveyed tactile
information, detailed pulse features were ignored. Yang et al. [25] built a pneumatic-driven
radial pulsation simulator based on a cam-follower mechanism controlled by a DC motor.
However, cams needed to be fabricated to simulate different waveforms.

Although most liquid- or pneumatic-driven pulsation simulators can generate a
favorable pulse tactile sensation, most are expensive, complex, and bulky. They can only
simulate standard or predefined pulse waveforms, and real-time reproduction of arbitrary
pulse waveforms was not possible. This study developed a portable and interactive
pulsation system that can record and reproduce arbitrary pulse tactile information of any
individual in real time. The pulsation measurement part of the system is referred to as
the “pulse tactile recorder”, and the pulsation reproduction part is named the “pulse
tactile player”. The pulse tactile recorder allows users to take pulses by using their natural
pulse-taking behaviors and preferred palpation pressures. The pulse tactile player can
realistically reproduce the tactile vibration in real time for further diagnosis or training.

2. Pulse Tactile Recorder
2.1. Hardware Design

Because pulse tactile vibrations vary depending on palpation forces, in addition to
vibration information, palpation forces should also be recorded. The structure of the pulse
tactile recorder includes a vibration sensor, a force sensor, a sensing tip, a hollow spacer,
and a silicon skin. Figure 1 presents a section view of the structure. The PVDF piezo
film vibration sensor SDT1-028K (Measurement Specialties) was selected to detect pulse
vibration signals because the sensor performs well at both low and high frequencies and the
resonant frequency points are >10 MHz. The dimensions of the sensor are 16 mm × 41 mm
× 75 µm. The output sensitivity is 15–20 mV/µ strain. The polymer film force sensor
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FSR 402 (Interlink Electronics) was selected to measure pressing force. The force sensor is
18.28 mm in diameter and 0.45 mm in thickness. The force sensitivity range is between 0.2
and 20 N, with analog output.
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Figure 1. Section view of the pulse tactile recorder.

On the top of the force sensor is a round pressing area, covered with a silicon skin,
where users can place their fingers and exert a pressing force. A hollow spacer is placed
between the force and vibration sensors so that the vibration sensor can freely vibrate
without being suppressed by the pressing force from fingers. A conical tip, which is used
to contact the patients to detect pulse signals, is attached to one side of the vibration sensor.

The Taguchi method was used to optimize the structure design. Table 1 shows four
important factors (A: height of the sensing tip; B: thickness of the hollow spacer between
FSR and PVDF; C: number of clamping sides; D: material of the sensing tip) and the
corresponding levels considered in the structure design. An L9 orthogonal array was used
to design the experiment. Table 2 shows the level chosen for each factor in each experiment.
Each design was evaluated using a cam mechanism described in the next section. Different
hardware layouts might affect sensor sensitivity. If a design provides a higher voltage
output, that means the design has higher sensitivity towards deformation. In addition,
an effective recorder’s measured profile should fit the original waveform profile as much
as possible. Therefore, in this study, a score was given using the following equation to
evaluate a design:

Score = R-squared value + norm peak volt (1)

where “R-squared value” is the fit between the original cam profile and the measured profile
and “norm peak volt” is the normalized peak voltage of the output signals of each design.
Based on the results of the 9 experiments, a standard analysis of the Taguchi method was
conducted. The analysis results suggest that factor A with level 1 (5 mm of sensing tip),
factor B with level 3 (2 mm of spacer thickness), factor C with level 2 (4 clamping sides),
and factor D with level 1 (PLA sensing tip) formed the optimum structure design. The
suggested design happened to be one of the 9 experiments in Table 2, with a score of 1.97.
In order to check if longer sensing tips led to higher scores, a sensing tip with 7 mm was
tested. The score of the 7 mm tip was 1.81 (R2 = 0.96 and norm peak volt = 0.85), which is
lower than that of the 5 mm.

Table 1. Factors and levels used in the Taguchi method.

Factor
Level

1 2 3

Height of the sensing tip 5 mm 4 mm 3 mm
Thickness of the hollow spacer between FSR and PVDF 3 mm 1 mm 2 mm
Number of clamping sides 2 4
Material of the sensing tip PLA Silicon
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Table 2. Taguchi method experiment results.

Experiment Factor Level (ABCD) R2 Normalized
Peak Voltage Score

1 1111 0.98 0.65 1.63
2 1222 0.97 0.43 1.4
3 1321 0.97 1 1.97
4 2121 0.94 0.63 1.57
5 2211 0.91 0.57 1.48
6 2312 0.93 0.56 1.49
7 3122 0.92 0.49 1.41
8 3212 0.93 0.35 1.28
9 3321 0.95 0.83 1.78

The vibration sensor, force sensor, hollow spacer, and silicon skin are clamped inside
a shell with total dimensions of 44.6 × 26 × 6 mm3. The whole tactile recorder weighs only
10 g. Users can interact with patients using their natural pulse-taking behaviors with their
preferred palpation forces when they are taking pulses, as illustrated in Figure 2.
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Figure 2. Use of the pulse tactile recorder to take pulses at the Cun, Guan, and Chi points (left). Top
(upper right) and bottom (lower right) views of the recorder.

2.2. Pulse Signal Verification

Figure 3a–c represents pulses taken using the pulse tactile recorder with three pressing
forces of 0.78, 1.18, and 1.76 N, respectively. The pulse tactile recorder can record miniscule
pulse signals; however, it is apparent that the signals in Figure 3 lack typical pulse features
described in [8,15,20]. A typical pulse waveform is composed of a percussion wave, a tidal
wave, and a dicrotic notch caused by the rebound of blood. All the features must lie above
a baseline. However, the signals in Figure 3 fall below the baseline (0 V) after the peak
signals. The reason for this was that when pressure was applied to the PVDF piezo film
vibration sensor, the PVDF deformed and generated charges proportionate to the pressure
applied. However, the oscilloscope displayed only the voltage generated by the charges.
Therefore, the displacement of the PVDF was actually proportional to the integral of the
voltage (charge accumulation). An experiment using a cam profile was then performed to
verify the accuracy of the recorder, as described as follows.

A cam profile was designed according to a period of pulse waveform using SolidWorks
Motion Analysis. The cam was driven by a DC motor at a constant rotational speed of
60 rpm. The pulse tactile recorder was placed on top of the cam, and the sensing tip was
contacted with the cam, as portrayed in Figure 4.
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Figure 4. Pulse verification mechanism.

When the cam rotated, the cam profile would deform the PVDF sensor according to
the profile of the cam, which was a period of pulse waveform. The recorded PVDF signals
are presented in Figure 5a. The signals were then integrated to find the displacement
variation of the PVDF sensor, as provided in Figure 5b.
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The experiment was repeated 10 times. The integral of the recorded signals and the
original cam profile were compared using the normalized root mean square error (NRMSE)
and R-squared values. The NRMSE was calculated as follows:

NRMSE =
RMSE

Pmax − Pmin
(2)

where Pmax and Pmin denote the maximum and minimum values of the original cam
waveform. Table 3 shows that the average NRMSE and R-squared values were 0.046 and
0.983, respectively, with low standard deviations, which indicates that the pulse tactile
recorder could measure pulses with high accuracy and repeatability.

Table 3. Comparison between the integral of the recorded signals and original cam waveform.

No. NRMSE R2

1 0.049 0.984
2 0.051 0.983
3 0.052 0.983
4 0.051 0.984
5 0.051 0.983
6 0.039 0.984
7 0.042 0.983
8 0.042 0.982
9 0.042 0.983
10 0.042 0.983

Average 0.046 0.983
S.D. 0.005 0.001

In this study, the signals recorded by the recorder are called “pulse signals”, and the
integrals of the pulse signals are called “pulse waveforms”. Figure 6 displays the pulse
waveforms of the pulse signals in Figure 3. All the pulse waveforms now revealed relevant
typical pulse features.
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3. Pulse Tactile Player

Piezoelectric benders were selected as the actuators to develop the portable pulse
tactile player because of their wide bandwidth, fast response, small size, light weight,
and low cost. Piezoelectric bimorph benders from Unictron Technologies were used. The
active layer of the bimorph is made with lead zirconate titanate ceramic with 0.19 mm
thickness for each side. The passive layer is stainless steel with 0.1 mm thickness. The total
dimensions of the player are 60 × 20 × 0.48 mm3, and the driving voltage is ±48 V DC.
The force generated by one bender is approximately 0.5 N, and the maximum displacement
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is approximately 1 mm. To generate sufficient pulse force, five piezoelectric benders
were used.

The actuating part of the pulse tactile player is pictured in Figure 7. One end of the
bender is fixed to a frame, and the other end of the bender is attached to a movable platform.
The top of the frame has a 10 mm diameter round hole with a rubber dome placed in the
center. The force sensor FSR 402 is placed under the frame to detect finger force. The
actuating part is enclosed inside a holder to form a complete unit, as depicted in Figure 8a.
Because the sensation of human skin also affects tactile perception, a silicon skin with
shore hardness A-10 was fabricated and placed on top of the robber dome, as portrayed in
Figure 8b. The final dimensions of the pulse tactile player are 115 × 56.5 × 58 mm3, and
the total weight is 310 g. The device is lightweight and portable compared to other pulse
tactile displays.
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The system block diagram of the control unit is displayed in Figure 9. A Teensy 3.2
USB development board is used to process the driving signals of the pulse tactile player.
The amplifier OPA454 (Texas Instruments) is used to amplify the driving signals from 3.3
to 80 Vpp to drive the pulse tactile player.
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4. Linear Model

In theory, a linear relationship between the driving signals and the displacement of
the piezoelectric benders should exist. Therefore, in most early research, a linear model
was adopted to drive a piezoelectric actuator [26,27]. However, prior research also showed
that nonlinear relationships might exist due to hysteresis [28,29]. Since pulse waveforms
contain many important but minuscule features [30], in the present study, it was not clear
if a linear model was sufficient to describe the relationship between the driving signals
and the displacements of the piezoelectric benders when simulating a human pulse. In
addition, finger pressures might suppress the vibration of the benders and cause a nonlinear
relationship. In order to test the linearity of the pulse tactile player, two experiments were
conducted. First, a linear relationship was assumed between the driving voltage and
the output waveforms. Then, a nonlinear relationship was assumed. The results of the
two experiments were compared using the NRMSE and R-squared values between the
reproduced and original pulses.

Eight sets of 8 sec wrist pulse signals were collected in each of the three force ranges
(<0.9, 0.9–1.5, and >1.5 N) from the pulse tactile recorder. According to the Nyquist–
Shannon sampling theorem [31], the sampling rate should be at least two times larger than
the target frequency. The sampling rate of the pulse tactile recorder is 1 kHz, which is much
higher than the frequency of the human pulse (0.6–2 Hz) so that it can contain sufficient
critical pulse information [32]. A mean filter was used to down sample the data to 250 Hz
to remove noise, resulting in 2000 data points in each dataset. The pulse signals were then
integrated to obtain the original pulse waveforms.

A verification setup was designed to verify the output waveforms (Figure 10). A screw
feeder was adjusted to provide the same amount of force on the pulse tactile recorder as
the recorded original. A simple linear model was used to drive the pulse tactile player
based on the original pulse waveforms. The pulse tactile recorder was placed on the silicon
skin of the pulse tactile player to record the vibration signals. Finally, the integrals of the
output signals were compared with the original pulse waveforms using the NRMSE and
R-squared values. Tables 4 and 5 show that the average NRMSE and the average R-squared
values between the original pulse waveforms and the output waveforms (integral of the
output signals) were 0.572 and 0.915, respectively.
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Table 4. NRMSE of the linear model.

Subject No.
Force

Average
Light Moderate Heavy

1 0.785 0.669 0.140 0.531
2 0.787 0.630 0.141 0.519
3 1.066 0.723 0.106 0.632
4 1.152 0.642 0.107 0.634
5 1.257 0.667 0.108 0.677
6 0.771 0.667 0.103 0.514
7 0.797 0.652 0.125 0.525
8 0.827 0.697 0.119 0.548

Average 0.930 0.668 0.119 0.572
S.D. 0.196 0.030 0.015 0.065

Table 5. R-squared values of the linear model.

Subject No.
Force

Average
Light Moderate Heavy

1 0.942 0.913 0.833 0.896
2 0.941 0.908 0.955 0.935
3 0.897 0.928 0.911 0.912
4 0.940 0.922 0.929 0.930
5 0.897 0.921 0.953 0.924
6 0.944 0.923 0.885 0.917
7 0.927 0.837 0.955 0.907
8 0.882 0.909 0.910 0.900

Average 0.921 0.908 0.917 0.915
S.D. 0.025 0.029 0.042 0.014

5. Nonlinear Model
5.1. Artificial Neural Network

In this study, neural networks were used to model the nonlinear relationship between
the driving signals and the output waveforms of the pulse tactile player [33]. A back-
propagation multilayer perceptron artificial neural network (ANN) was used to train a
nonlinear function, TNN. The training data for the ANN included input data P, which was
the displacement of the pulse tactile player, and output data U, which was the driving
voltage of the pulse tactile player, as described in (3).

TNN(P) = U (3)
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After the ANN model was well trained, the corresponding driving voltage to drive
the pulse tactile player to reproduce a given pulse tactile vibration could be identified.

5.2. ANN Training Data Collection

The same data acquisition mechanism was used to collect the training data (Figure 10).
The pulse tactile recorder was placed on top of the silicon skin of the pulse tactile player. A
screw feeder was used to provide specified forces. The driving voltage of the pulse tactile
recorder would be the output data U of the ANN model, and the integral of the recorded
signals from the pulse tactile player would be the input data P for the ANN model.

Another ten sets of 8 s wrist pulse signals were collected in each of the three force
ranges (<0.9, 0.9–1.5, and >1.5N) from the pulse tactile recorder. In all, 30 sets of pulse
signals were collected. A mean filter was used to down sample the data to 250 Hz to
remove noise, resulting in 2000 data points in each dataset. The pulse signals were then
integrated to obtain the corresponding pulse waveforms.

However, if pulse waveforms were to be used to train the ANN model, some miniscule
pulse information might be misidentified as noise and removed during the training. To
retain both low- and high-frequency miniscule pulse information, empirical mode de-
composition (EMD) was used to decompose pulse waveforms into several intrinsic mode
functions (IMFs), which were then used to train the ANN model on various frequency
scales to retain miniscule characteristics of the pulse waveforms while removing high-
frequency noises at the same time. A flowchart of the training data obtainment is presented
in Figure 11.
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The EMD method was designed for analyzing nonlinear and nonstationary time series
data [34,35]. EMD decomposes signals into several IMFs using a sifting process in which
predetermined basis functions are not required. IMFs can represent the various frequency
scales of the original signals. The combination of all IMFs can accurately represent the
original signals without the loss of details during data conversion. EMD has been suc-
cessfully applied to biological data analysis [36–38]. Prior research has shown that using
the concept of “divide-and-conquer”, EMD-based neural networks could achieve higher
training accuracy and efficiency [39,40]. Research has also demonstrated that EMD is
more precise than the Fourier filter in extracting low-frequency components [41] and more
efficient than wavelet transform in classifying disturbances [42].
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In EMD, cubic splines are used to produce an upper envelope and a lower envelope
of the signals. The mean of the two envelopes may be represented as m1(t). The difference
between the original signal x(t) and m1(t) is the first component h1(t), as follows:

h1(t) = x(t)− m1(t) (4)

The same procedure is repeated to find the upper and lower envelopes of h1(t), and
the mean value is represented as m11(t). m11(t) is then subtracted from h1(t) to obtain the
second component h11(t), as follows:

h11(t) = h1(t)− m11(t) (5)

The same sifting procedure is repeated k times until a stop criterion is satisfied:

h1k(t) = h1(k−1)(t)− m1k(t) (6)

In this study, the Matlab EMD Toolbox and the Cauchy-type convergence criterion
were used [43], as follows:

SDk =
∑T

t=0

∣∣∣h1(k−1)(t)− h1k(t)
∣∣∣2

∑T
t=0

∣∣∣h1(k−1)(t)
∣∣∣2 (7)

where T is the data length. The threshold was set to be 0.1. If SD was smaller than the
threshold, the sifting process would stop. The resulting h1k(t) was an IMF and defined as
IMF1(t). Each IMF satisfied the following two conditions: (1) the number of extrema and
the number of zero crossings must either equal or differ at most by one, and (2) at any data
point, the mean value of the envelope defined using the local maxima and the envelope
defined using the local minima is zero [35].

IMF1(t) was then separated from x(t) as follows:

r1(t) = x(t)− IMF1(t) (8)

The residue, r1(t), was treated as a new data set and subjected to the same sifting process
until the residue, rn(t), became a monotonic function from which no more IMFs could be
extracted, as follows:

rn(t) = rn−1(t)− IMFn(t) (9)

The original signal x(t) could be expressed as follows:

x(t) =
n

∑
i=1

IMFi(t) + rn(t) (10)

where n denotes the total number of IMF components. From experience, one eight-second
pulse waveform could be decomposed into at most seven IMFs. Figure 12 presents one
pulse waveform and its seven IMFs and one residue. Each IMF had its own main peak
frequency and energy intensity. In this study, the energy intensity of each IMF was taken as
the weighting of the IMF. Usually, the first three IMFs have the highest energy intensities
and affect the waveform the most.
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The IMFs were then normalized and taken as the driving signals to drive the pulse
tactile player. The vibration signals were recorded using the pulse tactile recorder. Finally,
the driving signals and the integrals of the recorded signals provided the output data and
input data for the ANN training model, respectively. Because residue was the basic trend
of the pulse waveform, it was not used in the training. Here, ten sets of pulse data, each
containing 2000 data points, were collected in each force level, and each set of pulse data
was decomposed into seven IMFs. Therefore, in total, 70 sets of ANN training data (or
140,000 data points) were provided for each force range.

5.3. ANN Training Model

For each force range, one ANN was trained. In this study, in order to process and
reproduce each data point in real time, the input layer and output layer both comprised 1
neuron. In other words, both the input data P and output data U contained one data point
only. However, the number of hidden layers, the number of neurons in the hidden layers,
and the activation functions were obtained by a trial and error method until satisfactory
accuracy and training time were achieved. Finally, one hidden layer comprising 10 neurons
was adopted. The sigmoid function and hyperbolic tangent sigmoid function were selected
as the activation functions for the hidden layer and the output layer, respectively, as
described in (11) and (12).

Sigmoid function

f (n) =
1

1 + e−n (11)

Hyperbolic tangent sigmoid function
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f (n) =
2

(1 + e−2n)
− 1 (12)

In this study, the number of iterations for the ANN training was set to 104 epochs. The
learning rate of the training process was set to 0.8. Table 6 lists the NRMSEs of the training
results.

Table 6. NRMSEs of the ANN training results.

IMF
NRMSE

Light Moderate Heavy

1 0.045 0.025 0.027
2 0.077 0.023 0.025
3 0.119 0.084 0.085
4 0.130 0.105 0.115
5 0.121 0.069 0.088
6 0.106 0.012 0.060
7 0.113 0.091 0.104

5.4. Pulse Reproduction and Verification
5.4.1. Driving Signals

Figure 13 presents a flowchart for reproducing a complete pulsation. Steps 1 to 6
are represented in Figure 11. Based on the force range, Step 7 uses the corresponding
ANN model to determine the driving signals for each IMF. Step 8 multiplies each driving
signal with the corresponding weighting obtained in Step 5. Because a pulse waveform is
decomposed into several IMFs, in order to reproduce a complete pulse vibration, all the
driving signals of the IMFs must be combined, as described in Step 9. Finally, the driving
signals are up sampled to 1 kHz to obtain the final driving signals of the pulse tactile player,
reproducing a complete pulsation.
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5.4.2. Verification Results

The same eight sets of 8 sec wrist pulse signals used in the linear model were taken
to verify the reproduction performance. The verification setup was identical to the data
acquisition and verification mechanism in Figure 10. The integrals of the recorded signals
were compared with the original pulse waveforms using the NRMSE and R-squared values.

As can be observed in Table 7, the average NRMSE of the differences between the
reproduced pulses and the original pulses is 0.065. This indicates that the trained ANN
models predict the pulse waveforms quite well. As Table 8 reports, the average R-squared
value is 0.958, indicating that a high linear relationship between the reproduced and
original pulse waveforms exists.

Table 7. NRMSE of the ANN models.

Subject No.
Force

Average
Light Moderate Heavy

1 0.100 0.085 0.067 0.084
2 0.047 0.064 0.063 0.058
3 0.054 0.082 0.058 0.064
4 0.067 0.055 0.070 0.064
5 0.048 0.065 0.052 0.055
6 0.069 0.054 0.060 0.061
7 0.057 0.066 0.066 0.063
8 0.059 0.087 0.077 0.074

Average 0.062 0.070 0.064 0.065
S.D. 0.017 0.013 0.008 0.009

Table 8. R-squared values of the ANN models.

Subject No.
Force

Average
Light Moderate Heavy

1 0.956 0.984 0.978 0.973
2 0.887 0.927 0.968 0.928
3 0.91 0.98 0.958 0.95
4 0.976 0.99 0.966 0.977
5 0.968 0.988 0.964 0.974
6 0.956 0.98 0.955 0.964
7 0.968 0.972 0.91 0.95
8 0.931 0.939 0.966 0.945

Average 0.944 0.97 0.958 0.958
S.D. 0.0317 0.0237 0.0206 0.0172

6. Discussion

In this study, a simple linear model and ANN models were used to describe the
relationship between the driving signals of the pulse tactile player and the pulse tactile
vibrations. In order to see if there were any significant differences between the linear
model and ANN models, independent sample t-tests with the significant level of 0.05 were
conducted. Table 9 shows that the NRMSEs of the ANN models of the three forces are all
significantly lower than that of the linear model. It indicates that compared to the linear
model, the ANN models have less noise, and the data points of the reproduced waveforms
are closer to the original pulse waveforms.
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Table 9. p-values between the linear model and the ANN models.

Pressure

Light Moderate Heavy All

NRMSE 0.000 0.000 0.000 0.000

R-SQUARED 0.134 0.000 0.025 0.000

Table 9 also shows that the R-squared values of the ANN models of the moderate and
heavy forces are significantly higher than that of the linear model. Although the R-squared
value of the ANN model of the light force is not significantly higher, the average value is
still higher than that of the linear model. It indicates that the ANN models could provide
better fit than the linear model.

Usually, pulse signals taken by light forces are indistinct and contain lots noise. Table 4
shows that the average NRMSE of the light forces is 0.93. To remove signal noise but
retain subtle pulse information at various frequency scales, the EMD method was used to
decompose pulse waveforms into several IMFs during the ANN training. Table 7 shows
that using EMD and ANN models, the average NRMSE of the light forces reduces to 0.062.

By combining all the driving signals of the IMFs, the final driving signals for the pulse
tactile player to reproduce a complete pulse tactile vibration were obtained. Figure 12 and
Table 6 show that the first three IMFs contain relatively high energy intensities and low
NRMSE values. Since the energy intensity of each IMF is used as the weight of the IMF
when combining all the driving signals of the IMFs, the first three IMFs affect the final
driving signals the most. Therefore, even most of the NRMSE values of IMFs 4–7 are high
in Table 6, the average NRMSEs of the ANN models in Table 7 is still very low. The average
NRMSE and R2 of the pulse player using the ANN models are 0.065 and 0.958, respectively.
The results of the verification indicate that the system can reproduce high-fidelity pulse
tactile vibrations.

This study selected a PVDF piezo film vibration sensor to detect pulse vibration
signals. Different hardware layouts might affect the measurement performance. Taguchi
method results show that the piezo film vibration sensor needs to be firmly clamped and
the material of the sensing tip needs to be hard to record high fidelity pulse signals. The
results show that the average NRMSE and R2 of the pulse recorder are 0.046 and 0.983,
respectively, which indicate that the pulse tactile recorder could measure pulses with high
accuracy and repeatability.

The focus of the present study was to design and objectively verify the pulsation
recorder and player system. In the future, experienced TCM physicians and patients with
different pulse features will be recruited to conduct a subjective clinical trial. In addition,
other machine learning methods may be applied to further improve the reproduction
performance of the pulse tactile player. A pulse tactile recorder and player system for
multiple fingers will also be developed.

7. Conclusions

Human pulses contain much minuscule but important information. Trained TCM
physicians and health care personnel are able to discern subtle pulse differences. Therefore,
to realistically and accurately simulate human pulse tactile feedback, accurate pulsa-
tion measurement and display devices are needed. This study successfully developed a
lightweight and portable pulse tactile recorder and player system. Users can interact with
patients by using their natural pulse-taking behaviors and preferred palpation forces. After
taking arbitrary pulses, the system can render the same pulse tactile feedback under the
same palpation forces in real time. The system is expected to be used as a tool to train
entry-level health care personnel and TCM physicians in taking and reading pulses.
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