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Abstract: The use of biomarkers in medicine has become essential in clinical practice in order to help
with diagnosis, prognostication and prediction of treatment response. Since Alexander Breslow’s
original report on “melanoma and prognostic values of thickness”, providing the first biomarker for
melanoma, many promising new biomarkers have followed. These include serum markers, such
as lactate dehydrogenase and S100 calcium-binding protein B. However, as our understanding of
the DNA mutational profile progresses, new gene targets and proteins have been identified. These
include point mutations, such as mutations of the BRAF gene and tumour suppressor gene tP53.
At present, only a small number of the available biomarkers are being utilised, but this may soon
change as more studies are published. The aim of this article is to provide a comprehensive review of
melanoma biomarkers and their utility for current and, potentially, future clinical practice.

Keywords: melanoma; biomarkers; molecular pathology; genetic mutations; prognosis

1. Introduction

It is estimated that melanoma will be the 19th most common worldwide primary site
of new cancers in both sexes in 2020, with 324,635 cases [1]. Very recently, immune evasion
by cancer cells has become an important therapeutic target [2]. The prognosis varies
according to the stage of the disease, from almost 99% 5-year survival rate in localised
disease to approximately 27% when distant metastases are present [3].

As such, being able to predict which patients have the highest risk of developing
distant metastases is quite important. Tumour biomarkers can be useful in predicting
the risk of metastases and thus prognosis. Some of them can also have a diagnostic
use. The use of serum biomarkers, such as lactate dehydrogenase (LDH) or S100b, is
recommended in some guidelines, while the use of other serum biomarkers, such as
melanoma inhibitory activity (MIA) and vascular endothelial growth factor (VEGF) is
limited due to low specificity and limited clinical usability [4–6]. DNA point mutations

Diagnostics 2021, 11, 1341. https://doi.org/10.3390/diagnostics11081341 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-1252-988X
https://orcid.org/0000-0002-5402-9875
https://orcid.org/0000-0003-1365-7944
https://orcid.org/0000-0002-7906-0991
https://orcid.org/0000-0002-2512-6131
https://doi.org/10.3390/diagnostics11081341
https://doi.org/10.3390/diagnostics11081341
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11081341
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics11081341?type=check_update&version=1


Diagnostics 2021, 11, 1341 2 of 22

in melanoma represent another important biomarker that can guide patient selection and
predict treatment response, and are currently recommended by all clinical guidelines.
For example, mutations of the Mitogen-Activated Protein kinase (MAPK) pathway, most
commonly identified in BRAF and NRAS, have been correlated with shorter survival
outcomes and response to selective inhibitors of BRAF mutant protein, such as dabrafenib
and vemurafenib [7–9]. Other gene mutations offer similar correlations and represent
potential therapeutic targets, such as NRAS gene mutations. The emergence of circulating
tumour DNA (ctDNA) as an alternative source of DNA for genomic studies may become
in the future the basis in clinical practice for tumor mutational analysis, staging of disease
and consequent prognostication [10].

The aim of this review is to provide a comprehensive list of serum and DNA biomark-
ers currently under investigation in melanoma, and future potential applications.

2. Prognostic Tissue Biomarkers

In Alexander Breslow’s report in 1970, tumour thickness and cross-sectional tumour
area were identified as prognostic variables reflecting tumour burden. The thickness of the
primary tumour is considered a significant prognostic factor for stage I and II melanoma;
overall, 5-year survival rates in stage III melanoma are based on thickness. When the
thickness is less than 1 mm, the 5-year survival rate is 53%; while when it is 1–2 mm, 5-year
survival rate is 47%; when 2–4 mm, 5-year survival rate is 40%; and when over 4 mm 5-year
survival rate falls to 34% [11]. However, thickness of the primary tumour was not found to
be prognostic after tumour metastasis (stage IV). Melanoma ulceration is another important
prognostic factor. In literature, there have been two possible explanations of the adverse
prognostic value of ulceration in primary melanoma. One possibility is that melanoma
ulceration could directly enable dissemination of the tumour. Alternatively, it could be that
ulceration is a biological attribute of tumours with a predisposition to disseminate.

Proliferative activity of the tumour and overexpression of c-myc have been found to
favour both dissemination and ulceration of the primary melanoma [12–14]. The hypoth-
esis that melanoma ulceration directly enables the dissemination of the tumour through
alterations in the local environment has been indicated in studies on the interactions of
melanocytes and keratinocytes [15,16]. These studies indicate that ulceration may pro-
vide melanoma cells with a very effective way to interrupt the keratinocyte-mediated
control that prevents melanocyte transformation. Mitotic activity of the primary tumour
has also been investigated as a prognostic factor. In DNA replication genes of two path-
ways are over-represented: replication origins firing (ROF) genes and the separation of
sister-chromatids by securin. For example, overexpression of ROF genes in melanoma is
associated with poor prognosis [17]. Expression of MCM4 and MCM6 genes is associated
with metastasis-free survival and overall survival (OS) [17]. Securin is encoded by the
hPTTG gene, which acts as an oncogene. Its expression is seen via immunohistochemical
staining in the vertical growth phase but not in the radial growth phase of melanoma [18].
Some promising new prognostic tissue biomarkers have also been reported in the literature,
including cycloxygenase 1–3 (COX1-3), galectin-3 molecule, matrix metalloproteinases
(MMP), and chondroitin sulfate proteoglycan 4 (CSPG4). COX1-3 converts arachidonic
acid to prostaglandin. In Becker et al., COX-2 staining intensity was found to correlate to
Breslow thickness in melanoma [19]. Kuzbicki et al. also showed a higher COX-2 staining
intensity in melanoma than in benign nevi [20]. The galectin-3 molecule is secreted by
inflammatory cells, and has been associated with tumour progression and metastasis in
melanoma [21]. Galectin 3 and tumour size were found to be inversely related and corre-
lated with OS [22]. MMPs are key to remodeling of the tumour tissue microenvironment.
MMP-1 and MMP-3 positive melanoma metastases were associated with reduced disease-
free survival (DFS) [23]. CSPG4 is believed to be essential in cell adhesion, melanoma
migration and metastasis [24]; over 80% of melanomas have been found to be expressing
CSPG4. However, it can be found in any disease stage and there is no concrete evidence
that it correlates to disease progression [25]. Finally, several recent studies have demon-
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strated that the receptor for advance glycation end products (RAGE) signaling from both
melanoma and non-melanoma cells (fibroblasts, immune cells, endothelial cells) in the
tumor microenvironment represents an important element in the process of melanoma
tumor growth. The RAGE/ligand axis appears to support the association between chronic
inflammation and immunosuppression. Therefore, targeting RAGE in melanoma tumors
could be therapeutically beneficial [26].

3. Prognostic Serum Biomarkers

The use of serum biomarker assays may identify the presence of residual or recurrent
disease prior to imaging studies and relevant radiological evidence. From the therapeutic
perspective, this is important, as the prediction or early identification of distant metas-
tasis would enable the timely initiation of systemic therapy in adjuvant or metastatic
settings [27].

3.1. Lactate Dehydrogenase (LDH)

LDH catalyzes the conversion of pyruvate to lactate in hypoxic or anoxic conditions.
An elevated level of LDH is believed to be due to spillage into the bloodstream when
melanoma cells outgrow their blood supply [4]. High levels of LDH are associated with
worse prognoses, independently of site or number of metastases [28]. In the American Joint
Committee on Cancer (AJCC) melanoma staging system, patients with distant metastasis
and elevated LDH levels are considered stage IV M1c [4]. Patients with stage IV disease
and normal serum LDH at initial staging have 1-year OS of 65% and 2-year OS of 40%. With
elevated LDH levels, 1-year and 2-year OS are 32 and 18%, respectively [4]. Apart from its
prognostic value, in patients treated with a combination of dabrafenib and trametinib, LDH
was shown to be associated with poorer outcomes [29]. Moreover, when LDH decreases by
more than 27.3% from the baseline, this has been associated with radiological response to
immunotherapy [30].

3.2. S100 β

S100 proteins are implicated in a multitude of cell functions. As early as the 1980s,
S100 β was found to be expressed in human melanoma cell lines and was proposed as a
marker that could aid in diagnosis of melanoma [31].

However, S100 β can be found in abnormal levels in many pathological conditions,
including liver, brain and renal injury, inflammatory and infectious processes [32].

In 2008, Mocellin et al. published a meta-analysis of 22 series, with a total of 3393 pa-
tients with malignant melanoma at all stages. This revealed that positive serum 100B
was associated with reduced survival (hazard ratio [HR]: 2.23; connfidence interval [CI]:
1.92–2.58; p < 0.0001) [33]. Abraha et al. displayed a correlation between serum S100B
levels and Breslow thickness. Serum S100 β > 0.2 µg/L and primary melanoma tumour
thickness > 4 mm combined had sensitivity of 91% and specificity of 95% as predictors
for disseminated disease, and consequently may inform prognosis at the point of diagno-
sis [34]. However, this was not confirmed in other studies of multivariate analyses, where
levels of serum S100 β did not show clinical prognostic value [35]. Overall, the evidence
for routine use of serum S100 β as a prognostic marker in melanoma is limited. This is due
to small sample sizes, lack of proven significance in multivariate studies and mismatch
of disease stages across studies [33]. However, measurement of serum S100 β in patients
with Breslow > 1 mm lesions is recommended every 3–6 months in German and Swiss
guidelines [36,37].

3.3. Melanoma Inhibitory Activity (MIA)

Melanoma inhibitory activity (MIA) is secreted by melanoma cells and is a regulatory
growth factor [38]. MIA was proposed as a melanoma biomarker, because it is not expressed
in benign human melanocytes or benign melanocytic nevi, but is strongly expressed in
malignant melanoma cells [39]. Higher levels of MIA were linked with more advanced
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stages of melanoma and worse prognosis [5]. This was first shown in a German study that
included over 830 blood samples of 326 patients with malignant melanoma of all stages.
The cutoff was set at 9.8 ng/mL. In stage I and II patients, elevated MIA concentrations
were found in 5.6%. This increased to 60% in patients with stage III and 89.5% in stage IV
melanoma. Patients at stage III or IV that underwent resection or treatment with irradiation
or chemotherapy prior to the study had MIA levels below the cutoff. Notably, all patients
with reduced MIA levels in all stages did not develop further metastases during the follow-
up period. In patients displaying a significant increase in MIA levels, metastases were
detected either at the point of analysis, or in the following 2–6 months [40]. A comparative
study in 373 melanoma patients among MIA, S100B, LDH and albumin showed that MIA
was not superior to the use of S100 β or LDH; specifically, S100 β had the higher sensitivity
(0.86) in newly diagnosed metastatic melanoma while MIA had the second highest (0.80);
LDH sensitivity was lower at 0.48 and albumin lowest at 0.15. However, MIA had the
lowest specificity (0.62), whilst albumin had the highest (0.99) [6].

3.4. Vascular Endothelial Growth Factor (VEGF)

VEGF is elevated in patients with advanced-stage melanoma. This was associated
with negative immune effects, such as impaired dendritic cell function [41,42]. It was
also linked with both elevated and decreased T helper 2 (Th2) cytokines. These were
found to result in suppression of effective antitumour immunity. VEGF inhibitors can lead
to improved dendritic cell function and reverse Th2 dominance, leading to Th1 polarity.
These changes should in theory enhance tumour rejection [43]. Ugurel et al., in a study
including 125 patients with stages I-IV melanoma, concluded that VEGF was found to
be an independent prognostic marker for OS [44]. However, VEGF has not been found
to be effective as a marker of disease progression. This was replicated in a study in 2005,
although healthy individuals were found to have higher VEGF levels [45]. When used
to monitor patients, VEGF potentially has high negative predictive value (90%) with low
sensitivity, specificity and positive predictive value of 57.1%, 78% and 34.5% respectively.

3.5. Other Serum Biomarkers

Apart from those already discussed, there is a multitude of other promising serum
biomarkers. Tumor associated antigen 90 immune complex (TA90IC) and its utility in
melanoma has been indicated in several studies. In a comparative study between TA90IC,
MIA and S100 β in stage III melanoma patients undergoing adjuvant immunotherapy,
TA90IC was the earliest elevated marker and an independent predictor for survival and
recurrence of melanoma [15]. Further studies support this, indicating that antiTA90 IgM
can be an independent prognostic factor for melanoma [46]. The expression of TA90IC can
be elevated in inflammatory processes, such as hepatitis with liver cirrhosis [15]. Tyrosinase
is a marker specific for melanocytes and Schwann cells, which are normally not found
in peripheral blood [47]. Several studies have been performed, with conflicting results.
Some have shown that the presence of microRNAs (miRNA) in tyrosinase correlates
with melanoma relapse progression [48,49]. However, variable levels of miRNA in stage
III and IV melanoma indicate that blood tyrosinase level is not a dependable marker
in metastatic disease [50,51]. Osteopontin’s role in cell death, tumour cell growth and
recruitment of tumor promoting stromal cell has also been described [52–54]. In Maier
et al., it was shown that a combination of S100 β and osteopontin may correlate with disease
relapse and help identify patients at high risk of metastasis [55]. However, osteopontin
can also be elevated in several autoimmune conditions. Interleukin-8 is a chemokine
associated with inflammatory processes; it has been shown to promote angiogenesis and
correlate with disease stage, survival, tumour burden and response to treatment [56].
Melanoma Antigen Gene A3 protein (MAGE-A3) is part of a family of proteins whose
genes are normally silent, except in male germline cells. This is not the case in melanoma
and other tumours though [57]; indeed, elevated levels are found in early melanoma
stages. Nevertheless, its use as a prognostic factor has yet to be proved [58]. YKL-40 is
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a glycoprotein secreted by activated neutrophils and macrophages. Elevated levels can
be seen in non-malignant diseases, but were also found to be an independent prognostic
biomarker for poor survival in breast, lung, colon, ovary and kidney cancers [59]. Their
use alone or in conjunction with LDH as an independent prognostic marker was shown
by Schmidt et al. [60]. In the same study, serum level of YKL-40 at diagnosis was found to
be an independent factor for survival [61]. However, YKL-40 has yet to receive approval
by the Food and Drug Administration (FDA) to be used as a biomarker in the United
States [62]. In addition, medications such as IL-2 and IFN-a2b increase YKL-40 expression
and can cause false negative results [63]. Cytoplasmic melanoma-associated antigen (CYT-
MAA) is produced in normal and tumour cells alike. However, its levels are elevated
in melanoma. Although it is not sensitive or specific, it has been linked with disease
recurrence and progression, as well as potentially with response to immunotherapy [64].
Melanotransferrin (MTF) is expressed in normal adult, fetal and tumour cells [65]. It is
commonly found in exocrine tissues, such as salivary glands and the pancreas, as well
as the epididymis [66]. Its exact role in melanoma is not yet known. However, it is
thought to contribute to angiogenesis, tumour proliferation and tumour genesis [66,67].
Microphthalmia-associated transcription factor (MITF) contributes to the regulation of
melanocytes’ development, differentiation and function [68]. MITF is sensitive and specific
in identifying melanoma cells [69]. Its levels are inversely proportional to melanoma cell
invasiveness [70]. The identification of MITF after treatment indicates metastatic disease
and worse outcomes in melanoma patients [71]. Glycoprotein 100 (gp100) is normally
expressed in adult melanocytes. However, levels are increased in neonatal cells and
melanoma, albeit those levels vary [72]. Despite this, gp100 is not specific and was not
proven to correlate with response to treatment [73,74]. Lastly, elevated C reactive protein
(CRP) and interleukin 6 (IL-6) levels were found to be linked to reduced survival and
treatment resistance [74,75]. Despite this, CRP was found to be an independent predictor
for survival [76].

Interestingly enough, protein levels can vary significantly between serum and plasma,
due to the storage conditions, the method of blood fractionation and the properties of the
specific analysed proteins. As such, there are significant discrepancies in the literature
regarding protein levels in plasma and serum; nevertheless, it has been shown that plasma
has better reproducibility in protein measurement. Table 1 summarises the serum biomark-
ers that were described here. Among them, at least S100 β, MIA, VEGF, osteopontin, and
interleukin 8 (IL-8) are relevant in plasma [77].
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Table 1. Serum biomarkers.

Biomarker Correlation Limitation Laboratory
Methodology References

Enzymes
LDH

Increased levels with worse prognosis
Increased LDH levels with distant metastases are classed as stage IV

M1C in AJCC
Radiological response to immunotherapy on LDH decrease

LDH can be elevated in other conditions Photometric assay [4,28,30]

Tyrosinase May correlate with melanoma relapse Conflicting results in studies done RT-PCR [15,47–51]

Secreted
proteins/antigens

MIA Increased levels with advanced disease and worse prognosis Low specificity in newly diagnosed metastatic melanoma
ELISA

[5,6,40]

TA90 Antigen May be an independent predictor for survival, prognosis and recurrence Can be elevated in inflammatory processes [15,46]

VEGF
Elevated in advanced stage melanoma

Associated with negative immune effects
Could be an independent prognostic marker for survival

Levels can also be elevated in healthy individuals
Low sensitivity, specificity and positive predictive value

in monitoring
ELISA, RT-PCR [41,42,44,45]

Osteopontin May be used in conjunction with S100b to predict relapse of high risk
for metastases Can be found in autoimmune conditions IHC, TMA [52–55]

IL-8 Increased levels with disease stage, survival tumour burden and
response to treatment Can be elevated in other inflammatory processes ELISA, IHC, RT-PCR, TMA,

HPLC [56]

MAGE-A3 Elevated levels can be found in early melanoma stages May be elevated in other tumours
Its use as a prognostic factor is not yet proven RT-PCR [57,58]

Glycoprotein YKL-40 Found to be an independent prognostic marker correlating with
disease-free and overall survival

Has not received FDA authorisation
Can yield false-negative results

Can be associated with other tumours or inflammatory processes ELISA
[59–63]

CYT-MAA Linked with disease recurrence and progression
May be related to response to immunotherapy Not sensitive or specific [64]

MTF Thought to contribute to angiogenesis, tumour proliferation It is also excreted in exocrine tissues ELISA, IHC, RT-PCR [64–67]

MITF Has a diagnostic role in melanoma
Increased levels with reduced invasiveness Exact physiological role not yet discovered ELISA, IHC, RT-PCR, HPLC [68,69,71]

GP100 Increased levels are found in neonatal cells and melanoma cells Not specific
Not proven to correlate with response to treatment ELISA, IHC, RT-PCR [72–74]

CRP
Elevated CRP and IL6 are linked to reduced survival and

treatment resistance
CRP may be an independent predictor for survival

Can also be elevated by a multitude of other factors IP [74–76]

S100 Proteins S100 β
Increased levels with reduced survival

May be related with disseminated disease
Recommended in some German and Swiss guidelines as surveillance

S100b can also be elevated in liver, brain, renal injury,
inflammatory and infectious conditions ELISA, LIA [32,33,35–37]

AJCC: American Joint Committee on Cancer; RT-PCR: reverse transcription polymerase chain reaction; ELISA: enzyme-linked immunosorbent assay; IHC: immunohistochemistry; TMA: tissue microarray;
IL-8: interleukin-8; HPLC: high performance liquid chromatography; MAGE-A3: MAGE Family Member A3; CYT-MAA: cytoplasmic melanoma-associated antigen; MTF: melanotransferrin; MITF:
microphthalmia-associated transcription factor; GP100: glycoprotein 100; CRP: C reactive protein; IP: immunoprecipitation; LIA: luminescence immunoassay.
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4. DNA Markers

Epigenetic alterations: hypermethylation.
Epigenetics is the study of potentially inheritable changes in the phenotype that do not

involve alterations in the DNA sequence [78]. Epigenetic DNA changes are crucial in determin-
ing which genes are silenced or expressed in processes like cell differentiation, cell growth and
immune response, and have been extensively investigated in melanoma [79]. DNA methyla-
tion occurs in 5-cytosine exclusively to produce methylcytosine, and the majority of this is
seen in CpG dinucleotides [80]. There are large clusters of CpG dinucleotides across all of the
genome, referred to as CpG islands, typically in promoter regions [78]. Hypermethylation of
these promoter regions in cancer-related genes can facilitate tumour progression [81]. This
is because DNA promoter methylation can inactivate tumour suppressor genes (TSGs) [82].
Methylation changes in the CpG island promoter regions in TSGs or other tumour-related
genes have been observed in malignant cutaneous melanoma [83]. This phenomenon in
melanoma has been named the CpG island methylator phenotype (CIMP) [84].

The Ras association domain family 1 A (RASSF1A) is a TSG that can control the
cell cycle, promote apoptosis and maintain the genome [85,86]. In breast, lung and liver
cancer cells, RASSF1A expression was lower; studies have demonstrated that this lower
expression is due to methylation of its promoter region [82]. Spugnardi et al. demon-
strated that 55% of malignant melanoma tumours had a hypermethylated RASSF1A gene,
which is one of the most significant epigenetic alterations and loss of TSGs reported in
cutaneous melanoma [87]. Unlike other cancers, such as bladder cancer, it is undetermined
whether RASSF1A hypermethylation is related to poorer disease outcome and survival
in melanoma [85]. Tanemura et al. determined that RASSF1A methylation was present
in nearly 50% of stage IV melanoma compared to no methylation in stages I and II; this
indicates that RASSF1A could signify progression and prognosis in melanoma, but further
studies must explore this further [83].

Hoon et al. further explored DNA methylation of CpG islands in the promoter regions
of TSGs [88]. TSGs were assessed using methylation-specific polymerase chain reaction
(MSP) in 130 cutaneous tumours and 15 melanoma cell lines. They found four TSGs were
especially hypermethylated in 86 metastatic melanoma tumour specimens: RASSF1A (57%),
retinoic acid receptor responder protein 2 (RARRES2) (70%), death-associated protein ki-
nase (DAPK) (19%) and O6-methylguanine DNA methyltransferase (MGMT) (34%). Hyper-
methylation in RARRES2 was 70% in both primary and metastatic melanoma, but RASSF1A,
DAPK and MGMT had significantly lower hypermethylation in primary melanoma versus
metastatic melanoma. Similarly, the most hypermethylated gene in melanoma cell lines
was RASSF1A (80%), followed by RARRES2 (53%) and MGMT (27%). Overall, hyperme-
thylation was higher in metastatic melanoma compared to primary melanoma, indicating
a possible role in tumour progression, but TSG hypermethylation was not significantly
associated with disease outcome or OS. However, RARRES2 did correlate with Breslow
thickness of the tumour (p = 0.009). This significant correlation has major implications, as
Breslow thickness is a prognostic factor in localised and early-stage melanoma.

Another study analysed hypermethylation of RASSF1A and RARRES2 in 37 melanoma
patients with clinically positive lymph nodes [89]. Hypermethylation was observed in
16% of subjects in RASSF1A alone, 28% in RARRES2 alone, and 14% in both. Furthermore,
hypermethylation of RARRES2 correlated with reduced DFS and OS. Other studies also
observe that hypermethylation increases as melanoma progresses in its stages [90,91]. This
suggests that increasing degrees of hypermethylation could be used to predict prognosis of
melanoma in the future. As further TSGs involved in melanoma are identified, MSP will
play a significant role in determining whether this hypermethylation influences melanoma
progression and later metastasis [92]. More research is warranted to determine the accuracy
of hypermethylation as a marker of prognosis.
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4.1. Mutations of the Mitogen-Activated Protein Kinase (MAPK) Pathway Mutations
4.1.1. BRAF Mutations

A whole-genome sequencing study in 2013 analysed the frequency of mutations across
multiple cancers and identified melanoma as the most frequently mutated tumour [93]. The
majority of melanomas have mutations in the mitogen-activated protein kinase (MAPK)
pathway, a pathway vital for cell growth, proliferation and survival [7]. Mutations occurring
in this pathway leads to dysregulated cell growth and cell cycle activation [94]. Oncogenic
activation of the MAPK pathway mainly involves two mutations: BRAF, the most commonly
mutated gene in 40–60% of cases, followed by NRAS in 15–30% of cases [95–97]. In melanoma,
BRAF mutation occurs in 45–50% causes, specifically through mutations at the V600 codon [98].
The most common BRAF mutation is V600E, accounting for 80% of mutations in the gene,
followed by V600K and V600R [95]. The V600E mutation is found in younger patients with
superficial spreading melanoma or in areas not exposed to chronic sun-induced damage [8,95].
In contrast, the V600K mutation is found in older patients with melanoma due to chronic
sun-induced damage, especially to areas such as the head and neck [99].

BRAF mutations may be correlated with ultraviolet (UV) exposure [95]. Whole-
genome sequencing by Colebatch et al. found that mutational load of BRAF was positively
correlated with UV exposure in benign melanocytic naevi [99]. Similarly, Bauer et al. found
there were no BRAF mutations in congenital melanocytic naevi, further emphasising that
UV exposure could induce these mutations in the skin [100]. Further research is needed
to identify if this mutation could be useful in tracking the transformation of benign naevi
to malignant melanoma. BRAF mutations also have implications for prognosis. Recent
research has established that BRAF mutations could be linked with shorter DFS in early
stages of melanoma [95]. Furthermore, BRAF-mutated melanoma is connected with shorter
survival in stage IV disease and V600E expressed in the nucleus (rather than the cytoplasm)
is associated with more advanced tumour staging, lymph node metastasis and depth of
invasion [92,101]. With the identification of BRAF and its significant role in melanoma,
therapies have been developed to target its specific inhibition.

Selective inhibitors of V600-mutated kinase, dabrafenib and vemurafenib, have been
associated with improved OS and DFS [102]. A phase three randomised clinical trial com-
pared vemurafenib with chemotherapy dacarbazine in 675 previously untreated subjects
having metastatic melanoma with the BRAF V600E mutation [9]. At six months, OS was
84% in the vemurafenib group compared to 64% in the dacarbazine group. Furthermore,
vemurafenib had a relative reduction of 74% in risk of disease progression and death
compared to dacarbazine (p < 0.001). Although dabrafenib and vemurafenib are both
promising and beneficial treatments in metastatic melanoma, their clinical responses differ
according to the type of mutation present (V600K melanomas with brain metastases had
a lower response rate of 7% to dabrafenib treatment compared to 39% with BRAF-V600E
melanomas [101,103,104]). Further research is needed to investigate response rates in
different mutations as well as in earlier stages of melanoma; these studies could then be
used to predict prognosis with the given treatments [101].

However, the most concerning challenge currently is resistance to these BRAF in-
hibitors due to increasing new mutations and upregulation of receptor tyrosine kinase
(RTK) or NRAS [92,105]. Consequently, combination therapies using BRAF and MEK
inhibitors such as cobimetinib and trametinib are becoming the standard of melanoma
treatment [106,107]. The COMBI-d and COMBI-v double-blind phase three trials showed
combination therapy with dabrafenib and trametinib had higher DFS and OS when com-
pared to monotherapy of either dabrafenib or vemurafenib [11,108]. Furthermore, combina-
tion therapy with dabrafenib and trametinib was seen to reduce cutaneous squamous-cell
carcinoma and keratoacanthoma, occurring in 1% of patients compared to 18% receiving
vemurafenib alone [104]. Encorafenib is a BRAF inhibitor which has a 10-fold longer
half-life than vemurafenib or dabrafenib [109]. It is being combined with the MEK in-
hibitor binimetinib to demonstrate more potent inhibition and efficacy in BRAF-mutated
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melanomas [109]. Further treatments to resolve resistance are being investigated, which
include the addition of MAPK, CDK, Rho kinase or immune checkpoint inhibitors.

4.1.2. NRAS Mutations

NRAS is a GTPase protein that integrates signals from multiple RTKs [110]. NRAS muta-
tions activate MAPK signaling similarly to BRAF mutations; these activated signalling pathways
lead to dysregulated cell cycles along with cell proliferation and further survival pathways [111].

NRAS mutations have been observed in 15–25% of melanomas and typically develop
later in life after UV exposure and on the peripheral extremities [104,112]. NRAS muta-
tions usually occur independently of BRAF mutations, but 10–20% of melanomas have
point mutations in NRAS codons 12, 13 or 61 that may be mutually exclusive with BRAF
mutations [113–115]. If occurring independently, NRAS mutations may be able to bypass
BRAF and signal through CRAF instead [116]. NRAS mutations have been observed in
melanoma, which suggests that UV radiation may play a significant role in introducing
these mutations [117]. However, these mutations may also arise independently of UV
radiation as they have been found in congenital melanocytic naevi as well; in these cases,
detecting the signature UV radiations may help to diagnose the melanoma [96,118]. NRAS
mutations are also found in melanocytic and dysplastic naevi and melanomas with a high
mutation load [102,119].

It is unclear if NRAS has any prognostic value if identified, but NRAS expression
is associated with higher tumour staging and lower grades of tumour infiltrating lym-
phocytes [120]. In comparison with wild-type melanoma, NRAS mutations may result
in a significantly worse melanoma-specific survival rate [121]. This may be explained
histologically by their inducement of thicker lesions, higher mitotic activity and increased
lymph node metastasis [122]. NRAS mutations activate the RAF/MEK/MAPK signalling
pathway in a similar fashion to BRAF [123]. There has been a focus on inhibiting down-
stream components of the Ras signaling pathway, in particular the farnesyl transferase
inhibitors (FTIs) [104,124–126]. The toxicity observed is attributed to the fact that FTIs
inhibit other proteins that require farnesylation [127].

4.1.3. GNAQ/GNA11 Mutations

GNAQ and GNA11 genes code for G alpha subunits of G proteins that act with
G-protein coupled receptors [128]. The conversion of GDP to GTP allows G protein and G-
protein coupled receptor signaling and subsequent activation of G proteins; for G proteins
to become inactive, GTPase hydrolyses GTP to GDP [129]. These genes cause GTP to be
constantly bound to the G protein and result in downstream signaling [130–133].

Identifying GNAQ or GNA11 mutations can be useful to diagnose uveal melanoma and
differentiate it from other types of melanomas and melanoma of undefined origin [134]. While
they can be present in cutaneous melanoma, these cases are rare [130,135]. In contrast to their
diagnostic value, their use as a prognostic marker has limited evidence. Sheng et al. found
the median OS to be shorter for patients with GNAQ and GNA11 mutated mucosal melanoma
compared to the wild-type subsets [136]. In contrast, other studies have shown GNAQ and
GNA11 mutations are not associated with poor patient outcomes or disease progression in
uveal melanoma, which could be due to the mutations being initial steps in the development
of melanoma [137,138]. Furthermore, there is no significant difference in OS or DFS in patients
holding GNAQ mutations compared to GNA11 mutated melanomas [136].

4.2. Neurofibromatosis 1 (NF1)

NF1 gene encodes a protein (neurofibromin) which acts as a negative regulator of
the RAS-dependent pathway. It is known to cause tumours with mostly neuroectodermal
origin that consequently can often be found in melanoma [139]. Desmoplastic melanomas
have fewer DNA copy number alterations than other melanoma subtypes; nevertheless,
the few focal deletions that have been observed targeting CDKN2A and NF1 [140]. NF1
mutations are found in up to 45–93% of these melanomas [141–143].
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In an analysis of 1058 patients’ pathological reports with advanced melanoma treated
with anti-PD-1 or anti-PD-L1 antibodies, Eroglu et al. identified 60 patients with advanced
desmoplastic melanomas, who overall had a high response rate to PD-1 blockade. Whole-
exome sequencing of 17 of these patients revealed that 14 had NF1 mutations (82.4%) [144].
These findings suggest that, despite the dense fibrous stroma that had been expected to
limit PD-1/PD-L1 effects, the blockade may be effective in patients with desmoplastic
melanomas with NF1 mutation. NF1 mutation can develop simultaneously with BRAF
mutation, and as a result melanomagenesis is enhanced and resistance to vemurafenib
increased [140]. At the same time, preliminary data support the possibility of increased
sensitivity to MEK inhibition with trametinib [145].

Finally, there is a subset of patients who do not express BRAF, NRAS, or NF1 mutations.
Most often these tumors may have other MAPK mutations, AKT3 overexpression, or
changes in cell cycle pathways and most likely need a novel therapeutic approach.

4.3. PI3K/AKT/mTOR Pathway Mutations

PI3K/AKT/mTOR is a critical regulator of many physiological processes and essential
to the aggressive nature of the tumour, as this pathway promotes cellular growth and
survival [146].

AKT family member mutations are often dysregulated in melanoma and have been
identified in up to 43–60% of melanoma cases [147]. PTEN, which classily dampens the
PI3K/AKT/mTOR growth-promoting signaling cascade, is noted in 38% of patients with
primary melanoma and 58% of patients with metastatic disease [148]. Changes in PTEN and
BRAF pathway often co-exist, theoretically allowing dysregulation of both the MAPK and
PI3K pathways at the same time [146]. Hence, it might be possible that PI3K inhibitors may
afford some benefit to patients with PTEN and/or AKT-mutant melanomas. Rapamycin
and its analogues were among the first to be tried, inhibiting mTOR. One of the reasons
is that they are known to be well-tolerated clinically, as demonstrated by long-standing
use in patients who have undergone organ transplantation. However, mTOR inhibitors
have not demonstrated significant clinical activity as single agents in metastatic melanoma
patients, nor when combined with RAF inhibitors [149]. One of the potential reasons is the
complexities of pathway inhibition in systems with significant cross-talk.

4.4. KIT Mutations

c-KIT is a transmembrane receptor tyrosine kinase. When binding a stem cell factor, it
results in activation of several signaling pathways, thereby mediating cancer cell growth,
proliferation, invasion, metastasis, and inhibition of apoptosis [150]. The majority of c-KIT
mutations are found in mucosal and acral melanomas, as well as in melanomas arising from
skin [151]. Past genotyping has shown that they are almost always mutually exclusive with
BRAF and NRAS mutations [96]. Expression of KIT is not uniform across the tumor; the
highest levels of KIT expression are seen at the leading edge of tissue invasion, indicating a
key role it may have in promoting metastasis [151]. The presence of c-KIT mutations has
shown to be associated with worse survival as compared with wild-type melanomas.

Unfortunately, because of the relative rarity of c-KIT mutations (1–7%), the availability
of targeted therapy to treat this type of melanoma is limited. However, responses to tyrosine
kinase inhibitors (imatinib, sorafenib) have been reported in patients with KIT-mutant
melanoma [152,153].

4.5. CDKN2A Mutations

CDKN2A gene encodes the p16 protein, thus mutations in this gene result in hyper-
phosphorylation of retinoblastoma protein. Hence, it regulates intracellular oxidative stress
in a cell cycle-independent manner [154].

Goldstein et al. found that mutations in the CDKN2A gene are the most common
alteration in hereditary melanoma. These mutations are found in 40% of families with
high incidence of melanomas [155]. Moreover, based on pathological analysis of CDKN2A-
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mutated familial melanomas, it was found to be strongly associated with the more aggres-
sive superficial spreading subtype [156]. Furthermore, CDKN2A germline families have a
higher inherited risk of developing pancreatic cancer [157].

In terms of prognostic value, a Swedish study demonstrated that the CDKN2A muta-
tion was associated with a younger age at onset and worse survival, whereas an Italian
cohort study did not correlate the mutation with worse survival [158,159].

4.6. BAP1 Mutations

BAP1 is a tumor suppressor gene and is often associated with metastatic uveal
melanoma [132]. There is a known correlation with tumor aggression and worse prognosis
in uveal melanoma, as well as greater risk of metastasis [160]. BAP1 tumor predisposi-
tion syndrome (BAP1-TPDS) is a cancer syndrome that apart from the aforementioned
uveal melanoma predisposes patients to other malignant disorders, including renal cell
and basal cell carcinomas, lung and breast/ovarian cancers, meningioma, and malignant
mesothelioma [160,161].

Therapeutic targeting of BAP1 mutation poses a challenge, as its mechanism in
melanoma development is still poorly understood. Not only is the identification of the
function of BAP1 responsible for its anticancer role unclear, but also the goal of therapy is
complex as it aims to restore one or more functions of BAP1. Some studies are targeting
alternative mechanisms of DNA repair. One focuses on poly (ADP-ribose) polymerase
(PARP) emerging as a potential target for treatment. The main reason is its role in base-
excision and nucleotide excision repair [162]. Therapeutic target of BAP1 has focused
on its role in DNA double-strand break repair via homologous recombination [163,164].
Indeed, there is an ongoing clinical trial of the PARP inhibitor niraparib in BAP1-deficient
neoplasms including uveal melanoma (NCT03207347) [165].

4.7. The Role of Gene Fusions in Melanoma

Advances in next generation sequencing (NGS) have led to the identification of many
important kinase fusions as the primary drive in melanoma, which may represent critical
targets for molecular therapy [166].

NTRK1 fusions typically arise from small deletions, whereas the AGK-BRAF fusion
arises through an inversion. Due to the fact that most studies are RNA-based, many of the
precise genomic mechanisms are not yet characterised. Most fusions have been identified
with a variety of N-terminal partners. Kinases activated by these gene fusions include ALK,
RET, ROS1, NTRK1, NTRK3, MET, MAP3K8, MAP3K3, BRAF, and PRKCA. The subsequent
activation of downstream RAF/MEK/MAPK, PI3K/AKT/mTOR, and PLC pathways
promotes cellular proliferation and migration. These fusions are mutually exclusive of one
another, as well as of other driver mutations previously reported, such as NRAS, HRAS,
GNAQ, GNA11, NF1, and KIT.

Fusions may be the initiating genomic event in 8–20% of melanomas [167]. From a
therapeutic perspective, BRAF or MEK inhibitors may be effective, as they reduce tumor
size and proliferation [168,169]. It seems that NGS has become a useful tool in screening
for targetable fusions in advanced melanomas that lack characteristic driver mutations.

5. Molecular Profiling for Liquid Biomarker Discovery in Melanoma
5.1. Circulating Tumour DNA (ctDNA)

Circulating tumour DNA (ctDNA) is highly fragmented single or double-stranded
DNA that is shed by tumour cells into the circulation [170,171]. ctDNA assays constitute a
powerful tool for study of the molecular heterogeneity and clonal divergence of a malig-
nancy. Levels of ctDNA can vary depending on tumour vascularity, location and cellular
turnover [172,173]. Generally, undetectable ctDNA and favourable molecular profile carry
a better response, progression-free survival and OS compared with detectable ctDNA at
baseline or during treatment [10]. ctDNA may also be useful as a biomarker of disease
recurrence after melanoma resection [174]. As expected, ctDNA is usually undetectable in
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early-stage melanomas [175]. In later stages, the presence of BRAF and NRAS mutations is
associated with response to immunotherapy. Patients with an undetectable ctDNA either at
baseline or during treatment achieve a better objective response as compared to those with
detectable ctDNA at baseline which remained detectable during therapy [10]. Moreover,
baseline levels of ctDNA were lower in melanoma patients who responded well to targeted
therapy [176,177]. The analysis of methylated ctDNA using methylation-specific PCR in
metastatic melanoma has yielded promising associations. Indeed, methylated RASSF1 may
serve as an indicator of response to hormonal treatment [178]. ctDNA may be detected
as loss of heterozygosity (LOH) in DNA microsatellites. This was seen in a study where
the plasma of 76 patients with stage I to IV melanoma was analysed for microsatellite
loss using 10 markers [179]. LOH of at least one marker was found in 50% of patients
and was correlated with the stage of the disease. Taback et al. analysed preoperative and
postoperative serum for LOH in 57 patients with melanoma of all stages. All of them were
deemed surgically disease free [180]. Using a different set of markers, investigators found
that LOH of at least one marker was found in 56% of patients and correlated to the disease
stage. Fujimoto et al. attempted to detect LOH in a panel of four biomarkers and identify a
correlation to response to biochemotherapy. Their study recruited 49 patients with stage
IV melanoma and concluded that patients who did not respond to biochemotherapy had
significantly more LOH [181]. The presence of LOH of 12q was also linked to significantly
worse OS. Overall, the benefit of using detection of ctDNA mostly relates to easier sam-
pling allowing multiple serial analysis, compared to sampling of the primary or metastatic
melanoma via tumor biopsies.

5.2. MicroRNAs (miRNAs) and Long Noncoding RNAs (IncRNAs)

miRNAs are short noncoding RNA molecules (20–200 nucleotides) that regulate gene
transcription processes, which in turn affect cell proliferation, apoptosis, cell differentiation
and cell survival. Long noncoding RNAs (lncRNAs), with more than 200 nucleotides,
also regulate transcriptional, post-transcriptional and epigenetic gene expression modula-
tion [182]. In contrast to ctDNA, miRNAs and IncRNAs are relatively stable, because they
are predominantly secreted in vesicles, or in complex with other proteins [182–186].

Identification of miRNAs and lncRNAs can provide valuable information in diagnosis
and prognosis and offers predictive value in melanoma [187]. It seems that their use is limited
due to low specificity and difficulty in attributing whether an increase in levels is due to cancer
or due to other conditions, such as inflammation [188]. However, in the era of personalised
medicine, the relationship between aberrant miRNA profile and response to therapeutic
regimens should be further evaluated. Therapeutic targeting of miRNAs can impact the
natural history of melanoma by enhancing sensitivity to both standard therapies and immune
checkpoint inhibitors [189]. In particular, elevated levels of miRNA-221 have been identified
in early melanomas, compared to healthy individuals. Increased levels were also linked
to increased stage of disease [190]. In a recently published study, circulating miRNA-615–
3p levels were consistently more efficient in detecting melanoma patients who developed
progressive disease whilst treated with immune checkpoint inhibitors, as compared to LDH
levels [191]. A panel of five miRNAs was used to classify primary melanoma patients as low
or high risk of recurrence. In serial testing, dynamic changes reflected tumour burden [192].
Finally, a study demonstrated that specific circulating miRNA signatures may distinguish
melanoma brain metastasis from other types of brain cancer metastases as well as primary
glioblastomas [193]. Several lncRNAs were also found at high levels, including SPRY4-IT1,
BANCR, HOTAIR, UCA1 and MALAT-1 [194]. In particular, levels of UCA1 and MALAT-1
were significantly higher in patients with melanoma compared to controls and were correlated
to the stage of the disease [195]. Finally, the potential of targeting ncRNAs for the development
of novel therapeutic strategies or for the optimization of the efficacy of standard treatments
has been assessed in several studies [196].

DNA markers and molecular liquid biomarkers are listed in Table 2.
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Table 2. DNA Markers and Molecular liquid biomarkers.

Biomarker Correlation Limitation Laboratory
Methodology References

BRAF mutations

superficial spreading subtype, younger patient age, and skin sites without
chronic sun-induced damage

shorter overall survival in patients with stage IV disease and early disease
BRAF inhibitors have promising results

Resistance to BRAF inhibitors Droplet digital PCR, AS-PCR or
ARMS, BEAMing technology [8,92,95,99,102,105]

ctDNA

ctDNA correlates with disease stage
In coexistence with BRAF/NRAS, mutations may predict treatment resistance

LOH of ctDNA correlates with worse prognosis
Easier sampling than tumour specific markers

ctDNA levels vary and are influenced by
many variables Droplet digital PCR, NGS [10,174,176,177,181]

CDKN2A mutations The most common alteration in hereditary melanoma
Associated with more aggressive spreading

Survival rates are not replicated in
different studies Droplet digital PCR, NGS [83,86,96,158]

NRAS mutations
Typically related to UV exposure in older individuals

Mutations may be found in melanocytic and dysplastic naevi
Associated with higher tumour stages

Unclear prognostic value
Effective NRAS inhibitors not

yet developed

Droplet digital PCR, BEAMing
technology [96,104,112,117,118,120]

BAP1 mutations
Often seen in metastatic uveal melanoma

Associated with worse prognosis and risk of metastasis
BAP1-tumour predisposition syndrome

No therapeutic targeting available yet
BAP1 role not fully understood yet Droplet digital PCR, NGS [96,104,132,162,163]

KIT mutations
Mediates cell growh, proliferation, invasion, cell survival

Found in mucosal, skin and acral melanomas
Associated with worse survival

Rare mutations (1–7%)
Awaiting trials with Imatinib

Droplet digital PCR, AS-PCR or
ARMS, BEAMing technology [96,114,150]

GNAQ/GNA11 mutations Can be useful in diagnosing uveal melanoma/ differentiating
May be related to shorter survival

Are rarely found in cutaneous melanoma
Use as a prognostic marker

not established
Bi-PAP [96,134–137]

NF-1 mutations Can be found in desmoplastic and cutaneous melanomas
co-existence of BRAF mutation may increase resistance

Range of mutation presence in DM
varies from 45–93% Droplet digital PCR, NGS [99,140–143]

PI3K/AKT/mTOR
Pathway mutations Regulate critical processes relating to cellular growth and survival mTOR inhibitors have not demonstrated

significant benefit Droplet digital PCR, NGS [146,147,149]

miRNAs and lncRNAs

Diagnostic, prognostic and predictive value in melanoma
Elevated levels of miRNA-221 have been observed in early melanomas

increasing miRNA-221 levels further correlated with increased stage
lncRNAs are upregulated in melanoma compared to normal controls, and
significantly higher at later stage (stage III and IV) compared to early-stage

melanomas (stage I and II)

Not tumor specific and it is difficult to
attribute whether changes in abundance

are due to the cancer or to secondary
conditions such as inflammation

Droplet digital PCR [187–196]

ctDNA: circulating tumor DNA; miRNAs: microRNAs; lncRNAs: long noncoding RNAs; UV: ultraviolet; LOH: loss of heterozygosity; PCR: Polymerase chain reaction; AS-PCR: allele-specific PCR;
ARMS: allele-specific amplification refractory mutation system PCR; BEAMing: bead emulsification amplification and magnetics; NGS: next generation sequencing; Bi-PAP: mutation-specific bidirectional
pyrophosphorolysis-activated polymerization.
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6. Predictive Markers of Response to Immunotherapy

The establishment of predictive biomarkers for checkpoint immunotherapy is hugely
important in the era of personalised medicine.

Direct assessment of PD-L1 expression on tumour cells is a predictive biomarker of
treatment response to anti-PD-1 or anti-PD-L1 therapies. Progression-free survival and
OS are prolonged in PD-L1-positive versus PD-L1-negative patients [197]. However, even
PD-L1-negative patients may obtain clinical benefit from anti-PD-1 or anti-PD-L1 therapies.
Indeed, objective responses in PD-L1-negative patients—usually between 11–20%—have
been reported in the literature, whilst melanoma patients reached an overall response
of 41% with nivolumab monotherapy, and 54% with nivolumab plus ipilimumab in the
CheckMate 067 study [197]. These data demonstrated that the negative predictive value of
anti-PD-1 or anti-PD-L1 therapies is suboptimal (58 vs. 45% for nivolumab and nivolumab
plus ipilimumab, respectively).

The use of mutational or neoantigen burdens has also been studied as a predictive
biomarker in melanoma patients treated with immune checkpoint inhibitors. In a study
of advanced melanoma patients who received CTLA-4 inhibitors (either ipilimumab or
tremilimumab), a mutational load of more than 100 non-synonymous somatic mutations
was associated with long-term clinical benefit [198]. This mutational load cutoff was
characterised by longer OS compared with patients with a lower mutational load. A
similar study of melanoma patients treated with ipilimumab demonstrated that mutational
and neoantigen load (>100 non-synonymous somatic mutations) were correlated with
therapeutic benefit from ipilimumab [199].

Lymphocyte infiltration in tumour biopsy samples has been associated with improved
survival of patients with a range of cancers, including melanoma. The correlation be-
tween tumour-infiltrating lymphocytes and response to pembrolizumab in patients with
melanoma was analysed in the KEYNOTE-001 study [200]. Pre-treatment tumour samples
detected higher CD8+ (but not CD4+) T-cell densities in responding patients than in those
with disease progression. Similarly, an increase in CD8+ T-cell density was also seen in
serial biopsy samples of tumours during anti-PD-1 treatment in the responding group,
but not in the disease progression group. However, as baseline CD8+ T-cell density may
overlap between respondents and those with disease progression, the identification of an
absolute cutoff as a clinically useful predictive biomarker is an unmet need.

7. Conclusions

The identification and the study of biomarkers in melanoma is an ever-expanding
field, with promising recent findings. The use of LDH and S100 β in prognostication and
monitoring of disease is well established. Other serum biomarkers, such as MIA and VEGF,
have been associated with advanced stages of disease and worse prognosis, but their use is
limited due to low specificity. On the other hand, DNA markers, such as BRAF and NRAS,
provide well-established associations with patient selection and predict response to target
therapy. ctDNA and miRNAs or lncRNAs are providing an effective insight into tumours’
genetics and helping with understanding of the pathophysiology of the disease, and hold
the great advantage of allowing serial, non-invasive sampling for disease monitoring.
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