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SUMMARY
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus dis-
ease 2019 (COVID-19) pandemic. Understanding of the RNA virus and its interactions with host proteins
could improve therapeutic interventions for COVID-19. By using icSHAPE, we determined the structural land-
scape of SARS-CoV-2 RNA in infected human cells and from refolded RNAs, as well as the regulatory
untranslated regions of SARS-CoV-2 and six other coronaviruses. We validated several structural elements
predicted in silico and discovered structural features that affect the translation and abundance of subge-
nomic viral RNAs in cells. The structural data informed a deep-learning tool to predict 42 host proteins
that bind to SARS-CoV-2 RNA. Strikingly, antisense oligonucleotides targeting the structural elements and
FDA-approved drugs inhibiting the SARS-CoV-2 RNA binding proteins dramatically reduced SARS-CoV-2
infection in cells derived from human liver and lung tumors. Our findings thus shed light on coronavirus
and reveal multiple candidate therapeutics for COVID-19 treatment.
INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by a coronavirus

named severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), has spread globally and devastated public health and

economies, with more than 96 million people infected and 2

million deceased to date (Dong et al., 2020; Perlman, 2020; Wu

et al., 2020). Although huge global efforts have been devoted

to understanding and fighting SARS-CoV-2, including extensive

molecular virology studies examining the overall viral particle

and viral protein structures (Gao et al., 2020; Klein et al., 2020;

Lan et al., 2020; Walls et al., 2020; Yan et al., 2020), transcrip-

tome architectures (Kim et al., 2020), and host cell-viral interac-

tomes (Gordon et al., 2020), as well as mechanistic studies of the

virus infection process and antiviral immune responses (Hoff-

mann et al., 2020; Ni et al., 2020; Walls et al., 2020), novel in-
sights into viral mechanisms are expected to yield new, effective

antiviral treatments.

SARS-CoV-2 is an RNA virus of the Coronaviridae family,

which also includes the SARS-CoV virus that caused the SARS

outbreak in 2003 (Peiris et al., 2003) and the Middle East respira-

tory syndrome coronavirus (MERS-CoV) that caused the MERS

outbreak in 2012 (Zaki et al., 2012). The genome of SARS-

CoV-2 is an approximately 30-kb, single-stranded, positive-

sense RNA that includes a 50 cap structure and a 30 poly(A) tail.
After cell entry, the viral genome is translated into proteins and

also serves as the template for replication and transcription. Dur-

ing translation, SARS-CoV-2 produces nonstructural proteins

(nsps) from two open reading frames (ORF1a and ORF1b) and

a number of structural proteins from subgenomic viral RNAs.

Generation of minus-strand RNA by the nsp12 protein (an

RNA-dependent RNA polymerase, RdRP) enables synthesis of
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the plus-strand genomic RNA and of subgenomic RNAs. The

RNA comprising the SARS-CoV-2 genome is packaged by

structural proteins encoded by subgenomic RNAs.

It is notable that most molecular virology studies of SARS-

CoV-2 (and indeed studies of most other viruses) have focused

on viral proteins. For example, structural determination of the

receptor-binding domain of the spike protein of SARS-CoV-2

bound to the cell receptor ACE2 provided atomic details on

the initial step of infection (Lan et al., 2020; Walls et al., 2020;

Yan et al., 2020). The identification of SARS-CoV-2 protein-hu-

man protein interactions revealed how SARS-CoV-2 reshapes

cellular pathways and uncovered druggable host factors tar-

geted by FDA-approved drugs and small compounds (Gordon

et al., 2020). Tracking and analysis of changes in the key

proteins of SARS-CoV-2 discovered an important mutation

that is associated with increased transmission (Korber

et al., 2020). These studies have been valuable for revealing

mechanistic insights to deepen understanding of molecular

virology and epidemiology and to aid development of antiviral

therapeutics.

Nevertheless, SARS-CoV-2 is an RNA virus and the RNA

genome itself is a central regulatory hub that controls and en-

ables its function. RNA molecules fold into complex, higher-or-

der structures that are integral to their cellular functions (Brion

and Westhof, 1997; Piao et al., 2017; Ren et al., 2017; Yang

et al., 2018). Many RNA structural elements have also been iden-

tified in viruses. For instance, flaviviruses display intramolecular

RNA-RNA interactions between the 50 and the 30 untranslated re-

gions (UTRs) that promote genome circularization and help to

coordinate replication (de Borba et al., 2015; Nicholson and

White, 2014); the structure of the internal ribosome entry site in

50UTR of hepatitis C virus (HCV) is crucial for translation (Fraser

and Doudna, 2007; Kieft, 2008), and themulti-pseudoknot struc-

tures in the 30UTR of ZIKV and other flaviviruses have been

shown to stall the RNA exonuclease Xrn1, thereby giving rise

to subgenomic flavivirus RNAs that help the virus evade cellular

antiviral processes (Akiyama et al., 2016; Filomatori et al., 2017).

However, despite functional characterization of several RNA

structural elements of SARS (Robertson et al., 2005), and theo-

retical predictions recently available along with the sequences

of SARS-CoV-2 (Andrews et al., 2020; Rangan et al., 2020), it

is clear that a more comprehensive analysis of the structure of

the SARS-CoV-2 RNA genome as it exists in infected cells is

essential to comprehensively understand viral infection and

treatment strategies.

Of particular interest, a recent study found that a SARS-CoV-2

variant with a glycine at the residue 614 of the spike protein could

confer a fitness advantage; this variant has become the domi-

nant pandemic form of the virus (Korber et al., 2020). This amino

acid substationwas postulated to increase transmission rates by

facilitating cell entry or reducing the immune response. Interest-

ingly, this variant is almost invariably accompanied by a C241T

mutation in the SARS-CoV-2 50UTR. It has been suggested

that non-coding and synonymous mutations could affect the

infectivity of Zika virus through perturbations to RNA structure

(Li et al., 2018). Structure differences between distinct SARS-

CoV-2 strains could also contribute to their different infectivity

and transmission rates.
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More importantly, previous studies of other RNA viruses have

identified numerous host RNA binding proteins (RBPs) that regu-

late the viral infection cycle (Li and Nagy, 2011; Ooi et al., 2019;

Ramanathan et al., 2018), but this information is lacking for

SARS-CoV-2. Our group recently demonstrated that RNA struc-

ture data can be assessedwith cutting-edge deep-learning tech-

niques to accurately predict in vivo RBP-RNA bindings, with a

neural network model that integrates in vivo RBP binding and

RNA features in matched cells (Sun et al., 2021). Given the cen-

trality of such interactions to understanding how viruses engage

with their host cells, a large-scale survey and/or prediction to

determine which host RBPs interact with SARS-CoV-2 genomic

RNAs during infection would provide an extremely rich resource

for molecular insights.

Here, we investigated the in vivo and in vitro RNA secondary

structures of SARS-CoV-2, as well as the structures of the

UTRs of six related coronaviruses by using a high-throughput

technology known as in vivo click selective 2-hydroxyl acylation

and profiling experiment (icSHAPE) (Spitale et al., 2015). Based

on the in vivo structural data, we used our deep-learning tool

to accurately predict 42 functionally related host proteins that

bind to the UTRs of the SARS-CoV-2 RNA genome (Sun et al.,

2021). We subsequently validated the physical and functional in-

teractions of several proteins predicted to bind viral RNA. By us-

ing an innovative SARS-CoV-2 cell infection system and infec-

tion assays with the bona fide SARS-CoV-2 virus, we validated

that several of the conserved RNA structural elements do

contribute to viral infection. Also, we found that some of these

host proteins are vulnerable drug targets; their chemical inhibi-

tion with repurposed FDA-approved drugs led to a significant

decrease in SARS-CoV-2 infection of cells.

RESULTS

icSHAPE-based determination of the SARS-CoV-2 RNA
genome structural landscape
To delineate the genome-wide structure of SARS-CoV-2, we

performed icSHAPE technology (Figure 1; STAR methods) (Spi-

tale et al., 2015). The icSHAPE assay uses an RNA structure

probing reagent NAI-N3 that selectively modifies the 20-OH of

single-stranded nucleotides. The modification blocks reverse

transcriptase (RT), thus enabling the detection of single-

stranded nucleotides by reverse transcription followed by deep

sequencing and bioinformatics analysis.

Briefly, we infected the human liver cancer cell line Huh7.5.1

with SARS-CoV-2 and treated infected cells with NAI-N3. NAI-N3

is cell permeable andallows thedetermination of in vivo structures

of the viral RNA genome (and the host cell transcriptome) (Fig-

ure 1A). Finally, we obtained an icSHAPE reactivity score between

0 and 1 for each nucleotide, with a higher score indicating that a

nucleotide is more likely single stranded. Based on mapping of

the single-stranded nucleotides, icSHAPE analysis thus enables

elucidation of the structural landscape of all RNAs in vivo. In addi-

tion, we treated purified and refolded total RNA from infected cells

withNAI-N3 toobtain the in vitrostructureof theSARS-CoV-2RNA

genome (Figure 1B). We also used icSHAPE to determine the

structure of in vitro transcribed and refolded untranslated regions

from seven different coronaviruses, including the reference
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Figure 1. icSHAPE-based analysis of the RNA genome structure of SARS-CoV-2 and six other coronaviruses

(A) Schematic illustrating use of icSHAPE for in vivo studies of the SARS-CoV-2 RNA genome structure. We infected Huh7.5.1 cells with SARS-CoV-2, treated

these cells with the RNA structure probing reagent NAI-N3, and then performed icSHAPE experiments to characterize the in vivo SARS-CoV-2 RNA genome

structure in host cells.

(B) Schematic for in vitro structural analysis of the SARS-CoV-2 RNA genome purified from infected cells. SARS-CoV-2 RNA was purified from infected Huh7.5.1

cells, followed by in vitro refolding, NAI-N3 modification, and icSHAPE experiments.

(C) Schematic for the structural characterization of in vitro transcribed viral RNAUTRswithin SARS-CoV-2 RNA and six additional coronaviruses (e.g., SARS-CoV,

MERS-CoV, etc.).

(D) The icSHAPE RNA structural data informed multiple downstream analyses (including construction of an in vivo SARS-CoV-2 RNA genome structural model),

identification of viral structural elements and conserved structures in different subfamilies of coronavirus, prediction of viral RNA-host protein interactions, and

drug screens for potential COVID-19 therapeutics.
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SARS-CoV-2 and a mutant (Figure 1C). The icSHAPE structure

data informed our downstream analyses (Figure 1D).

For the in vivo icSHAPE structural map of the SARS-CoV-2

RNA genome, we obtained an average of about 150million reads

for each library replicate (Table S1). Underscoring the very high

quality of our sequencing data, we found that the inter-replicate

Pearson correlation coefficient values are higher than 0.98 for

comparison of RNA expression (RPKM) levels of the host tran-

scriptome (Figure S1A); the correlation of the RT-stop caused

by NAI-N3 modifications on the viral RNA genome exceeded

0.99 (Figure S1B). Finally, we obtained icSHAPE scores for

more than 99.88% of the nucleotides for in vivo SARS-CoV-2

RNA genome structure by using icSHAPE-pipe (Li et al., 2020)

(Figures 2A and 2B; Table S2).

To assess the accuracy of our in vivo structure, we calculated

an area under the receiver operating characteristic curve (AUC)

to quantitatively evaluate the predictive performance of icSHAPE
scores for the structuremodels by using a previously established

method (Burkhardt et al., 2017; Zubradt et al., 2017) (STAR

methods). We first compared the structural data we obtained

for 18S rRNA, 28S rRNA, and the signal recognition particle

(SRP) RNA in Huh7.5.1 cells with well-known reference struc-

tures (Andronescu et al., 2008; Bernier et al., 2014). We observed

high AUCs for these structures (AUC = 0.813 for 18SrRNA,

AUC = 0.804 for 28S rRNA, and AUC = 0.730 for SRP RNA; Fig-

ure S1C), indicating that the icSHAPE scores are consistent with

the reference structures.

We also compared our structural data with another extensively

studied coronavirus, mouse hepatitis virus (MHV), which has a

SHAPE reactivity score-directed RNA structural model for its

50UTR region (Yang et al., 2015). The two structural models

were very similar, with the exception that MHV has apparently

lost the SL3 elements. Further, we compared the icSHAPE

scores of viral RNAs with the very recently published theoretical
Cell 184, 1865–1883, April 1, 2021 1867
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Figure 2. Structural overview of the SARS-CoV-2 RNA genome

(A) Scale marker for the 30-kb SARS-CoV-2 RNA genome (top) and a genic model showing the known organization of the genome into the 50 UTR, the two known

ORFs (ORF1a and ORF1b), nine major subgenomic RNAs, and the 30 UTR (bottom).

(B) Top track: Normalized icSHAPE reactivity scores across thewhole SARS-CoV-2 genome based on in vivo data, shown relative to the global median value, with

higher values corresponding to more flexible nucleotides. Blue represents a nucleotide more likely to be base paired, whereas red represents a nucleotide more

likely to be single-stranded. The normalized scores have been smoothed using a 30-nt window size. Middle track: Normalized genome-wide icSHAPE reactivity

scores for the SARS-CoV-2 genome based on the in vitro refolding data. Bottom tracks: in vivo and in vitro icSHAPE reactivity score differences (in vivo – in vitro) of

the 50UTR, an example ORF1ab region, and the 30UTR. Significant regions are highlighted with red boxes.

(C) RNA structure models of the SARS-CoV-2 50-UTR (left) and 30-UTR (right) (both with flanking regions), constructed with the RNAstructure program using the

icSHAPE reactivity scores as constraints. Nucleotides are colored by icSHAPE reactivity scores, with red and yellow colors indicating reactive nucleotides. Blue

bars show the probability of base pairing. Nucleotideswith a color background were predicted as co-variant base pairs. The red dashed boxes label the structural

regions with differences in comparison with Rangan’s structural models (Rangan et al., 2020).

See also Figures S1 and S2; Tables S1 and S2.
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models of the secondary RNA structures of the SARS-CoV-2

50UTR and 30UTR (Rangan et al., 2020). We observed a high

AUC (AUC = 0.854) for the 50UTR but a relatively low AUC for

the 30UTR (AUC = 0.692). The low AUC could be explained by

the dynamic structure of the 30UTR in cells, for example, the

alternative conformations between the extended bifurcated

stem-loop (BSL) conformer and the P1Pk pseudoknot in Ran-

gan’s model (Rangan et al., 2020).

Next we built the 50UTR and 30UTR structure models with RNA

structure modeling software tools (here we used RNAstructure)

(Reuter and Mathews, 2010), with icSHAPE scores as con-
1868 Cell 184, 1865–1883, April 1, 2021
straints (Figure 2C; STAR methods); such methods have been

extensively used and validated by other groups and ours in

RNA structural studies including viral RNA structures (Li et al.,

2018; Pirakitikulr et al., 2016;Watts et al., 2009) (STARmethods).

Attesting to the quality of the map generated from our in vivo

data, the SARS-CoV-2 models strongly agreed with those theo-

retical models (Figures S2A and S2B), including Stem-loop 1

(SL1), Stem-loop 2 (SL2), Stem-loop 3 (SL3), Stem-loop 4

(SL4), and Stem-loop 5 (SL5) within the 50UTR. To quantitatively

compare the similarity between our model with Rangan’s model,

we calculated both sensitivity values and positive predictive



(legend on next page)
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value (PPV) usingRangan’smodel as the reference (Deigan et al.,

2009) (STAR methods). We observed very high sensitivities and

PPV scores (sensitivity 0.945/0.913 and PPV 1.0/0.824 for the

50UTR and 30UTR, respectively), suggesting very high agreement

between the two models.

We also observed small differences between our model and

the theoretical model presented in Rangan et al. (shown in red

dashed-line boxes; Figures 2C, S2A, and S2B). For instance,

our in vivo structural data suggested that the region downstream

of SL4 within the 50UTR is single stranded, whereas it forms a

short SL in the Rangan model. Another example is that we de-

tected a loop structure rather than a pseudoknot in the 30UTR
of the SARS-CoV-2 genome. This alternative structural interpre-

tation is supported by the high icSHAPE score constraint; either

this pseudoknot is not stable or does not exist. These findings

highlight that in vivo structural information is critical for building

of physiologically relevant structural models.

We also used icSHAPE to conduct in vitro structural analysis of

the SARS-CoV-2 RNA genome (Figure 2B, middle track). SARS-

CoV-2 RNA was purified from infected Huh7.5.1 cells, refolded

in vitro, then modified with NAI-N3, with the remaining steps

and data analysis the same as in vivo icSHAPE. We searched

for structurally variable regions between the in vivo and in vitro

data by considering replicate variations and by using both a

binomial test and a permutation test (STAR methods). Similar

to previous studies (Spitale et al., 2015; Sun et al., 2019), our

comparative analysis of the in vivo and in vitro structure probing

data revealed many common stable structures but also indi-

cated substantial differences (Figure 2B, compare top and mid-

dle tracks; the zoom-in views of the in vivo and in vitro structural

differences of the UTRs are in the bottom track), with a 0.58

Pearson correlation coefficient between the in vitro and in vivo

structural profiles (Figure S2C). In total, 371 structurally variable

regions were defined at the whole-genome level (Table S3).

These structurally variable regions could contain many func-

tional regions. For example, structurally variable regions within

the Xist lncRNA structure are known hub regions for protein bind-

ing (Ariumi et al., 2011). The SARS-CoV-2 RNA genome ap-

peared to be more single stranded in vivo than in vitro (Fig-

ure S2D), consistent with previous studies of other viral RNA

genome structure (Simon et al., 2019). Overall, these agreements

and differences between the in vivo and theoretical and in vitro

data suggest that, although in general there are many stable

structural elements throughout the RNA, the cellular environ-

ment and/or co-transcriptional folding can affect the overall

structure of the SARS-CoV-2 RNA genome.

In vivo structural model of the whole SARS-CoV-2 RNA
genome
Next, we extended the approach of RNA structure modeling with

in vivo icSHAPE scores as constraints to build in vivo structural

models for the whole SARS-CoV-2 RNA genome (STAR
Figure 3. Schematic of the SARS-CoV-2 RNA structure (1–394 nt and 2

Nucleotides are colored with icSHAPE reactivity scores; blue bars show the prob

co-variant base pairs. The boxplot insets at the bottom show the distributions of i

CoV-2 RNA genome is shown in Figure S3. The start and stop sites of each ORF

See also Figure S3; Table S3.
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methods). We tested different intercept and slope parameters

for modeling of the SARS-CoV-2 50UTR and 30UTR structures

and then used the parameters that generated the most consis-

tent structure with the Rangan’s and Rfam’s models for

genome-wide modeling (Kalvari et al., 2018a; Rangan et al.,

2020). Because RNA structural modeling is most successful for

small RNA fragments (Li et al., 2018), we used a sliding window

(window = 5,000 nt, step = 1,000 nt) strategy to more accurately

model RNA structures of a limited length; for overlapping

regions, we selected structure models with higher pairing

probabilities.

We assessed co-evolutionary evidence to validate our final

models. We used the Infernal package (Nawrocki and Eddy,

2013b) to search for an alignment homologous sequence and

defined a covariation score to call co-variant pairs from the de-

duplicated coronavirus genomes (Figure S2E; STAR methods)

(Li et al., 2018; Pirakitikulr et al., 2016). In total, we found 170

co-variant pairs, including six within the 50UTR and 12 within

the 30UTR (Figures 3 and S3). The flanking regions of the UTR

also contain many co-variant pairs (two downstream of the

50UTR and eight upstream of the 30UTR flanking), suggesting

these are potential regulatory regions. Interestingly, we observed

another five co-variations within a duplex formed between the

30UTR and ‘‘ORF10’’. ORF10 is a cryptic ORF upstream of the

30UTR that was predicted computationally but lacks empirical

evidence for the protein or the subgenomic RNA (Kim et al.,

2020). Our structural data raised the possibility that this region

is a part of a structure within the 30UTR (Figure 3).

Overall, these results support that our SARS-CoV-2 structural

analysis using icSHAPE constraints yielded a reliable RNA struc-

tural model. This model enabled our identification of candidate

functional structural elements, and it represents a rich resource

to support both basic hypothesis-driven investigations about

host-virus biology and the development of potential antiviral ap-

plications (e.g., antisense oligonucleotide [ASO]- or small inter-

fering RNA [siRNA]-based therapies).

Structural conservation and divergence across the non-
coding regions of the Coronavirinae family
The conservation of an RNA structure across evolution suggests

functional importance. To uncover conserved structures within

the non-coding regions in Coronavirinae, we performed ic-

SHAPE analysis of in vitro transcribed and refolded 50UTRs
and 30UTRs from seven different coronavirus genera and line-

ages, including SARS-CoV-2 (Figure 4A; Table S2; STAR

methods).

In particular, our comparative structural analyses included a

SARS-CoV-2 mutant containing a C241T mutation in the

50UTR, which is accompanied by the glycine mutation at the res-

idue 614 found in the dominant pandemic form (Korber et al.,

2020). We observed increased flexibility around this position

(Figure 4B). Remarkably, this structure change will on the one
1,473–29,876 nt)

ability of base pairing. Nucleotides with a color background were predicted as

cSHAPE reactivity scores. Note that a full-length structure model of the SARS-

are labeled with green and yellow colors.
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hand result in the loss of a highly stable UUCG tetraloop (Ennifar

et al., 2000; Thapar et al., 2014) and on the other hand create a

single-stranded U-rich sequence (Schnell et al., 2012).

Across all of the untranslated regions we examined, the

icSHAPE profile data revealed conserved structures largely

consistent with the phylogeny (Figure 4B), both in 50UTR (Fig-

ure S4) and 30UTR (Figure S5). For example, the 50UTRs for all

of the lineage B group members (SARS-CoV and SARS-CoV-2)

each contained seven SLs in the same order (Figures 4C, top,

and S4A). Remarkably, seven almost-identical SLs, again in

the same order, were present in the lineage C group (MERS-

CoV and BtCoV-HKU5), despite a sequence similarity of only

46.5%�47.3% with lineage B (Figures 4C, middle, and S4A

and S4B). The more distant lineage D betacoronavirus (BtCoV-

HKU9) also contains the same set of seven SLs, although slightly

less similar in size, with only 39.3%�40.7% sequence similarity

to lineage B and C (Figures 4C, bottom, and S4B). Notably,

although some Rfam theoretical models (Kalvari et al., 2018a)

based on co-variation show similar structural architecture (Fig-

ure S4C; SARS-CoV-2), others miss conserved structural ele-

ments (Figure S4D; MERS-CoV and BtCoV-HKU9).

The lineage A betacoronavirus (HCoV-HKU1) and alphacoro-

navirus (HCoV-NL63) had similar levels of sequence similarity

to betacoronaviruses of lineages B, C, and D (37.5%�46.3%

in the 50UTR and 35.0%�45.2% in the 30UTR) (Figures S4B

and S5B). However, these two viruses formed distinct secondary

structures in their 50UTRs, and only SL1 was conserved among

all seven viruses (Figure S4E). This structural divergence sug-

gests that the non-coding regions of these viruses could have

evolved distinct functions and regulations.

In vivo RNA structure predicts translation efficiency and
species abundance of subgenomic RNA
SARS-CoV-2 generates nine major subgenomic viral RNAs that

encode structural proteins, including the spike protein, the enve-

lope protein, the membrane protein, and the nucleocapsid pro-

tein, as well as other accessory proteins (Figure 5A) (Kim et al.,

2020). For context, subgenomic viral RNAs are generated from

minus-strand viral RNA intermediates, which are synthesized by

‘‘discontinuous transcription’’ from the positive-strand genome.

Discontinuous transcription begins at the 30 end of the viral RNA

genome, halts upon reachinga transcription-regulatory sequence

in the ‘‘body’’ (TRS-B), and resumes upon switching template to

the TRS in the leader (TRS-L), resulting in fusion of the leader to

each ORF for each subgenomic viral RNA (Figure 5A).

A recent study quantified the abundance of the SARS-

CoV-2 subgenomic viral RNA populations based on long-read

sequencing (Kim et al., 2020). We examined these data in the
Figure 4. Comparative analysis reveals structural characteristics and

(A) Phylogenetic diagram showing the evolution of the coronaviridae alpha and b

and colored in red are from the alpha coronavirus subfamily (HCoV-NL63) and d

HKU1), lineage B (SARS-CoV, SARS-CoV-2), lineage C (MERS-CoV, BtCoV-HKU

(B) icSHAPE reactivity scores for the 50-UTRs (with flanking regions) for the se

clustered into the same group. Red stars and dashed lines show the C to T muta

(C) Structural models of the 50-UTRs of SARS-CoV-2,MERS-CoV, and BtCoV-HKU

probability of base pairing. Nucleotides with a color background were predicted

See also Figures S4 and S5; Tables S2 and S4.
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context of our icSHAPE scores and found that the abundance

of a particular subgenomic viral RNA was positively correlated

with the extent of single-stranded regions within its 50 TRS-B re-

gion (Figure 5B, left; r = 0.239, p = 0.035, Spearman correlation;

Figure S5D). Notably, we analyzed the structure relationship with

both the canonical and noncanonical subgenomic viral RNA. To

further pursue this structure-abundance correlation using the

structure of the TRS-L region, we re-examined our icSHAPE

data to identify and exclusively count those reads that (1) cross

a fusion site and (2) specifically map to a confirmed subgenomic

viral RNA (Figure S5E; STARmethods). We found that the TRS-L

sequence adopted different secondary structures in different

subgenomic viral RNAs depending on the flanking sequence

and that the extent of single-stranded RNA in the TRS-L corre-

lated with abundance (Figure 5B, right; r = 0.646, p = 1.645e-6,

Spearman correlation; Figure S5F). For example, the TRS-L is

more single-stranded in the subgenomic ‘‘N’’ RNA than in the

subgenomic ‘‘pp1ab’’ RNA, and the subgenomic N RNA is

more abundant than the subgenomic ‘‘pp1ab’’ RNA (Figure 5C).

These data suggest that the abundance of a specific subge-

nomic viral RNA species could be influenced by its RNA 50

structure.

In addition, we examined our icSHAPE scores of the SARS-

CoV-2 RNA in the context of recently reported translation effi-

ciency (TE) data for the subgenomic viral RNAs (Finkel et al.,

2021). We observed a high Spearman correlation coefficient be-

tween TE and the frequency of single-stranded regions in vivo

(r = 0.762, p = 0.028, Spearman correlation; Figure 5D). These

data suggest that the subgenomic viral RNA structures could

functionally impact translation.
PrismNet accurately predicts host proteins that bind to
the SARS-CoV-2 RNA genome based on in vivo RNA
structure using deep learning
Host cell RBPs regulate virus translation, replication, and degra-

dation (Li and Nagy, 2011; Ooi et al., 2019). Deciphering

interactions between RBPs and viral RNA is fundamental for un-

derstanding the infection process and for identifying potential

therapeutic targets. However, insight into RBP-viral RNA interac-

tions is limited, with only few reported for coronavirus (Sola et al.,

2011). We recently developed a deep-learning tool called Prism-

Net (Protein-RNA Interaction by Structure-informed Modeling

using deep neural Network) to accurately predict RBP-RNA in-

teractions based on in vivo RNA structure data (Sun et al.,

2021). Briefly, PrismNet constructs and trains a deep neural

network to model the interactions between an RBP and its

RNA targets by integrating big data from in vivo RBP binding
conservations among 50-UTRs of seven coronaviruses

eta subfamilies. The seven coronaviruses investigated with icSHAPE analysis

ifferent lineages of the beta coronavirus subfamily, including lineage A (HCoV-

5), and lineage D (BtCoV-HKU9).

lected coronaviruses. Viruses with sequence similarity higher than 70% are

tion at 241 nt in SARS-CoV-2.

9. Nucleotides are colored with icSHAPE reactivity scores. Blue bars show the

as co-variant base pairs.
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Figure 5. RNA structure functionally impacts both the generation and translation of SARS-CoV-2 subgenomic RNAs

(A) Schematic illustrating the architecture of SARS-CoV-2 subgenomic RNAs. TRS-L, the leader region of the transcriptional regulation sequence; TRS-B, the

body region of the transcriptional regulation sequence.

(B) KDE plots showing correlations between the detected abundance of a given subgenomic RNA versus its icSHAPE reactivity score, for the specific (left) and

common (right) regions of the 50-UTR of each subgenomic RNA. The Spearman correlation coefficient and two-tailed p values were calculated with the Python

package function scipy.stats.spearmanr. Scatter plots show canonical subgenomic RNAs.

(C) The icSHAPE profiles and structural models of the TRS-L region of the subgenomic RNAs of nucleocapsid (N) and polypeptide 1b (pp1b) predict the relative

abundance of the subgenomic RNAs. RNA structural models were here predicted by using the icSHAPE reactivity score as constraint, as above.

(D) Scatter plot of icSHAPE reactivity scores of the 50UTR and translation efficiency of eight canonical subgenomic RNAs.

See also Figure S6.
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assays and RNA structural probing (e.g., icSHAPE) obtained

from matched cellular conditions.

We applied PrismNet to predict RBP binding on the SARS-

CoV-2 RNA genome and identified 31 and 34 host RBPs that

respectively bind to its 50UTR and 30UTR, totaling 42 proteins
after filtering to ensure that these proteins are expressed in

Huh7.5.1 cells. (Figure 6; Table S4). Several of the predicted pro-

teins have been previously reported to interact with other coro-

naviruses. For example, hnRNPA1 binds to the MHV RNA and

impacts RNA synthesis (Shi et al., 2000), and PTBP1 binds the
Cell 184, 1865–1883, April 1, 2021 1873
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Figure 6. Applying deep learning to the in vivo SARS-CoV-2 RNA structure accurately predicts host proteins that bind to SARS-CoV-2

(A) Schematic for the binding targets within the SARS-CoV-2 RNA. Four RNA structures, including Target-SL1 (in the SL1 region), Target-SL2/3 (in a combined

SL2 and SL3), Target-SL4 (in SL4), and Target-ORF10 (at the start of the ORF10 region), were synthesized for validation experiments (see below).

(B) Left: Saliencymaps from PrismNet showing the predicted binding site of the RBPs hnRNPA1, TIA1, IGF2BP1, and U2AF2, with predicted binding probabilities

shown at the top. Grey bars indicate the range of synthesized RNA fragments. Green rectangles show predicted strong binding sites, and orange rectangles show

relatively weaker binding sites. Right: western blot for RNA pull-down assays using the synthesized RNA fragments (Target-SL1, Target-SL2/3, Target-SL4, and

Target-ORF10).

(C) Top: PrismNet-predicted RBPs in SARS-CoV-2 UTR regions are shown. Blue color shows the overlapped proteins validated by our pull-downMS, green color

shows the overlapped proteins validated by RAP-MS (Schmidt et al., 2020), and red color shows the overlapped proteins validated by ribonucleoprotein capture

(legend continued on next page)
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transmissible gastroenteritis virus (TGEV) RNA and is involved in

viral gene expression (Sola et al., 2011).

We therefore focused on 11 predicted RBPs (hnRNPA1, TIA1,

IGF2BP1, U2AF2, NONO, PTBP1, CAPRIN1, hnRNPK, ILF3,

hnRNPU, and SND1) to validate our prediction data by pull-

down western (STAR methods). We synthesized targets within

SARS-CoV-2 RNA that were predicted to contain binding sites

for these 11 RBPs (Figure 6A; Table S5). We confirmed nine of

the 11 protein-RNA interactions, which correlated well with the

predicted binding scores based on the saliency maps from

PrismNet (Figures 6B–6D and S6A).

We then conducted pull-down mass spectrometry (MS) to

validate the predicted interactions between host RBPs and the

UTRs of SARS-CoV-2 RNA in human A549 lung cells (STAR

methods). Our MS data were of high quality (R = 0.97 between

replicates; Figure S6B); these pull-down experiments can iden-

tify proteins that bind to SARS-CoV-2 RNA directly (RBPs) or

indirectly via protein-protein interactions. Among the RBPs that

we identified, 16 have available PrismNet models built from re-

sults of cross-linking and immunoprecipitation followed by

deep sequencing (CLIP-seq) experiments (Sun et al., 2021).

Strikingly, PrismNet predicted that 11 of these 16 RBPs bind to

SARS-CoV-2 (Figure 6C). These 11 RBPs include proteins that

are known to regulate virus life cycles. For example, IGF2BP1 fa-

cilitates the translation of HCV (Weinlich et al., 2009) and duck

hepatitis A virus (DHAV) (Chen et al., 2019) from the internal ribo-

some entry sites (IRES). In addition, our predicted list shows sig-

nificant overlap with the proteins detected as SARS-CoV-2 inter-

actors by RNA antisense purification (Schmidt et al., 2020) (p =

3.0e-5, one-sided Fisher’s exact test) as well as interactors by

ribonucleoprotein capture (Lee et al., 2020) (p = 1.5e-11, one-

sided Fisher’s exact test).

To verify that RNA structure influences the predicted interac-

tions, we first used an established snap-cooling strategy (Li

et al., 2008b; Liu et al., 2015) to alter RNA structures without

changing the RNA sequence, focusing on the binding between

hnRNPK and the Target-SL1 sequence and between ILF3 and

Target-ORF10 (both are SL structures; Figure 6A). Specifically,

we heated the RNA target molecules at 90�C for 2 min to desta-

bilize the SL RNA structure and then snap cooled them on ice to

maintain the single-stranded conformation (STAR methods). We

found that the binding affinity of both proteins were lower for the

snap-cooled RNA targets than for the folded RNAs (Figure 6D). In
(Lee et al., 2020). p values are calculated with one-sided Fisher’s exact test. Bottom

and ribonucleoprotein capture. Only RBPs with CLIP-seq data are retained in th

(D) Left: Saliency maps from PrismNet showing the predicted binding site of the R

Grey bars indicate the range of synthesized RNA fragments. Right: western blot

unfolded). Snap-cooling was used to unfold RNA structures. The control was a n

(E) Top: Secondary structure model of Target-ORF10. The mutations for disrup

(rescue1 and rescue2) are shown. The free energies were estimatedwith the efn2 p

down assay using the synthesized RNA fragments with mutations to disrupt or r

(F) The yield of the bona fide SARS-CoV-2 with siRNA transfection relative to nega

48h. Data represent the mean ± SEM; n = 3 biological replicates.

(G) The yield of the bona fide SARS-CoV-2 virus with an ASO targeting predict

Huh7.5.1 cells for 24 h, including a ‘‘Scramble’’ control treated with a non-targe

treated with an ASO targeting ORF1ab (without a predicted RBP binding site). D

n.s., not significant. ***p < 0.005, **p < 0.01, and *p < 0.05 using one-way ANOV

See also Table S5.
addition, we perturbed the target RNA structure via mutagen-

esis, focusing on the predicted binding between ILF3 and

Target-ORF10. We designed mutations to disrupt (mut1, mut2)

and complementary mutations to restore (rescue1, rescue2)

the predicted SL structure of Target-ORF10. We found that

mut1 and mut2 had substantially reduced binding to ILF3,

whereas rescue1 and rescue2 restored the binding (Figure 6E).

These results confirm a significant influence of RNA structure

on RBP binding recognition.

We investigated the role of the predicted SARS-CoV-2 RNA-

host RBP interactions by knocking down five of the RBPs

(ILF3, TIA1, SDN1, IGF2BP1, and DDX42) in Huh7.5.1 cells and

examining the impact on viral infection (Table S5). Knockdown

was efficient (except for siTLF3-2) and did not affect cell viability

(Figures S6C–S6E). We observed that efficient depletions of

TIA1, SND1, IGF2BP1, andDDX42 significantly reduced the yield

of SARS-CoV-2 RNA in infected cells (Figure 6F). These findings

suggest that SARS-CoV-2 infection depends on the identified

host RBPs.

We also used ASOs to perturb the predicted interactions be-

tween RBPs and RNA targets. Specifically, we focused on

Target-SL2/3, which binds to TIA1, IGF2BP1, and PTBP1, as well

asTarget-SL4,whichbinds to IGF2BP1andCAPRIN1 (FigureS6F).

We synthesized ASOs with a 20-O-methoxyethyl (20-MOE) and a

phosphorothioate backbone modification to enhance nuclease

resistanceand reducecell toxicitywithout compromising its strong

binding to RNA targets (Van Nostrand et al., 2016; Bennett et al.,

2017; Egli et al., 2005; Table S5). We observed �50% decreases

in SARS-CoV-2 RNA yield in Huh7.5.1 cells transfected with

ASO-SL2/3 and ASO-SL4 in comparison with negative controls

including scramble ASOs (Figure 6G). Notably, neither of the

ASOs results in any significant cell toxicity (Figure S6G). Together,

the data suggest that these sites on SARS-CoV-2 are functionally

impactful. Overall, our analyses emphasize the high accuracy of

thePrismNetpredictions and illustratehowseveral of the identified

hostRBPsbind toSARA-CoV-2RNAandapparently impact theef-

ficiency of viral infectivity.

Identification of ASO and compounds with antiviral
activity targeting conserved RNA structure elements
and predicted RBPs
Drugs targeting the host proteins that bind SARS-CoV-2 RNA

have the potential to affect the viral life cycle and to inform the
: Venn diagrams of PrismNet predicted RBPs in RNA pull-downMS, RAP-MS,

e RNA pull-down MS, RAP-MS, and ribonucleoprotein capture circles.

BPs hnRNPK and ILF3, with predicted binding probabilities shown at the top.

for RNA pull-down assays using the synthesized RNA fragments (folded and

on-specific sequence ‘‘ccaacucuaugucgacugccaacucuaugucgacug’’.

ting the Target-ORF10 structure (mut1, mut2) or rescuing this RNA structure

rogram from theRNAstructure package. Bottom: western blot for the RNApull-

escue the Target-ORF10 RNA structure.

tive control (a non-targeting scramble siRNA) in Huh7.5.1 cells after infection for

ed RBP binding sites Target-SL2/3 and Target-SL4, compared to controls in

ting ASO, a ‘‘Not treated’’ control with no ASO treatment, and a ‘‘NC’’ control

ata represent the mean ± SEM; n = 3 biological replicates.

A and post hoc Student’s t test.
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development of COVID-19 therapies. In addition, ASO-mediated

disruption of essential viral RNA structural elements by ASO

could also attenuate viral infection (Roberts et al., 2020; Spurg-

ers et al., 2008). Pursuing this, we designed ASOs targeting

well-defined SARS-CoV-2 conserved structural elements and

also searched for inhibitors of the RBPs that are predicted

to bind SARS-CoV-2, using databases including ChEMBL,

DrugBank, and DrugCentral.

To assess the potential antiviral effects of ASOs and drugs on

SARS-CoV-2 infection, we developed a cell culture method to

screen for drugs that could inhibit SARS-CoV-2 infection (Fig-

ure 7A). Briefly, we generated a SARS-CoV-2-GFPDN genome

in which the sequence encoding the N protein is replaced with

GFP; this replacement disrupts the packing capacity of the

virus. We then transfected an in vitro-transcribed SARS-CoV-

2-GFPDN RNA molecule into green monkey epithelial Vero cells

that recombinantly stably express the SARS-CoV-2 Nprotein. To

improve the virus packing efficiency at the first translation step,

we also transfected N protein mRNA at the same time. Upon

successfully packaging of the SARS-CoV-2-GFPDN virus in

Vero cells, we infected cells of the human epithelial Caco-2 cells

that were modified to stably express the SARS-CoV-2 N protein

(Ju et al., 2020). We treated the Caco-2 cells with the candidate

ASO or drugs at the same time as viral infection. We assessed

antiviral activity by using fluorescence-activated cell sorting

(FACS) or microscopy to detect the fraction of GFP-posi-

tive cells.

We defined 37 conserved RNA structural elements in the

icSHAPE data-directed structural model (Figure 3; Table S6;

STAR methods) (Li et al., 2018) and designed ASOs to target

three of these structural elements within the ORF1ab and the N
Figure 7. Validation of ASO and compounds with antiviral activity targe

SARS-CoV-2 N trans-complementation system and the bona fide virus

(A) Schematic for a SARS-CoV-2 N trans-complementation system that uses a

replaced with GFP (SARS-CoV-2-GFPDN). SARS-CoV-2-GFPDN only amplifies in

protein. We infected Caco-2 cells with MOI of 0.05. Drugs/compounds were a

accumulation was detected by FACS after 3 days.

(B) Three conserved structural elements within the ORF1ab and N coding regio

icSHAPE reactivity scores, with red and yellow colors indicating reactive nucl

base pairs.

(C and D) The infection ratios of SARS-CoV-2-GFPDN in Caco-2 cells (C) and the

treatment with an ASO targeting conserved structures compared to controls, inc

protein coding region (16,114––16,168 nt) which has a long stem but no conserv

‘‘Not treated’’ control with no ASO treatment. Data represent the mean ± SEM;

*p < 0.05 using one-way ANOVA and post hoc Student’s t test.

(E) Secondary structure model of SE_ORF1ab_6449 with designed mutations. Pu

both the mut-disrupt mutations and the mutations indicated with pink circles.

(F) qPCR quantitation of relative viral RNA level from pellets of Caco-2 cells infecte

Data represent the mean ± SEM; n = 3 biological replicates.

(G) qPCR quantification of viral titers for equal volume supernatant from Huh7.5.1

cells (bottom), infectedwith the bona fide SARS-CoV-2 virus (MOI = 0.05), 48 h pos

curves for infectivity (black) and cell viability (red) are shown. Data are normalized t

n = 3 independent experiments.

(H) CETSA curves for DDX42, with or without Nilotinib (100 mM), measured in cell ly

and the red curve is the negative control. Data represent the mean ± SEM; n = 3

(I) The yield of SARS-CoV-2 in Huh7.5.1 cells after viral infection for 48 h (MOI =

indicated. si-NC, non-targeting scramble siRNA; siDDX42-1 and siDDX42-2, two s

the mean ± SEM; n = 3 biological replicates.

n.s., not significant. ***p < 0.005, **p < 0.01, and *p < 0.05 using one-way ANOV

See also Figure S7; Table S6.
protein coding region (SE_ORF1ab_6449, SE_ORF1ab_9456,

and SE_N_29502) (Figure 7B; Table S5). Note that none of the

structural elements examined here have been reported previ-

ously. We also designed a scramble ASO and an ASO that tar-

gets a non-conserved structure (in ORF1ab protein 16,113––

16,168 nt) as controls. Strikingly, cells treated with each of the

three ASOs (0.3 mM) targeting the conserved structures ex-

hibited a significant decrease in the viral infection ratio in com-

parison with negative controls (Figures 7C and S7A). Similar re-

sults were obtained with bona fide SARS-CoV-2 (Isolate

IPBCAMS-YL01/2020 obtained from a clinical sample at the

Institute of Pathogen Biology, Chinese Academy of Medical Sci-

ences & Peking Union Medical College, Beijing, China), using

qPCR to assess the viral yield in the supernatant (Figure 7D).

Notably, none of the ASOs displayed cytotoxicity in Caco-2 cells

of the SARS-CoV-2 N trans-complementation system or in

Huh7.5.1 cells infected with bona fide SARS-CoV-2 (Figures

S7B and S7C).

To further validate the biological significance of the conserved

RNA structure, we focused on the structural element SE_OR-

F1ab_6449 and generated mutated SARS-CoV-2-GFPDN mu-

tants with mutations within SE_ORF1ab_6449. The mutations

in the strain mut-disrupt disrupt the predicted base pairs,

whereas combining mut-disrupt mutations and complementary

mutations in the strain rescue restores the disrupted structure

(Figure 7E). All of the mutations are synonymous and therefore

should not affect protein function. Strikingly, Caco-2 cells trans-

fected with mut-disrupt RNA had dramatically decreased viral

RNA levels that were partially rescued with the rescue virus

RNA (Figure 7F). Importantly, the reduction of RNA inmut-disrupt

is unlikely only due to codon effects on protein translation,
ting conserved RNA structural elements and predicted RBPs using a

pseudo SARS-CoV-2 virus in which the sequence encoding viral protein N is

Caco-2 cells that are actively expressing (complementing) the required viral N

dded at the same time, at a concentration of 10 mM. SARS-CoV-2-GFPDN

ns. Blue lines indicate the binding sites of ASOs. Nucleotides are colored by

eotides. Nucleotides with a color background were predicted as co-variant

viral yield for bona fide SARS-CoV-2 in Huh7.5.1 cells (D) both decreased upon

luding a ‘‘Negative control’’ control treated with an ASO targeting the ORF1ab

ed covariation, a ‘‘Scramble’’ control treated with a non-targeting ASO, and a

n = 3 biological replicates. n.s., not significant. ***p < 0.005, **p < 0.01, and

rple circles represent designed mutations formut-disrupt; the rescue includes

d for 48 h. The Caco-2 cells without infection were used as the negative control.

cells (top), A549 cell with ACE2 protein stable expression (middle), and Calu3

t infection. Drug concentrations ranged from 0.04 mM to 30 mM.Dose-response

o the average of DMSO-treated samples (0.1%) and represent mean ± SEM for

sates at the indicated temperatures. The black curve is the Nilotinib treatment,

biological repeats.

0.05), with different siRNA transfection and with/without Nilotinib treatment as

iRNAs targeting DDX42. Data are normalized to the si-NC control and represent

A and post hoc Student’s t test.
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because the effect is partially rescued by complementary muta-

tions in rescue. Thus, conserved RNA structures in the SARS-

CoV-2 genome do exert biological impacts on the infection pro-

cess and could therefore represent vulnerable therapy targets.

Next, we screened ChEMBL, DrugBank, and DrugCentral for

drugs that target host RBP factors predicted to bind SARS-

CoV-2 RNA. Initially, we assayed the compounds (10 mM) with

the SARS-CoV-2 N trans-complementation system in Caco-2

cells andmonitored SARS-CoV-2 yield and cell viability, by using

0.1% DMSO as the negative control and Remdesivir as the pos-

itive control. This screening identified multiple compounds with

varying levels of inhibitory effects on SARS-CoV-2 infection (Fig-

ures S7D and S7E; Table S7). We chose compounds that ex-

erted low cell toxicity yet high inhibition of SARS-CoV-2 for

dose-response and cytotoxicity experiments using the bona

fide SARS-CoV-2 virus in Huh7.5.1 cells (Figure S7F). Nilotinib,

Sorafenib, and Deguelin inhibited SARS-CoV-2 with little if any

cell toxicity (Figure 7G). To test the robustness of anti-viral im-

pacts of these drugs in different host cells, we repeated the ex-

periments in Calu-3 cells and in human lung A549 cells that sta-

bly express recombinant human ACE2 (A549-ACE2). Nilotinib

and Sorafenib showed the strongest inhibition of SARS-CoV-2

in A549-ACE2 cells, and all three drugs inhibited SARS-CoV-2

infection in Calu-3 cells (Figure 7G).

We focused on Nilotinib to determine whether it inhibits SARS-

CoV-2 infection through the target protein DDX42. Although

Nilotinib is commonly known to target some kinase pathways,

it has also been reported to affect other proteins including

DDX42 (Rix et al., 2013). To investigate the mechanism of action

underlying the antiviral effects we observed, we conducted

cellular thermal shift assay (CETSA), a commonly used approach

tomonitor drug binding in cells and tissues based on Tmshifting (

Martinez Molina et al., 2013)(Chen et al., 2016). The different

melting curves indicate that Nilotinib does indeed bind to, and

perturb, the target protein DDX42 (Figure 7H). We further used

AutoDock Vina to dock the drugs onto DDX42 (Payne et al.,

2015; Trott and Olson, 2010) and found that Sorafenib and Nilo-

tinib can both bind to the ATP binding site of DDX42; this could

block DDX42’s catalytic function (STAR methods; Figure S7G).

We also compared the SARS-CoV-2 yield in Nilotinib-treated

Huh7.5.1 cells with or without DDX42 knock down. We already

showed that SARS-CoV-2 infection of Huh7.5.1 cells is depen-

dent on DDX42 (Figure 6F) and that Nilotinib treatment of

Huh7.5.1 cells decreased SARS-CoV-2 infection (Figure 7G).

Importantly, Nilotinib treatment in DDX42 knockdown cells did

not confer any additive effects on the inhibition of SARS-CoV-2

infection. All these data support that Nilotinib’s anti-SARS-

CoV-2 effects are mediated through its inhibition of the DDX42

protein (Figure 7I). Fundamentally, our results demonstrate

how in vivo RNA structural data can be used to mine conserved,

physiologically relevant structural elements and to predict func-

tional host factors that can be targeted for drug development.

DISCUSSION

In this study we experimentally determined the structural land-

scape of the SARS-CoV-2 genome in human cells, as well as

the structure for in vitro refolded RNAs of two SARS-CoV-2
1878 Cell 184, 1865–1883, April 1, 2021
and six other coronaviruses. Our host cell data confirm the pres-

ence of stable, conserved structural elements from theoretical

analysis, while also revealing many previously unknown struc-

tural features. We provide evidence that RNA structure affects

the abundance and translation of subgenomic viral RNAs in cells.

Based on our in vivo structure data and our deep-learning neural

network, we then accurately predicted 42 functionally related

host cell proteins that bind to the SARS-CoV-2 RNA genome

and showed that some of these host proteins are vulnerable

drug targets for reducing SARS-CoV-2 infection.

In addition to encoding viral proteins, the SARS-CoV-2 RNA

genome itself functions as a molecular hub to interact with

many cellular factors, presenting multiple levels of complexity

for the regulation of viral infection and disease. As discovered

previously for many other viruses, including HIV (Watts et al.,

2009), HCV (Pirakitikulr et al., 2016), dengue (Dethoff et al.,

2018), and ZIKV (Li et al., 2018), much of the regulation and func-

tion of RNA viral genomes is mediated by higher-order RNA

structures. For coronaviruses, studies have also identified

different RNA structure elements that functionally impact viral

life cycles. The 50UTR of most coronaviruses harbors a number

of stem loops, with many showing heightened sequence conser-

vation across betacoronaviruses, and various stems demon-

strating functional roles in viral infection. For example, studies

suggested that SL1 in the 50UTR is necessary for coronavirus

replication (Li et al., 2008a). The third stem loop contains a

TRS core sequence (CS region, CUAAAC), which has been spec-

ulated to be critical for the discontinuous transcription character-

istic of coronaviruses (van den Born et al., 2005). In viral genome

30UTRs, mutually exclusive RNA structures have been shown to

control various stages of the RNA synthesis pathway (Goebel

et al., 2004). Recent virus structural modeling efforts using

SARS-CoV-2 genome sequences have confirmed the existence

of many of these stem loops and driven predictions of yet more

of these in SARS-CoV-2 (Andrews et al., 2020; Rangan

et al., 2020).

Our work emphasized that most stem loops exist in both re-

folded RNA molecules in vitro and in viruses within host cells,

suggesting that co-transcriptional folding and refolding lead to

similar, stable structures. But more importantly, our in vivo

data also point to potential structural difference when compared

with the in vitro and theoretical studies. For example, we

observed that the proposed loop region in SL3 is not reactive,

supporting the possibility of long-range functional interactions

with downstreamTRS-B regions, which is understood as integral

for successful discontinuous transcription (Enjuanes et al.,

2006). We also noticed that the small stem loop downstream

of SL4 proposed by Rangan et al. is absent from our in vivo struc-

tural data. Instead, our results indicate this region adopts a long,

single-stranded conformation in vivo; interestingly, the sequence

context of this region is adenylate-uridylate-rich (AU-rich), sug-

gesting it could be a hotspot for the binding of RBPs that prefer

AU-rich single-stranded structure elements.

Overall, our study identified many single-stranded regions in

the SARS-CoV-2 genome that are potential targets for interven-

tions through siRNA, ASO, etc. Importantly, our work also

revealed and validated structural elements with strong co-

evolution support throughout the genome (including in coding
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regions), suggesting stable, functionally conserved RNA struc-

tures. Computational methods like ROSETTA and FARFAR are

efficient for modeling tertiary structure when accurate secondary

structural models are available (Das and Baker, 2007; Leman

et al., 2020). Thus, our data will inform reliable tertiary structure

models of the SARS-CoV-2 genome, which could reveal drug-

gable pockets vulnerable to small molecules. Indeed, functional

RNA structural elements can be targeted by small compounds to

disrupt viral infectivity (Ren and Patel, 2014). Thus, the RNA

structures we have uncovered in SARS-CoV-2 could facilitate

target discovery and the development of antiviral therapeutics.

Our in vivo RNA structure also provides the groundwork to

accurately predict host RBPs that bind to the SARS-CoV-2

genome, as we have demonstrated recently in different cellular

contexts. We used a deep-learning method, PrismNet, trained

on more than thousands of binding sites together with in vivo

RNA structures obtained from matched cell lines for each RBP.

Multiple lines of evidence including our in vitro RNA pull-down,

in vivo RNA-protein MS data from other recent studies (Schmidt

et.al. 2020, Lee et.al. 2020), and our in vivo knockdown assays

and ASO perturbations indicate that many of PrismNet-pre-

dicted proteins are apparently true host factors and that these

proteins can functionally impact viral infection. Nevertheless,

these analyses cannot fully establish the in vivo regulation and

functional impacts of the predicted interactions of host RBPs

and SARS-CoV-2 viral RNAs, because many confounding fac-

tors could affect RBP binding in vivo. Further validations are

warranted for any focused in-depth studies based on Prism-

Net-predicted host factors.

In addition to recruiting the translation machinery, SARS-

CoV-2 could interact with many host proteins including RNA

metabolism proteins and enzymes such as helicases. For

example, based on our predictions, the helicase DDX42 is likely

hijacked by the virus to help evade cell innate immune response

(Beachboard and Horner, 2016). Interestingly, our findings sug-

gest that stress granule proteins including TIA1, IGF2BP1, and

PTBP1 interact with the SARS-CoV-2 RNA genome. Previous

studies reported that TIA1 interacts with the minus-strand 30 ter-
minal SL of the West Nile virus RNA, which inhibits stress

granule formation and facilitates flavivirus genome RNA synthe-

sis (Emara and Brinton, 2007). Intriguingly, inhibition of stress

granules is known to promote replication of MERS-CoV

(Nakagawa et al., 2018). Overall, these SARS-CoV-2 RNA-

host protein interactions will substantially extend our insight

into SARS-CoV-2 biology and shed light on the molecular

mechanism of viral infection.

Finally, the present study illustrates how the identification of

conserved RNA structures and host RBPs that bind to viral

RNAgenomes can be exploited to develop antiviral drugs. By us-

ing an innovative Caco-2 cell SARS-CoV-2 infection platform to

test antiviral drugs, we found inhibitor drugs targeting predicted

host factor proteins successfully reduced SARS-CoV-2 infec-

tion. Treatments with ASOs targeting conserved RNA structure

and predicted RBP binding sites, or siRNA knockdown of pre-

dicted host factors, also showed moderate inhibitory effects

against SARS-CoV-2 infection, suggesting effective approaches

for interventions. Overall, our strategy holds great promise for re-

purposing existing drugs and developing innovative strategies to
fight against the still-ongoing SARS-CoV-2 pandemic and to

combat viral disease more generally.

Limitations of the study
Although this study provides a rich resource of SARSCoV-2 RNA

structures and uses this information to predict host proteins that

are vulnerable for drug repurposing, there are nevertheless a

number of limitations, stemming both from the technology we

used for structure measurement and regarding the validations

of the drug candidates. First, the SARS-CoV-2 RNA structural

information obtained by icSHAPE must be understood as an

ensemble representing different life stages of the virus (e.g.,

replication/transcription, packaging). Thus, dissecting and en-

riching viral RNA at discrete stages could help in elucidating

exactly how distinct and/or dynamic RNA structure contributes

to specific viral processes.

Second, icSHAPE technology only reports RNA structural in-

formation for individual nucleotides. It is therefore unable to

directly reveal higher-order structural information (including ter-

tiary RNA structure). Additional technologies such as PARIS

(Lu et al., 2016), SPLASH (Aw et al., 2016), COMRADES (Ziv

et al., 2018), and RIC-seq (Cai et al., 2020) could help capture

long-range RNA-RNA interactions. Integrative analysis which

combines our results with data from these technologies (and

even tertiary structural information) could help identify more

complex RNA structure elements and domains that functionally

influence SARSCoV-2 infection. Such efforts could even help

predict RNA structure as suitable direct targets for developing

innovative drug treatments (Warner et al., 2018; Zhang et al.,

2020). Third, PrismNet’s prediction of host factors only nomi-

nates RBPs that can in principle bind to SARS-CoV-2 RNA;

cellular context information such as protein abundance and

localization data are not considered. More physiologically rele-

vant predictions of host factors could be obtained by incorpo-

rating these parameters into PrismNet predictions. Finally,

although we have demonstrated that some repurposed FDA-

approved drugs can effectively inhibit viral infection in different

cells with both the SARS-CoV-2 N trans-complementation sys-

tem and the bona fide SARS-CoV-2, their mechanisms of action

should be studied further, and their efficacy and side-effects

must be assessed by in vivo validations using animal models

prior to any possible clinical application.
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Anti-human ILF3 Proteintech Cat#:19887-1-AP; RRID: AB_10666431

Anti-human GAPDH Proteintech Cat#:10494-1-AP; RRID: AB_2263076

Bacterial and Virus Strains

SARS-CoV-2 Peking Union Medical College IPBCAMS-YL01/2020

SARS-CoV-2-GFPDN This study N/A

Chemicals, Peptides, and Recombinant Proteins

PBS Life Cat# 10010049

DMSO Sigma Aldrich Cat#D2650-5310ML

penicillin-streptomycin GENOM Cat#GNM15140

NAI-N3 This study N/A

Trizol LS Life Cat#10296-028

Chloroform Ricca Chemical Cat#RSOC0020-500C

5 M NaCl Ambion Cat#AM9759

Click-IT biotin DIBO alkyne Life Cat#C-10412

Ultrapure TEMED Invitrogen Cat#15524-010

EDTA Ambion Cat#AM9260G

10% SDS Life Cat#15553-027

Phusion high-fidelity (HF) New England Cat#M0531L

DMEM GIBCO Cat#11965-084

BSA Sigma-Aldrich Cat#B2064

Dynabeads MyOne C1 Life Cat#65002

Tween 20 Sigma Cat#P1379-500ML

UltraPure 1 M Tris-HCI buffer, pH 7.5 Invitrogen Cat#15567-027

Experimental Models: Cell Lines

Human Huh7.5.1 Gift From Wei Yang lab (Peking Union Medical College)

Green monkey Vero E6 ATCC Cat#CCL-81

Human Caco2 ATCC Cat#HTB-37

Calu-3 ATCC Cat#HTB-55

A549-ACE2 This study N/A

A549 ATCC Cat#CCL-185

Human HEK293T Cell Bank, Shanghai Cat#GNHu17

Software and Algorithms

icSHAPE-pipe Li et al., 2020 http://zhanglab.net/resources/icSHAPE-pipe

IGV (Robinson et al., 2011) https://software.broadinstitute.org/software/igv/
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VARNA v3-93 (Darty et al., 2009) http://varna.lri.fr/

Bowtie2 (Langmead and Salzberg, 2012) http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

samtools (Li et al., 2009) http://samtools.sourceforge.net/

Trimmomatic Bolger et al., 2014 http://www.usadellab.org/cms/?page=trimmomatic

Infernal 1.1.3 (Nawrocki and Eddy, 2013b) http://eddylab.org/infernal/

RNAstructure (Reuter and Mathews, 2010) https://rna.urmc.rochester.edu/RNAstructure.html

ViennaRNA (Lorenz et al., 2011) https://www.tbi.univie.ac.at/RNA/
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icSHAPE data This study GSE153984
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Analysis scripts This study https://github.com/lipan6461188/SARS-CoV-2
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Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Qiangfeng

Cliff Zhang (qczhang@tsinghua.edu.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The icSHAPE sequencing data of all cell lines reported in this project is available at Gene Expression Omnibus under accession code

GSE153984. The scripts for SARS-CoV-2 structuremodel construction and all downstream analyses used in this project are available

at github (https://github.com/lipan6461188/SARS-CoV-2).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
Huh7.5.1 cells, a well differentiated human hepato cellular carcinoma cell line, were provided by Wei Yang lab (Institute of Pathogen

Biology, Chinese Academy of Medical Sciences & Peking Union Medical College), and were maintained at 37�C, 5% CO2 in Dulbec-

co’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and penicillin-streptomycin. African green

monkey kidney epithelial Vero E6 (ATCC, CCL-81) were maintained at 37�C, 5% CO2 in DMEM with 10% FBS and penicillin-strep-

tomycin. Human colorectal adenocarcinoma Caco2 cells (ATCC, HTB-37) maintained at 37�C, 5%CO2 in DMEMwith 10% FBS and

penicillin-streptomycin. Human lung cancer Calu-3 cells (ATCC, HTB-55) maintained at 37�C, 5% CO2 in DMEM with 10% FBS and

penicillin-streptomycin. Human lung carcinoma cell line A549 cells (ATCC, CCL-185)maintained at 37�C, 5%CO2 in DMEMwith 10%

FBS and penicillin-streptomycin. Human HEK293T cells (Cell bank, Shanghai, GNHu17) maintained at 37�C, 5% CO2 in DMEM with

10% FBS and penicillin-streptomycin.

SARS-CoV-2 virus
SARS-CoV-2, Isolate IPBCAMS-YL01/2020 was obtained from a clinical sample at the Institute of Pathogen Biology, Chinese Acad-

emy of Medical Sciences & Peking Union Medical College, and was passaged three times in Vero cells (ATCC, CCL-81) for further

infection. Infectious titers of SARS-CoV-2 were determined using plaque assays in Vero cells.

SARS-CoV-2 infection
For SARS-CoV-2 infection, Huh7.5.1 cells were cultured in T-175 flasks, at a density of 53106, cells for 16 h. The cells were briefly

washed with DMEM, and incubated with SARS-CoV-2/IPBCAMS-YL01/2020 for 1 h at a multiplicity of infection (MOI) of 0.05, then

supplemented with DMEM maintenance medium containing 1% BSA and penicillin-streptomycin. Cells were then cultured at 37�C
with 5%CO2 for an additional 30 h. Cultured cells were washed twice with PBS before collection using a cell scraper. All experiments

involving live SARS-CoV-2 in these studies were performed in a biosafety level 3 facility.
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NAI-N3 modification in vivo and RNA extraction
For in vivo RNA structure probing, NAI-N3 was added to the cell pellet at a final concentration of 100mM and then incubated at 37�C
for 5min with gentle mixing. To prepare negative control samples, an equal amount of DMSO (25ml) was added to the cell pellet. After

probing, samples were transferred immediately to ice in order to stop the reaction. Samples were then centrifuged for 5min at 5003g

(4�C), the supernatant was discarded, and cell pellets resuspended in 6mL TRIzol and supplemented with chloroform (0.2 vols.). The

sample was vigorously vortexed for 15 sec, then incubated for 5 min at room temperature, after which it was centrifuged for 15 min at

12,000 3g (4�C). The upper aqueous phase was transferred to a clean 15 mL tube, then supplemented with 2 volumes of 100%

ethanol, mixed, then purified with a Hipure RNA pure Micro Kit according to the manufacturer’s instructions.

Isolation of Poly(A) RNA
We isolated poly(A) RNAwith the DynabeadsTMmRNADIRECTTM kit according to manufacturer instructions with the following modi-

fication. The poly-dT beads were washed with buffer B twice after the first round of poly(A) purification. We performed a second

poly(A) enrichment using beads from the first-round enriched poly(A) RNA. Typical yields were 1% poly(A) RNA from DMSO treated

samples and 0.5% poly(A) RNA from the NAI-N3 treated samples.

NAI-N3 modification in vitro

100ng of poly(A) RNA from DMSO-treated control samples were resuspended in 5.7 ml of water, and samples were heated to dena-

ture RNA structure at 90�C for 2 min. Samples were then transferred onto ice immediately for more than 2 min. 3.3 ml of 3.33 SHAPE

refolding buffer (333 mM HEPES (pH 7.5), 20 mMMgCl2 and 333 mM NaCl) was added to the RNA and incubated at 37�C for 5 min.

1ml of 1M NAI-N3 was added to the refolded samples and incubated at 37�C for 10 min. In vitromodified RNA was extracted as out-

lined in the above steps.

In vitro transcription of viral UTR regions
Vectors including the 5’UTR, 3’UTR and their extension regions in Coronavirus SARS-CoV-2 (lineage B, Betacoronavirus), SARS-

CoV-2-T (C to T mutation in 241nt, (lineage B, Betacoronavirus), SARS-CoV (lineage B, Betacoronavirus), MERS-CoV (lineage C,

Betacoronavirus), BtCoV-HKU5 (lineage C, Betacoronavirus), HCoV-NL63 (Alphacoronavirus), HCoV-HKU1 (lineage A, Betacorona-

virus), and BtCoV-HKU9-1 (lineage D, Betacoronavirus) were synthesized by the company AuGCT (Table S2). We amplified these

regions using primers including the P7 promoter sequence (Table S5). We synthesized RNA in vitro from PCR products using a HiS-

cribeTM T7 Quick kit following manufacturer instructions. After overnight incubation, DNA was removed using DNase I. Then, the in

vitro transcribed RNA was purified using a Hipure RNA pure Micro Kit.

icSHAPE library construction
icSHAPE libraries were constructed using in vivomodified, in vitromodified or DMSO-treated control RNA as previously described,

but with the following modification (Sun et al., 2021). We designed a new library linker, reverse transcription (RT) primer, P5 and P7

amplification primer to adapt the system for the Illumina HiSeq X system.

To simplify library construction of the UTRs of the eight coronaviruses (including the SARS-CoV-2-T), we merged the in vitro tran-

scribed RNAs of different viruses into one group according to sequence divergence. i.e. RNA of SARS-CoV-2, HCoV-NL63 and

HCoV-HKU1 were merged into one group (SARS2-C-NL63-HKU1). RNA of the SARS-CoV and BtCoV-HKU5 was merged into

another group (SARS-HKU5). RNA of MERS-CoV and BtCoV-HKU9 was also merged into the third group (MERS-HKU9). RNA of

SARS-CoV-2 with T mutation (SARS-CoV-2-T) formed an independent group.

Libraries of viral infection were sequenced on the HiSeq X system to approximately 150million reads per library, while viral libraries

for UTR regions were sequenced at about 10-30 million reads per library. Only the R1 reads (*_1.fastq), which include the reverse

transcription stop (RT stop) site, were used for further analysis in this study.

RNA pull-down of RNA fragments
RNA pull-down was performed as previously described, with the following modifications (Sun et al., 2021). 1.5 ml (100 mM) of RNA

fragment was added to 8.5 ml water and incubated at 90 �C for 2min, 30 �C for 5min, and at 4�C until their incubation with cell lysates.

Human 293T cells (13 107) were lysed in lysis buffer (150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.5 mM DTT, 50 mM pH 7.5 Tris-

HCl, 0.1% sodium deoxycholate) with 10 ml phosphatase inhibitor cocktail (Promega), 10 ml PMSF (Sigma), 2.5 ml SUPERase In

inhibitor (Life Technologies) for 10 min. Cell lysates were incubated with RNA probes at 4�C for 3 hours, then incubated with pre-

washed MyOneC1 streptavidin beads for 1 hour. The beads were washed with pre-cooled washing buffer (50 mM Tris-HCl, pH

7.5, 150 mM NaCl, 5mM EDTA) three times at 4 �C. Proteins were eluted (50mL) with elution buffer (washing buffer by adding

53SDS-PAGE loading buffer) at 95 �C for 10 min. The eluted protein samples (5mL) were quantified by immunoblotting with the

specified antibody. Control samples were prepared identically to the lysate samples, with the exception that random RNA oligonu-

cleotides were added (Figure 6B).
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To characterize the biological impact of RNA structure, we refolded the RNA by heating it at 90 �C for 2 min and then incubating it it

at 30 �C for 5min to enable refolding (Liu et al., 2015); we obtained single-stranded RNA by heating it at 90 �C for 2min and then snap-

cooling on ice to keep RNA in single-stranded structure form (Huang et al., 2018). The other steps are similar with the previous

method except the time of cell lysate incubating with RNA probe was shortened to one hour (to minimize the RNA structure refolding)

(Figure 6C). For the mutation and rescue RNA probe of ILF3 targets, all the steps followed the description provided in Figure 6B

(Figure 6D).

Immunoblotting and qPCR
Immunoblotting was used to examine RNA pull-down results, using antibodies for IGF2BP1, TIA1, PTBP1, hnRNPK, hnRNPA1,

NONO, U2AF2, CAPRIN1, ILF3, andGAPDH (Abcam). Elution samples fromRNApull-downswere boiled at 95 �C for 10min, followed

by immunoblotting as previously described (Sun et al., 2019).

qPCR was used to quantify SARS-CoV-2 infection and amplification before collection of the infected cells.

RNA pull-down mass spectrometry of SARS-CoV-2 UTR regions
Biotin labeled RNA of the SARS-CoV-2 UTR and the control GFP RNA were synthesized using the HiScribeTM T7 Quick kit. We fol-

lowed the manufacturer instructions with the following modification: we added biotin-16-UTP into the 10mM NTP mix for biotin la-

beling. Human lung cells A549 (1 3 107) were lysed using the lysis buffer. Cell lysis were incubated with RNA probe for 3 hours and

then added with C1 beads for another one hour. After washing, the pull-down proteins were eluted in 30mL of 13LDS SAMPLE buffer

(Thermo Fisher, cat#NP0007) and heated at 90 �C for 10 min. The SARS-CoV-2 UTR and the GFP RNA samples were resolved by

SDS-PAGE using NuPAGE 4–12% Bis-Tris Gels. The SDS-PAGE gel was visualized by silver staining (Pierce Silver Stain for Mass

Spectrometry, Cat# 24600). Each lane of protein bands was cut into three pieces (top: >150 kDa; middle: 50-150kDa; bottom:

<50kD) for mass spectrometry analysis (Figures 6G, S6F-G).

SARS-CoV-2 N trans-complementation system and drug test
The SARS-CoV-2-GFPDN genome was assembled using in vitro ligation of five fragments A, B, C, D, and E, but replacing the viral N

gene with GFP based on the SARS-CoV-2 genome (Wuhan-Hu-1, NC_045512). The SARS-CoV-2-GFPDN genomic RNA genome

was in vitro transcribed using an T7 Transcription Kit (ThermoFisher Scientific). Synthesized viral RNA and N mRNA were electropo-

rated into Vero E6 cells expressing viral N using lentiviral transduction to produce the P0 virus. After three days, P0 viruswas collected

to infect Caco-2 cells expressing viral N (Caco2-N) by lentiviral transduction, and thereby amplify the recombinant SARS-CoV-2-

GFPDN virus. To assess the antiviral efficacies of the compounds, 13104 Caco2-N cells were seeded into 96-well plates. After

24h, cells were infected with SARS-CoV-2-GFPDN virus at a MOI of 0.05, and drugs were added simultaneously. Two days post-

infection, FACS was performed to analyze the GFP positive rate. We used the anti-SARS-CoV-2 drug Remdesivir as a positive con-

trol, and the solvent DMSO (0.1%) as a negative control (Figures 7, S7).

Viral infection and compounds treatment by the bona-fide SARS-CoV-2
Huh7.5.1, Calu-3, and A549 cells stably expressing recombinant human ACE2 (A549-ACE2) weremaintained at 37�Cwith 5%CO2 in

Dulbecco’smodified Eagle’smedium (DMEM,Gibco, cat.C11965500BT) supplementedwith 10% fetal bovine serum (FBS, HyClone,

cat.SH30396.03) and penicillin-streptomycin (GENOM, cat.GNM15140). Cells were seeded in 96wells plate one day before infection.

Briefly, opti-MEM medium containing each compound (0.041, 0.123, 0.370, 1.111, 3.333, 10, 30 mM, respectively) and 0.1% DMSO

was added to confluent cells, then immediately incubated with SARS-CoV-2 at a multiplicity of infection (MOI) of 0.05 for 1h. Then,

cells were washed one-time opti-MEM and supplemented with opti-MEMmaintenance medium, which was supplemented with 1%

BSA (Sigma-Aldrich, cat#B2064) and the drugs at the concentrations indicated in the figures. 60 mL supernatants were harvested at

48 hours post-infection and viral RNA in the cell supernatants were extracted by using Direct-zol RNAMiniPrep kits (Zymo research)

according to the manufacturer’s instructions. The virus load was evaluated by Real-time qPCR targeting the N gene of SARS-CoV-2

as described elsewhere (Liu et al., 2020). The inhibition ratio was obtained by dividing the number of copies of the virus in the control

group (DMSO 0.1%). Dose-response curves for selected compounds were generated using GraphPad Prism software. The IC50 for

each compound was calculated using 4-paramenter logistic non-linear regression.

RNA interference
siRNAs targeting ILF3, TIA1, SDN1, IGF2BP1, and DDX42 (Table S5) were transfected into Huh7.5.1 cells using Lipofectamine RNAi-

MAX (Life technologies, Carlsbad, CA). Cells were grown to sub confluency at 37�Cwith 5%CO2 for 48 hwith siRNA transfection. For

SARS-CoV-2 infection, the cells were thoroughly washed and infected with SARS-CoV-2 at an MOI of 0.05 for 1 h and then supple-

mented with maintenance medium. 60 mL Supernatants were harvested at 24 hours post-infection and virus yield was evaluated by

qPCR analysis of SARS-CoV-2 N gene expression (Figures 6F, S6D-E).

ASO assay
Huh7.5.1 cells were plated in a 24-well plate at a density of 1.23105cells per well for 16 h, then transfected with 1.5mL 100mM ASOs

(Table S5) using Lipofectamine RNAiMAX (Life technologies, Carlsbad, CA) on a final concentration of 0.3 mM and incubated at 37�C
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for 6 h. The cells were then thoroughly washed with opti-MEM and infected with SARS-CoV-2 at an MOI of 0.05 for 1 h and then

supplemented with maintenance medium. After incubation of the cells at 37 �C for 24 hours, SARS-CoV-2 viral RNA levels in super-

natants were measured by qPCR.

Cell viability
Confluent cells grown in 96-well plates were incubated with various drug concentrations (0.041, 0.123, 0.370, 1.111, 3.333, 10,

30 mM, respectively) and 0.1%DMSO for 48 hours. Cell viability wasmeasured by a CCK8 kit (Yeasen, Beijing, China) and calculated

using the GraphPad Prism software (Figures 7, S7).

For RNA interference and ASO transfection, the same concentration of siRNAs or ASOs in the siRNA knockdown and ASO assays

were transfected into Huh7.5.1 cells. Cell viability weremeasured by a CCK8 kit (Yeasen, Beijing, China). Data were processed by the

GraphPad Prism software (Figures S6 and S7)

Compound treatment after knocking down the drug-targeted proteins
Huh7.5.1 cells were seeded in a 24-well plate at a density of 1.23105 cells per well and cultured for 16 h, siRNAs against DDX42 and

control siRNA were transfected into cells using Lipofectamine RNAiMAX (Life technologies, Carlsbad, CA). After 48 hours of trans-

fection, opti-MEMmedium containing 10 mMNilotinib was added to cells, then immediately incubated with SARS-CoV-2 at anMOI of

0.05 for 1h. Then cells were washed one-time opti-MEM, and the culture mediumwas replaced with opti-MEMmaintenancemedium

containing 10 mM Nilotinib. At 48 hours post-infection, supernatants were collected and viral RNA was extracted with an RNA

MiniPrep kit. We subsequently measured the RNA levels by qPCR (Figure 7).

Mutation strains construction of SARS-CoV-2 N trans-complementation system
The mutation strains were constructed using in vitro ligation of five fragments A, B, C, D and E with the following modifications. We

introduced mutations into fragment B, which came from the region of ORF1ab, (mut-disrupt: G9463A, U9466C, U9511C; rescue:

G9463A, U9466C, U9511C & A9517G, C9520U, A9472G) by PCR. Then, fragments A, B, C, D and E were assembled by in vitro

ligation. Viral RNAs are electroporated into Caco2-N cells, and qPCR was performed to quantify virus RNA after 48 hours post elec-

troporation (Figure 7).

nsp1 forward primer: CGAAAGGTAAGATGGAGAGCC,

reverse primer: TGTTGACGTGCCTCTGATAAG;

subgenomic E forward primer: CGATCTCTTGTAGATCTGTTCTC,

reverse primer: ATATTGCAGCAGTACGCACACA;

GFP forward primer: CGATCTCTTGTAGATCTGTTCTC,

reverse primer: TCAGGGTCAGCTTGCCGTAG

Cellular thermal shift assays
We performed the cellular thermal shift assays following a previous description (Martinez Molina et al., 2013). Briefly, 1.03107

cultured A549 cells were harvested and washed by PBS twice. Cells were resuspended by adding 600mL PBS to each 1.5mL

tube. Then the cells were lysed via freeze thawing (three times) using liquid nitrogen. After 20000g centrifugation for 20 min at

4�C, the supernatant was divided into two aliquots (300mL each) and incubated with Nilotinib (100uM) or negative control (DMSO)

for 30min at room temperature. Then, the respective lysates were divided into smaller (50mL) aliquots and heated individually at

different temperatures (25, 45, 50, 55, and 60�C) for 3 minutes. After 20000g centrifugation for 20 min at 4�C, DDX42 in the lysates

was quantified via western blotting.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data quality control and icSHAPE score calculation
The icSHAPE sequencing data was processed using icSHAPE-pipe (Li et al., 2020). The processing steps were as follows: 1) Dupli-

cated reads in raw fastq files were collapsed; 2) 3’ Adaptor sequence in the reads and the first 10nt from 5’ were removed using

trimmomatic (Bolger et al., 2014); 3) Clean reads were mapped to human rRNA with bowtie2 (Langmead and Salzberg, 2012); 4)

Un-mapped readsweremapped to the human genome usingSTAR (Dobin et al., 2013); 5) Remaining unmapped readsweremapped

to the SARS-CoV-2 sequence (Genbank ID: NC_045512.2) with bowtie2; 6) Sam files were convert into .tab files using icSHAPE-pipe

sam2tab; 7) The icSHAPE score was calculated using icSHAPE-pipe calcSHAPE with parameter -D DMSO_rep1.tab,DMSO_rep2.-

tab -N NAI_rep1.tab,NAI_rep2.tab -size virus_len.txt -wsize 50 -out virus_shape.gTab. 8) The .gTab file was converted to .shape

format using icSHAPE-pipe genSHAPEToTransSHAPE -i virus_shape.gTab -s virus.fa.len -c 100 -o virus_shape.shape. We set -c

100 to retain bases with a read depth greater than 100 (Table S2).

To assess data quality, Pearson correlation coefficients were calculated based on the RPKM of host transcriptome between

replicates. We also compared consistency of the reverse transcription (RT) stop counts of SARS-CoV-2 across all samples

(Figure S1).
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Calculate the accuracy of structure prediction
Sensitivity and Positive Predictive Value (PPV) (Deigan et al., 2009) are used to quantitatively compare the similarity between our

model with the theoretical models of the secondary RNA structures of the SARS-CoV-2 5’UTR and 3’UTR (Rangan et al., 2020).

The sensitivity means the percentage of the base pairs from the theoretically structural model that are also included in our model.

Further, the positive predictive value (PPV) means the percentage of the base pairs from our model which are also included in the

theoretically structural model (Figure S2).

Calculate the receiver operating characteristic (ROC) curve of icSHAPE reactivity scores fitting the theoretical
structural model of rRNA and SRP
We obtained the secondary structure models of human 18S rRNA and 28S rRNA from the CRW database and RiboVision (Bernier

et al., 2014) separately, and the secondary structure model of signal recognition particle (SRP) from the RNAstrand database

(Andronescu et al., 2008). For 18S rRNA and 28S rRNA with 3D models, we used the PDB structure (id: 6ek0) to calculate the

solvent accessibility for 2’-OH of each nucleotide in a 3D model (retaining those bases with solvent accessibility > 3) to evaluate

the AUC.

Identification of RNA structurally variation regions in SARS-CoV-2 genome between in vivo and in vitro

To define a structurally variable regions between in vivo and in vitro conditions, we used a method combining a binomial test and a

permutation test to call significantly different structural regions (Figure 2). The algorithm is summarized as four steps below.

Step 1: Estimate the random background noise. We calculated the L1 distance of icSHAPE reactivity scores for each nucleotide

between replicates (for in vivo and in vitro separately). Then we aggregated all L1 distances from in vivo and in vitro conditions, which

were used as the background distribution of the technical variations of icSHAPE scores. We defined the top 5% of the L1 distance as

the threshold of random noise: €ASnoise =quantileðnoise;0:95Þ.
Step 2: Search for significantly different regions with sliding windows. The virus genome was split into sliding windows

(window size: 10 nt, window step: 1 nt). The L1 distance of icSHAPE reactivity scores from two conditions are calculated and the

windows with the number of differential nucleotides (L1 distance > €ASnoise) is greater or equal than 3 are defined as differential

windows.

Step 3: Keep the top differential windows. We only preserve the top 10% of average L1 distances of all differential windows.

Step 4: Merge overlapped windows.

Structural Model Construction
To construct RNA secondary structural models for a complete SARS-CoV-2 genome, we used the partition program andMaxExpect

program in the RNAstructure software suite (Reuter and Mathews, 2010) to predict secondary structure with icSHAPE scores as the

pseudo-energy constraint. We set the maximum pairing distant as 300 nt. To identify a combination of slope and intercept param-

eters, we used grid search to predict a structure of the UTR and flanking region which is consistent with the Rfammodel (Kalvari et al.,

2018a).We then used the parameter to predict the structure.We used a slidingwindowwith a length of 5000 nt and a step size of 1000

nt to predict the structure of full-length viral RNA. Structure models with higher pairing probabilities produced by the partition

program were selected for RNA structures of overlapping regions. We visualized RNA structure using VARNA (http://varna.lri.fr/)

(Figures 3, S3).

Phylogenetics Analysis
Representative coronaviral genome sequences were retrieved from genome database of NCBI (https://www.ncbi.nlm.nih.gov/

genome) and SARS-CoV-2 genome sequences were downloaded from GISAID database (www.gisaid.org, before June 1, 2020).

Multiple sequence alignments of all collected viral sequences were constructed using MAFFT v.7.313 (Nakamura et al., 2018). To

visualize phylogenetic relationships among major coronaviral clades, one hundred representative viral sequences were selected

to generate evolutionary tree by RAxML v.8.2.12 (Kozlov et al., 2019) with GTR+G substitution model and 1,000 bootstrap replicates.

The tree was further polished in FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree) (Figure 4A).

Conserved structure elements
We used the Infernal 1.1.3 software suite (Nawrocki and Eddy, 2013a) to search homologous multiple sequence alignment. Then we

defined a covariation score for each base pair to search conserved structures (Figures 3, 7, S3). In summary, this process is mainly

divided into the following three steps:

1. Prepare the homologous sequences dataset

We retrieved the Coronaviridae sequences in ViPR database (https://www.viprbrc.org/). We only leave those sequences with

complete genome and remove duplicate genome sequences. Finally, we obtained 10,852 sequences. To remove those redundant

sequences, we used CD-HIT (Fu et al., 2012) to remove sequences with a similarity higher than 99%: Finally, 1,367 sequences are

leaved for downstream analysis.

2. Search homologous sequences
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The full-length SARS-CoV-2 genome is divided into fragments according to the secondary structuremodel we built, and each frag-

ment is an independent secondary structure. The sequence and structure model of each fragment is used to construct a stockholm

file. The stockholm file is used to construct a covariance model (.cm file) with cmbuild (from Infernal). The homologous aligned

sequences are retrieved from sequences databases (1,367 sequences) with cmsearch. Then those duplicated sequences in the

alignment file are removed. The remaining sequences are used to build a new covariance model with cmbuild. The new covariance

model can be used to search homologous sequences as described above. This process is repeated atmost three times or util no new

sequences can be added. We developed this method mainly refer to Rfam’s method of construction of seed alignment (Kalvari

et al., 2018b).

3. Calculate the covariation score for each base pair

Covariance score in the resulting alignment was calculated referring to RNAalifold (Hofacker, 2007). To summarize, given a multi-

sequence alignment file, the covariation score for column i and column j is defined as

Cij =
1 
N
2

!X
a< b

da;b
ij Ða

ij Ð
b
ij

N is the number of sequences in the alignment. a,bÎ{1,2,3.N} is the index of sequences. i and j are the index of any two alignment

columns. da;b
ij is the Hamming distance of base i and base j between sequence a and b. Pa

ij indicates if the base i and base j in

sequence a can form WC base pairing or wobble base pairing.

Covarying base pairs with a score ranging from 0.4-0.5 were defined as weak covariation, scores ranging from 0.5-0.7 were

defined as medium covariation, and scores greater than 0.7 were defined as strong covariation (Figures 2, 3, 4 and S3, S4, S5).

Relationship between SARS-CoV-2 structure and subgenomic RNA generation, translation efficiency analysis
Pre-calculated translation efficiency and subgenomic RNA numbers were provided by previous papers (Kim et al., 2020). We con-

structed the top 100 highly expressed subgenomic sequences according to RNA number and splice sites. The pre-processed reads

were mapped onto subgenomic RNA, with indels and gaps disallowed with STAR parameters: –scoreDelOpen -99 –scoreInsOpen

-99 –scoreGap -99. Only readsmapping to cross sites between TRS-L and TRS-B were kept for further analysis (Figure 5, Figure S5).

The icSHAPE score of every subgenomic RNA in the TRS-L region was calculated as described above ‘‘Data quality control and

icSHAPE score calculation’’.

The Spearman correlation efficient and the two-tailed P values were calculated using the Python package function

scipy.stats.spearmanr.

Structural similarity calculation
The similarity of the secondary structures of 5’UTR and 3’UTR among different coronaviruses (Figures S4B and S5B) were assessed

using RNAforester in ViennaRNA package (Lorenz et al., 2011) with the UTR sequences and secondary structures as input. The

sequence similarity is excluded from calculation by setting parameters: -bm=0 -br=0 -bd=0. Structural similarity parameters are

set by default. The relative scores, ranging from 0-1, are returned by using the parameter -r.

RBP and RBP binding site prediction based on PrismNet
RBP binding was predicted using PrismNet (Sun et al., 2021), a deep learning model based on RNA sequence and in vivo RNA struc-

ture data. PrismNet was trained on the CLIP data of 60 RBPs from POSTAR (Hu et al., 2017), 22 RBPs from starBase (Yang et al.,

2011), as well as 59 RBPs from ENCODE (Van Nostrand et al., 2016), and the matched RNA structural data (icSHAPE scores) in

HEK293, HKE293T, HeLa, K562, H9 andHepG2 cells as described in themanuscript. It finally totals 144 pre-trained PrismNetmodels

of 99 human proteins.

For input, the sequences and the icSHAPE data of the SARS-CoV-2 UTRs and flanking regions were split into sliding windows

(window size: 101nt, window step: 20nt). Input sequences were encoded with the one-hot encoding (A, C, G, U, 4-dimension),

and the structural data were encoded as the fifth dimension (icSHAPE values ranging from 0 to 1, 1-dimension). Missing icSHAPE

scores (Null) were dubbed ‘‘-1’’.

For each RBP and a sliding window, if the output of binding probability is larger than 0.85 by the PrismNet model, we defined

the sequence window as a predicted binding site of the RBP. Overlapped binding sites for the same protein were merged (Table S4).

RNA pull-down mass spectrometry analysis
Raw mass spectrometry data were searched against the human proteome (Uniprot database) with Proteome Discoverer Software.

Subsequently, the MiST scoring algorithm was used to calculate the specific binding proteins in SARS-CoV-2 using the default

parameters (Jäger et al., 2011). We used the threshold (MiST score > 0.7) to confidently obtain interacting host proteins. To further

validate the data quality and identified proteins, we compared the total number of identified peptide spectra matched for the

protein between replicates (r =0.97, Figure S6F) and analyzed the Gene Ontology (GO) term comparing with previous studies

(Figure S6G).
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Docking analysis of candidate drug to the RBP target
As no crystal structure is available for DDX42, we downloaded a 3D structural model for it from SWISS-MODEL (ID: Q86XP3) (Water-

house et al., 2018), a homology model built from DDX17 crystal structure. We further refined and relaxed the homology model by

molecular dynamics simulation with UCSF Chimera (Hinsen, 2000). We then used AutoDock Vina (Trott and Olson, 2010) to dock

the drugs onto DDX42. The binding site with lowest free energy is displayed. We used the PLIP web server with default parameters

(Salentin et al., 2015) for characterization and found several hydrogen bonding, halogen bonding, hydrophobic interaction and pi-

stacking interactions, suggesting strong drug-target bindings.
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Supplemental Figures

Figure S1. Quality control of icSHAPE data, related to STAR methods and Figure 2

(A) Correlation of RNA expression (RPKM) of the host transcriptome between replicates of icSHAPE libraries for DMSO treatment, NAI-N3 modification in vivo,

and NAI-N3 modification in vitro. N is the number of transcripts.

(B)Correlation of RNA reverse transcription stop (RT stop) sites on SARS-CoV-2 between replicates of icSHAPE libraries in untreated (DMSO) samples and upon

NAI-N3 modification, both in vivo and in vitro.

(C)Receiver operating characteristic (ROC) curve of icSHAPE reactivity scores fitting the theoretical structural model of rRNA and SRP. For rRNA, only baseswith

solvent accessibility greater than 3 are considered.
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Figure S2. The SARS-CoV-2 RNA structure differs in vivo and in vitro, related to Figure 2

(A-B) 5’UTR (A) and 3’UTR (B) models constructed in this studywith in vivo structural data as constraints (Left) and Rangan’smodels (Rangan et al., 2020) (Right).

The difference is labeled by red dashed boxes.

(C) Pearson correlation coefficients of icSHAPE reactivity scores of the SARS-CoV-2 RNA genome among in vivo or in vitro replicate samples.

(D) Distributions of icSHAPE reactivity scores in vivo or in vitro.

(E) Heatmap of sequence divergence and phylogenetic tree of coronaviridae genomes. The color scale represents sequence similarity between strains.
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(legend on next page)
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Figure S3. Structural model (ORF1ab) of the SARS-CoV-2 RNA genome, related to STAR methods and Figure 3

Nucleotides are colored with icSHAPE reactivity scores; blue bars show the probability of base pairing. Nucleotides with a color background were predicted as

co-variant base pairs. Sequence information is included in Table S2
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Figure S4. Comparative analysis reveals structural characteristics and conservations among 5’-UTRs of seven coronaviruses, related to

Figure 4

(A) Structural models of the 5’-UTRs of SARS-CoV-2-T (with a C to T mutation at 241nt), SARS-CoV, and BtCoV-HKU5. Nucleotides are colored with icSHAPE

reactivity scores, blue bars show the probability of base pairing, and nucleotides with color backgrounds were predicted as co-variant base pairs.

(B) Top: sequence similarity matrix of 5’UTR among the seven coronaviruses. Bottom: structural similarity matrix of 5’UTR among the seven coronaviruses.

Structural similarity scores were calculated using RNAforester in the ViennaRNA package.

(C) Computational structural model of the 5’-UTRs of SARS-CoV-2 from the Rfam database. Nucleotides are colored with icSHAPE reactivity scores.

(D) Computational structural model of the 5’-UTRs of MERS-CoV (top) and BtCoV-HKU9 (bottom) from the Rfam database. Nucleotides are colored with

icSHAPE reactivity scores.

(E) Predicted structural models of the 5’-UTRs of HCoV-NL63 and HCoV-HKU1. Nucleotides are colored with icSHAPE reactivity scores, blue bars show the

probability of base pairing, and nucleotides with color backgrounds were predicted as co-variant base pairs.
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Figure S5. Comparative analysis reveals structural characteristics and conservations among 3’-UTRs of seven coronaviruses and corre-

lation between RNA structure and RNA regulation, related to Figure 4

(A) icSHAPE reactivity scores for the 3’-UTRs (with flanking regions) for the selected coronaviruses. Viruses with sequence similarity higher than 70% are

clustered into the same group.

(B) Top: sequence similarity matrix of 3’UTR among the seven coronaviruses. Bottom: structural similarity matrix of 3’UTR among the seven coronaviruses.

Structural similarity scores were calculated based on RNAforester in the ViennaRNA package.

(C) Structural models of the 3’-UTRs of SARS-CoV-2, SARS-CoV-2-T (with a C to T mutation at 241nt), and SARS-CoV. Nucleotides are colored with icSHAPE

reactivity scores, blue bars show the probability of base pairing, and nucleotides with color backgrounds were predicted as co-variant base pairs.

(D) Scatter plot showing the correlations between the detected abundance of a given subgenomic RNA versus its icSHAPE reactivity score, for the specific

regions of the 5’-UTRs of eight canonical subgenomic RNAs.

(E) Schematic illustrating the method to calculate RNA icSHAPE reactivity scores within the common regions of the 5’UTR by dissecting the mapping reads.

(F) Scatter plot showing the correlations between the detected abundance of a given subgenomic RNA versus its icSHAPE reactivity score, for the common

regions of the 5’-UTRs of eight canonical subgenomic RNAs.

The Spearman correlation efficient and the two-tailed P value were calculated using the Python package function scipy.stats.spearmanr in D and F.
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Figure S6. RNA structure functionally impacts both the generation and translation of SARS-CoV-2 subgenomic RNAs, related to Figure 5

(A) Left: Saliency maps from PrismNet showing the predicted binding sites of the RNA binding proteins NONO, PTBP1, and CAPRIN1, with predicted binding

probabilities shown at the top. Grey bars indicate the range of synthesized RNA fragments. Green rectangles show predicted strong binding sites, and orange

rectangles show relatively weaker binding sites. Right: western blot for RNA pull-down assays using the synthesized RNA fragments (Target-SL1, Target-SL2/3,

and Target-SL4).

(B) Scatter plot showing the correlation between two biological replicates of peptide spectral matches (PSMs) of proteins pulled-down by the UTRs of SARS-

CoV-2 RNA in A549 cells.

(C) qPCR validation of siRNA knockdown efficiency in Huh7.5.1 cells. Data represent the mean ± SEM; n = 3 biological replicates.

(D) Western blotting validation of siRNA knockdown efficiency in Huh7.5.1 cells.

(E)Cell viability of Huh7.5.1 cells with siRNA transfection.WT: sample without siRNA transfection. siNC: sample transfectedwith a non-targeting scramble siRNA.

Data represent the mean ± SEM; n = 3 biological replicates.

(F) Schematic of ASO design.

(G) Cell viability of Huh7.5.1 cells with ASO-SL2/3 and ASO-SL4 transfection. Data represent the mean ± SEM; n = 3 biological replicates.
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Figure S7. Validation of ASO and compounds with antiviral activity targeting conserved RNA structure elements and predicted RBPs by

SARS-CoV-2 N trans-complementation system and the bona-fide virus, related to Figure 7

(A) Infection ratios of SARS-CoV-2-GFPDN in Caco-2 cells. The ratio of SARS-CoV-2-GFPDN accumulation in Caco-2 cells infected for 3 days with an MOI

of 0.05 when treated with different ASOs at day 0, including a ‘‘Negative control’’ control treated with an ASO targeting the ORF1ab protein coding region

(16114nt - 16168nt) which has a long stem but no conserved covariation, a ‘‘Scramble’’ control treated with a non-targeting ASO, a ‘‘Not treated’’ control with no

ASO treatment, and a ‘‘Blank control’’ with no ASO treatment and no SARS-CoV-2-GFPDN infection.

(B-C) Cell viability of in humanCaco-2 (B) or Huh7.5.1 (C) cells with ASO_ORF1ab_6449, ASO_ORF1ab_9456 and ASO_N_29502 transfection. Data represent the

mean ± SEM; n = 3 biological replicates.

(D-E) Histograms of the ratio of GFP positive Caco-2 cells infected with SARS-CoV-2-GFPDN and treated with the indicated compounds (D), and histograms of

cell viability of Caco-2 cells with compounds treatment (E). Compounds concentrations are 10 mM. Data are normalized to the average of DMSO-treated samples

(0.1% in concentration) and represent mean ± SEM for n=3 independent experiments. n.s.: not significant. ***<0.005, **<0.01 and *<0.05 using one-way ANOVA

and post hoc Student’s t-test. Red boxes label compounds for further validations.

(F) qPCR quantification of viral titers for equal volume supernatant from Huh7.5.1 cells infected with the bona-fide SARS-CoV-2 virus (MOI = 0.05), 48 h post-

infection. Compound concentrations ranged from 0.04 mM to 30 mM. Dose-response curves for infectivity (black) and cell viability (red) are shown. Data are

normalized to the average of DMSO-treated samples (0.1%) and represent mean ± SEM for n=3 independent experiments.

(G) Both Sorafenib (left) and Nilotinib (right) are docked into the ATP binding site of DDX42 and form several interactions, including hydrogen bonding, halogen

bonding, hydrophobic interaction, and pi-stacking.
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