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Abstract

Habitat loss and fragmentation are two important drivers of biodiversity decline. Understand-

ing how species respond to landscape composition and configuration in dynamic land-

scapes is of great importance for informing the conservation and management of grassland

species. With limited conservation resources, prescribed management targeted at the

appropriate landscape process is necessary for the effective management of species. We

used pheasants (Phasianus colchicus) across South Dakota, USA as a model species to

identify environmental factors driving spatiotemporal variation in population productivity.

Using an emerging Hotspot analysis, we analyzed annual count data from 105 fixed pheas-

ant brood routes over a 24-year period to identify high (HotSpot) and low (ColdSpot) pheas-

ant population productivity areas. We then applied classification and regression tree

modeling to evaluate landscape attributes associated with pheasant productivity among

spatial scales (500 m and 1000 m). We found that the amount of grassland at a local spatial

scale was the primary factor influencing an area being a HotSpot. Our results also demon-

strated non-significant or weak effects of fragmentation per se on pheasant populations.

These findings are in accordance with the habitat amount hypothesis highlighting the impor-

tance of habitat amount in the landscape for maintaining and increasing the pheasant popu-

lation. We, therefore, recommend that managers should focus on increasing the total

habitat area in the landscape and restoring degraded habitats. Our method of identifying

areas of high productivity across the landscape can be applied to other species with count

data.
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Introduction

Habitat loss and fragmentation are two of the greatest threats to wildlife conservation [1,2].

The fragmentation process involves the splitting of natural habitat into smaller, more isolated

patches and is intrinsically coupled with habitat loss [3]. While habitat loss can lead to a decline

in wildlife populations, habitat fragmentation may increase the cost of moving among habitat

patches and therefore reduce the accessibility and suitability of surrounding patches for wild-

life [3]. Habitat loss and fragmentation combined with greater exposure to human land uses

have resulted in widespread declines in biodiversity. These landscape changes have been linked

to negative impacts on populations of fish [4], mammals [5], birds [6,7], insects [8], and plants

[9]. Indeed, one of the key questions in conservation biology is determining the effects of habi-

tat loss versus habitat fragmentation per se [10,11]. This further leads to the debate of conserv-

ing multiple small or fewer large habitat patches [12].

Grasslands are among the most threatened biomes worldwide [13]. In North America,

nearly 98% of the native northern tallgrass prairie has been lost to the cultivation of row crops

and the planting of non-native grasses for livestock production [14]. Numerous species have

suffered severe population declines as a result of the frequency and intensity of landscape

changes. Grassland songbirds are experiencing the steepest population decline of any bird

group [15]. From 1968 to 2008, 37% of grassland obligate bird species experienced a popula-

tion decline [16]. In the United States, South Dakota has experienced a substantial decline in

perennial grassland [17,18]. Between 2006 and 2012 South Dakota lost ~76% of total extant

grassland areas to other land uses [19] which has threatened its grassland species.

The ring-necked pheasant (Phasianus colchicus; hereafter pheasant) is an edge-tolerant spe-

cies that is negatively impacted by the conversion of grassland to cultivation [20,21]. Pheasants

were introduced to the United States in the early 1900s and they soon adapted to not only

coexist but thrive with primitive agriculture [22]. The landscapes at that time were high-quality

pheasant habitats. Relatively primitive agricultural practices created a landscape containing a

diversity of crop types established over a variety of field sizes [22,23]. Abundant weeds in the

crop fields and inefficient harvest of grain leaving waste grains helped provide ideal brood hab-

itat and high-quality winter cover [22]. For the past 30 years, however, cultivation has intensi-

fied leading to a decline in grassland and emergent wetland area or habitat quality [22,23]. In

South Dakota, nearly 58% of grassland loss from 2006–2012 occurred in key pheasant regions

[19], and pheasant populations have been declining since then [22]. For example, annual

brood survey data in South Dakota indicated a nearly 41% decline in pheasant relative abun-

dance from 2008 to 2018 [24], which coincided with a 37% reduction in the area of grasslands

enrolled in the Conservation Reserve Program and a 24% increase in the area of harvestable

corn and soybean [25]. Although introduced, pheasants are economically and socially impor-

tant in South Dakota. According to the South Dakota Department of Game, Fish, and Parks

[26], pheasants are the most sought-after and profitable upland game species, with pheasant

harvest being a multimillion-dollar industry in the state. Pheasant hunting is also an important

social activity that reunites families and friends [26]. A recent analysis suggested that in a single

county in South Dakota, pheasant hunting generated $9.7 million in economic benefit and cre-

ated 111 jobs (Gregory and Mills, unpublished data).

Pheasants are important to the economy and culture of South Dakota [26] and, therefore,

conserving pheasants can protect the habitat for native grassland species. By attracting funding

from individual donors, and wildlife organizations, they act as a surrogate for broader biodi-

versity conservation, especially grassland species. The distribution, abundance, and survival of

this species reflect the quality and conservation status of the grassland it inhabits. Understand-

ing the drivers of recent broad-scale pheasant population declines in South Dakota is an
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important management objective and can provide insights into the sensitivity of a grassland

species to landscape changes. Moreover, the dynamic nature of this agriculturally dominated

landscape provides an opportunity to investigate species-habitat relationships and identify

landscape attributes useful in predicting habitat quality. Furthermore, habitat loss or habitat

fragmentation does not affect all species equally; sensitivity to these processes varies with spe-

cies’ numerous ecological traits. We, therefore, need to understand how the habitat amount

and configurational landscape heterogeneity (connectivity of fragments, number of fragments)

influence this species’ abundance. With limited conservation resources, targeted and pre-

scribed management at the appropriate landscape process at the appropriate spatial scale is

required to optimize conservation efforts. Here, we aim to identify landscape factors, whether

habitat amount or habitat configuration, influencing spatiotemporal variation in pheasant pro-

ductivity across South Dakota.

In this study, we used an emerging HotSpot analysis of annual pheasant brood survey data

to investigate the spatial and temporal drivers of pheasant population dynamics. Specifically,

we evaluated 1) the spatial and temporal variability of high and low pheasant productivity

areas in South Dakota, 2) the spatial context and landscape heterogeneity of high pheasant pro-

ductivity areas to areas under agricultural production, 3) the degree to which high pheasant

productivity areas were correlated to natural land cover, and 4) how the inter-juxtaposition of

agricultural land uses, and natural areas impacted pheasant productivity.

Methods

Study system

South Dakota is part of the prairie potholes ecosystem and is comprised primarily of open

grasslands east of the Missouri River and upland steppe ecotypes in the west. Our study

occurred primarily in eastern South Dakota, which was characterized by tallgrass prairie and

highly fragmented by agriculture [27,28]. Our study system had a mid-continent mid-latitude

temperature and precipitation regime characterized by cold snowy winters and hot dry sum-

mers. The average low temperature for January was ~11˚C, while the average high temperature

for July was ~30˚C. Late springs and early summers experienced moderate rainfall with aver-

age annual precipitation of 508 mm [29]. Cultivated agriculture was the dominant land use

and a key component of the regional economy, accounting for nearly $25.6 billion (~30%) of

South Dakota’s total economy [30].

Pheasant data

We used annual pheasant brood survey data collected from 1993 to 2016 by the South Dakota

Department of Game, Fish, and Parks. Annual pheasant brood surveys included counts of

males, females, and broods observed along 110 fixed 48-km survey routes distributed across

the pheasant range in South Dakota [31]. Routes were surveyed from 25 July to 15 August each

year using standardized methods on mornings when weather conditions were optimal for

detecting pheasants (i.e., clear skies, heavy dew, and light winds). During surveys, one observer

counted the number of pheasants and broods observed within 0.2 km of the roadway while

driving at a speed <48 km/hour [31]. Raw pheasant counts were converted into a phea-

sant�km-1 index of pheasant abundance [24].

We censored 5 routes that were west of the Missouri River where route density was too low

to adequately parameterize the spatial analysis and account for the difference in land cover

(i.e., dominated by mixed-grass prairie) from the tallgrass prairies (Fig 1). Spatial coverage of

the remaining 105 routes (93 located east and 12 southwest of the Missouri River) aligned with
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areas where pheasant populations in South Dakota were concentrated; thus, our sampling

extent included the majority of the pheasant population in South Dakota (Fig 1, [31]).

Land cover data

We used the Cropland Data Layer (CDL) to characterize the land cover for each route [32]. One

drawback to the CDL for South Dakota is that data is not available before 2006 [33]. Therefore,

we confined our analysis of the influence of land cover to the 11-year period from 2006 to 2016.

We reclassified the original 133 CDL land-cover classes into five cover classes: grassland, row

crops, small grains, wetlands, and others. Grass-dominated land cover ranged from native prairie

to anthropogenically altered grasslands such as hay lands and pastures. Because of their spectral

similarity, these different cover types were difficult to resolve in satellite imagery. Agricultural

crops including corn, soybeans, and sorghum were categorized as row crops. Crops including

wheat, barley, and oats were classified as small grains. Woody and herbaceous wetlands were clas-

sified as wetlands. The remaining land-cover types were classified as others [34].

Identifying areas of high, average, and low pheasant productivity

To identify areas as high (HotSpots), average (AverageSpots), and low (ColdSpots) pheasant

productivity, all routes were converted to point features using ArcGIS version 10.6 (ESRI, Inc.,

Redlands, CA, USA) where each point depicted the mid-point of the respective route. We then

applied the Getis-Ord GI� statistic to conduct an independent HotSpot analysis of phea-

sant�km-1 for each year from 1993 to 2016 [35]. We used incremental spatial autocorrelation

Fig 1. Distribution of roadside survey routes used to index the relative abundance of pheasants in South Dakota;

data collected along the 105 survey routes within the highlighted 53 counties were used to assess factors driving

pheasant productivity between 1993–2016.

https://doi.org/10.1371/journal.pone.0274808.g001
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to identify the distance band threshold that exhibited maximum clustering [36]. Once we

determined HotSpots, AverageSpots, and ColdSpots for each year of the 24-year study period,

we created separate point feature files for significant HotSpots and ColdSpots stratified by

year, and then bound those areas using a minimum convex polygon (MCP). This yielded a set

of 24 HotSpot raster images and a set of 24 ColdSpot raster images, one for each year. In each

of these HotSpot or ColdSpot MCPs, we coded 1 for those areas that were HotSpots or Cold-

Spots, respectively, and 0 for all others. We then overlaid the HotSpot or ColdSpot MCP layers

and summed the MCPs to calculate the number of times over our 24-year study period that an

area was a HotSpot or ColdSpot. Similarly, we calculated areas that were AverageSpots. To

characterize the trend in pheasant population across these different levels of pheasant produc-

tivity, we then calculated average pheasant�km-1 along routes identified as HotSpots, Cold-

Spots, and AverageSpots.

Determination of landscape characteristics

We computed landscape metrics associated with our reclassified land-cover data for each

route classified as either a HotSpot or as a ColdSpot annually for the 11-year period from 2006

to 2016 with FRAGSTATS version 4.2 [37]. All landscape metrics from FRAGSTATS were

computed at two spatial neighborhoods (500 m and 1000 m). This process involved the crea-

tion of 500-m and 1000-m buffers around each route (1 and 2 times the average pheasant

home range size during nesting and brooding seasons, respectively; [38,39]). We chose routes,

instead of points, for creating buffers because landscape characteristics across these 48-km

routes describe an area being a HotSpot or a ColdSpot and allow us to link spatial land cover

land use attributes associated with that area which may influence that area being a HotSpot or

ColdSpot. Reclassified land cover was then extracted for each of the buffered routes and used

to calculate landscape metrics that we predicted would be important factors influencing pheas-

ant HotSpots based on the ecology of gallinaceous birds. This included composition, contigu-

ity, and fragmentation metrics of each land-cover class for each spatial neighborhood [40–42].

Composition metrics included the proportion of area of each land-cover type in each buffer.

The contiguity of land cover was measured using the contiguity index, which represented the

size and connectivity of patches of a given land-cover type on a scale of 0 (small patches) to 1

(large and contiguous patches). Fragmentation was measured using the number of patches,

which summed the number of patches of each land-cover type at each scale. Increasing frag-

mentation of a land-cover type represented an increase in the number of patches. We also

assumed that pheasant HotSpots would be impacted by the total number of patches in the

landscape, and contiguity of the landscape at both 500-m and 1000-m scales.

Data analysis

The analysis of pheasant HotSpots was conducted using a classification and regression tree

(CART, [43]) approach. CART is a nonparametric machine learning algorithm that makes no

assumptions about relationships between features and is robust to correlated variables [44].

The CART analysis was conducted using the rpart package in the R programming language

[45]. To begin the CART analysis, simple random sampling without replacement was used to

partition the full data set into a training dataset containing 80% of the observations and a test-

ing and validation data set containing 20% of the observations. A CART was then parameter-

ized with all independent variables at both 500-m and 1000-m scales. The CART was applied

first on the training data set and then on the test data set to assess the model generalizability

and to evaluate any over-fitting of the model to the training sample. A confusion error matrix

was then used to further evaluate model performance [46].

PLOS ONE Emerging HotSpot analysis reveals the importance of habitat amount for a grassland bird in South Dakota

PLOS ONE | https://doi.org/10.1371/journal.pone.0274808 September 26, 2022 5 / 15

https://doi.org/10.1371/journal.pone.0274808


Results

Of 105 brood routes included in the analysis, 54 routes contributed towards the creation of

HotSpots in�1 year, 36 routes were part of ColdSpots in�1 year, and 99 routes were part of

AverageSpots in�1 year. Over the 24-year period, the average count of pheasant�km-1 was

4.60 ± 0.41 in the study area, 3.94 ± 0.89 for AverageSpots, 9.26 ± 0.74 for HotSpots, and

1.61 ± 0.16 for ColdSpots (Fig 2A). During this period study area, and AverageSpots demon-

strated a positive population trend (0.04 ± 0.06 pheasant�km-1�year-1 and 0.9 ± 0.75 phea-

sant�km-1�year-1, respectively; Fig 3) while HotSpots and ColdSpots exhibited a negative trend

(−0.06 ± 0.11 pheasant�km-1�year-1 and −0.79 ± 0.02 pheasant�km-1�year-1, respectively; Fig

3). Although the trend in pheasant indices over the 24-year period was positive (0.04 ± 0.06

pheasant�km-1�year-1), there was high variation in the number of pheasants per km suggesting

that the population may have been relatively stable across the longer 24-year period. During

the course of 11-year period, the average count of pheasant�km-1 was 4.89 ± 0.68 in the study

area, 4.59 ± 0.99 for AverageSpots, 9.22 ± 0.32 for HotSpots, and 1.69 ± 0.18 for ColdSpots (Fig

2B). This 11-year period showed negative population trend across all levels of pheasant pro-

ductivity (study area: −0.59 ± 0.13 pheasant�km-1�year-1, AverageSpots: −2.81 ± 0.49 phea-

sant�km-1�year-1, HotSpots: −0.39 ± 0.37 pheasant�km-1�year-1, and ColdSpots: −1.27 ± 0.29

pheasants�km-1�yr-1; Fig 3).

The total area that was a HotSpot for some period of time during the 11-year study period

was 47,643 km2 (~38% of the total study area). This included a core area of 3,512 km2 that was

consistently a HotSpot for all 11 years (Fig 4A). ColdSpots occupied a total of 20,846 km2

(~17% of the study area), of which, there was a 454 km2 core that was a ColdSpot for 9 of 11

years (Fig 4B. The maximum number of years that an area was a ColdSpot was 9 of 11 years as

there was no overlap of ColdSpots from 2015 or 2016. HotSpots over the 24-year period had

an additional area of 7,034 km2 compared to HotSpots over the 11-year period. Similarly,

ColdSpots for the 24-year period had an additional area of 3,938 km2 compared to ColdSpots

for the 11-year period (S1 File).

Fig 2. Boxplots of pheasants�km-1 over a) 24-year and b) 11-year period across the study area (SA), HotSpot (HS),

ColdSpot (CS) and AverageSpot (AS).

https://doi.org/10.1371/journal.pone.0274808.g002
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We observed a decline in areas under AverageSpots over both the 11-year (−0.01 km2�yr-1

± 0.05) period and the 24-year (−0.02 km2�yr-1 ± 0.01) period (Fig 5). ColdSpots showed a

decreasing trend (−0.03 km2�yr-1 ± 0.03) over the 11-year period and an increasing trend (0.05

km2�yr-1 ± 0.03) over the 24-year period (Fig 5). Areas under HotSpots demonstrated a posi-

tive trend over both the 11-year (0.02 km2�yr-1 ± 0.02) and 24-year (0.09 km2�yr-1 ± 0.03)

period (Fig 5).

Environmental drivers of HotSpots

The results of the CART analysis showed grassland area at a 500-m scale to be the only variable

influencing HotSpots. HotSpots were predicted for sites with> 33% of the area under grass-

land at a 500-m scale (Fig 6). The result from confusion matrix was 0.75 which suggests that

Fig 3. Trend in pheasants�km-1 over 24-year and 11-year (after vertical line) period across the study area (SA),

HotSpot (HS), ColdSpot (CS) and AverageSpot (AS).

https://doi.org/10.1371/journal.pone.0274808.g003

Fig 4. Areas under a) HotSpot and b) ColdSpot over an 11-year (2006–2016) period across the study area in South

Dakota, USA. The legend shows the number of years an area was either a HotSpot or a ColdSpot.

https://doi.org/10.1371/journal.pone.0274808.g004
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Fig 5. Trend in area (km2) under different levels of pheasant productivity over 24-year and 11-year (vertical line)

period across HotSpot (HS), ColdSpot (CS) and AverageSpot (AS).

https://doi.org/10.1371/journal.pone.0274808.g005

Fig 6. Classification tree model of the influence of landscape attributes on pheasant HotSpots (HS) and Coldspots

(CS) at different spatial scales (500 m and 1000 m).

https://doi.org/10.1371/journal.pone.0274808.g006
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the model was able to correctly classify a site as either a HotSpot or ColdSpot 75% of the time

[47].

Discussion

Over the 24-year period, pheasant populations in South Dakota have shown a positive popula-

tion trend, however, during the latter decade, pheasant populations across South Dakota have

declined. When we consider spatial variation in pheasant productivity, we observed high rates

of decline across HotSpots, ColdSpots, and AverageSpots over the latter 11-year period. We

anticipated that HotSpots would occur in areas of high-quality habitat and would support posi-

tive pheasant population trajectories [48,49]. Rather, HotSpots also contained declining pheas-

ant populations, albeit at a slower rate than was observed for ColdSpots and Average Spots,

suggesting HotSpots had relatively higher suitability for pheasant populations. One potential

explanation is that land-use changes over the past decade have incurred an extinction debt

upon pheasants and the pheasant population is still responding to the new landscape configu-

ration [50,51]. Similar results have been shown to occur for birds [52], mammals [53], plants

[54], and butterflies [51]. This delay in pheasant response can be explained by habitat fragmen-

tation, and habitat loss, both of which degrade habitat quality and therefore affect breeding

success, recruitment, and survival [55]. This result could also be attributed to an increase in

predator populations in fragmented landscapes [55] which could further negatively impact the

pheasant population.

We observed an increase in the HotSpot area with a simultaneous decrease in pheasant

abundance and an overall lowering of pheasant numbers required to be a HotSpot over years.

This suggests that even though we observed an expansion of the HotSpot area across South

Dakota, the overall quality of these Hotspots was declining to be more similar to AverageSpots

or ColdSpots. We hypothesize that this could also be a response to increased habitat fragmen-

tation restricting access to resources below a level suitable to sustain pheasant viability [54–

56]. Fragmentation may also enhance predation pressure in landscapes by increasing predator

abundance and inducing edge effects [57,58]. This further highlights the importance of identi-

fying patches for prioritization in habitat management to deal with a potential extinction debt

and avoid future population decline [54,59,60].

Apart from a mosaic of habitat that is necessary to fulfill the life stage requirements for

pheasants, pheasant populations are significantly impacted by harsh weather conditions

[20,26]. For example, drought is known to limit resources (e.g., concealment and food), which

could necessitate increased movements and decreased rates of pheasant survival and reproduc-

tion [61], and harsh winter conditions (e.g., high snow depth) which can have severe negative

impacts on pheasant survival [62]. The summer of 2012 was one of the harshest droughts in

South Dakota history [29]. When coupled with a harsh winter numerous early season blizzards

in 2013 [29], 2013–2014 was one of the worst pheasant productivity years across the state (Fig

3). To further exacerbate the situation, one of the largest net losses of grassland area to cultiva-

tion occurred from 2012 to 2014 [63]. During this period, we observed that HotSpots exhibited

a significant reduction in grassland area and an increase in fragmentation among grassland

patches (S1 File). The result of this land-use conversion and climatic stressors combined to

result in the greatest per capita decline in pheasant counts observed in HotSpots throughout

our analysis (Fig 3).

Moreover, we note that in many cases it is not a single stressor that pushes a population

past a threshold but a combination of stressors. For example, Sage-grouse (Centrocercus uro-
phasianus) in Wyoming were relatively resistant to West Nile Virus or oil and gas fracking, but

the combination of both stressors resulted in rapid population decline and in some cases
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extirpation [64]. Similarly, it appears that in South Dakota the combination of extreme weather

events and rampant landscape conversion to cultivation is contributing to the observed pheas-

ant decline.

Despite pheasants being classified by some as habitat generalists, due to their distribution

across a wide range of habitats [21,22,26], they are primarily a grassland species and require

large tracts of grassland to successfully fledge offspring, and to support adult survival [38,65].

It was not surprising that area under grassland habitat was the main explanatory variable

behind predicting an area to be a Hotspot at a small spatial scale. The positive relationship

between habitat area and the number of individuals it can support is one of the most important

phenomena in ecology and has been frequently used to describe the effects of area loss on spe-

cies density or their frequency of occurrence [6,66]. Many studies on the impact of fragmented

landscapes have demonstrated strong area effects on species abundances and concluded that

differences in habitat area is a primary factor determining population persistence [67,68].

We did not find any significant relationship between fragmentation per se and pheasant

HotSpots, suggesting that pheasants respond more strongly to habitat loss than to fragmenta-

tion. This could further be explained by the habitat amount hypothesis (HAH), which suggests

that species density increases with the total habitat area in the landscape around sample site

[11]. As such, the HAH implies that habitat fragmentation-configuration of patches in land-

scape-is ultimately non-significant in understanding species density, but they matter only to

the extent that they influence the amount of habitat in the local landscape. Similar results,

favoring HAH over fragmentation, were observed in many other studies [69–71]. Thus, these

results reinforce the HAH and corroborate the idea that fragmentation per se has a weak effect

on the ecological response of pheasants when the habitat amount is controlled. This study,

therefore, helps to inform the debate on the relative importance of habitat amount versus frag-

mentation per se on species abundance [10,72,73]. Our results suggest that conservation efforts

for pheasants should focus on habitat preservation and restoration.

These results further contribute to simplification in decision-making policy related to spe-

cies conservation, since efforts can focus on preventing habitat loss, as well as increasing or

maintaining the total habitat amount in the landscape. We suggest that to improve manage-

ment efficacy and the long-term persistence of populations, managers need to identify ecologi-

cal factors at multiple scales that enhance, facilitate, or constrain populations. We recommend

that managers should focus on preserving and restoring the maximum overall amount of habi-

tat regardless of its configuration. Maintaining habitat amounts by managing habitat patches,

large and small, could enhance the benefits of local management practices for pheasants.

In landscape systems where the majority of the land is privately owned, groups of landown-

ers may be incentivized to coordinate efforts at the landscape scale. This process can be

expanded to include smaller parcels of public land by developing relationships with neighbor-

ing landowners and providing incentives for cooperative conservation agreements among pri-

vate landowners to facilitate public × private landscape conservation cooperatives. For

example, cooperative farming agreements can be utilized whereby private landowners plant

crops in a rotation specified by managers to create a landscape mosaic maximally beneficial to

pheasants; in turn, landowners may receive either direct payments or tax credits for their par-

ticipation and adherence to management planting guidelines. This will help in creating more

habitats for pheasants in the landscape.

We used pheasants as a model organism to demonstrate the usefulness of the emerging

HotSpot analysis for assessing the status of long-monitored species. We demonstrated a novel

approach for identifying high productivity areas and factors influencing these areas for a spe-

cies of management interest at a landscape scale, which could be extended for other species of

management and conservation concern. Our use of an emerging HotSpot analysis is the first
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application of this approach to wildlife count data used to index populations and could be

applied to any count surveys that index population abundance. An important feature of this

analysis is that it produced an index of relative productivity regardless of annual variation in

productivity because even in poor years the highly productive areas were still identified as

being more productive relative to other areas of the landscape. Consequently, this analysis

identified regions that were relatively more or less productive regardless of annual population

performance. This is an important attribute of this analysis as other species of gallinaceous

birds have been shown to have high periodicity in annual count data and to respond quickly to

environmental conditions [74,75]. Our CART analysis approach also provided a framework

for estimating the thresholds of important land-cover types and landscape metrics necessary

for sites to be a HotSpot.
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