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Abstract: Outstanding affinity and specificity are the main characteristics of peptides, rendering them
interesting compounds for basic and medicinal research. However, their biological applicability is
limited due to fast proteolytic degradation. The use of mimetic peptoids overcomes this disadvantage,
though they lack stereochemical information at the α-carbon. Hybrids composed of amino acids
and peptoid monomers combine the unique properties of both parent classes. Rigidification of the
backbone increases the affinity towards various targets. However, only little is known about the
spatial structure of such constrained hybrids. The determination of the three-dimensional structure is
a key step for the identification of new targets as well as the rational design of bioactive compounds.
Herein, we report the synthesis and the structural elucidation of novel tetrameric macrocycles.
Measurements were taken in solid and solution states with the help of X-ray scattering and NMR
spectroscopy. The investigations made will help to find diverse applications for this new, promising
compound class.

Keywords: macrocycles; multiconformational equilibrium; peptidomimetics; peptoids; spatial struc-
ture; tetramers

1. Introduction

Peptides, a structurally and functionally diverse class of macromolecules, are involved
in all parts of life. Their unique properties render them highly promising compounds
for biochemical and medicinal research [1,2]. However, peptides come along with some
drawbacks limiting their applicability as selective therapeutics: fast proteolytic degradation
resulting in low bioavailability and improvable physicochemical properties [3,4].

Cyclization has been shown to increase proteolytic resistance and even the binding
affinity and specificity of linear peptides [5,6]. Spatially fixed arrangements of functional
moieties arouse outstanding bioactivities, especially in small cyclic peptides [7–12]. Nowa-
days several cyclic tetrapeptides that modify eukaryotic gene expression [13–20], that
interact with cellular receptors [11,21–25] or that display antimicrobial activity [12,26–30]
are known.

Another approach to improve the bioavailability of linear peptides while maintaining
their unique characteristics has been modifying the individual building blocks [31,32]. The
formal shift of the side chain from the α-carbon to the nitrogen atom results in peptoids,
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which mimic the structure of their parent compounds but lack pivotal motifs affecting the
spatial arrangement (Figure 1) [33–36].
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Figure 1. L-Phenylalanine is an example of an amino acid as the monomer of a peptide (a) and its
respective peptoid monomer (b).

N-alkylation in peptoids prevents the formation of backbone hydrogen bonds which
are crucial for stabilizing secondary structures in related peptides. The absence of the
hydrogen bond donor results in enhanced conformational flexibility that comes along with
increased cis/trans-amide isomerism [37–39]. Peptoids of different sizes have been cyclized
to constrain their conformational flexibility [40–47]. Structural studies of these macrocycles
revealed defined geometries entailing distinct cis-trans sequences depending on the size
and the type of side chains [37,38,40].

Besides peptoid macrocycles, several studies on cyclic, N-methylated peptides have
been reported [48–53]. However, little is known about the spatial structure of macrocycles
that are built up of natural amino acids and peptoid monomers. These hybrid structures
combine the unique selectivity and affinity of peptides with the outstanding metabolic
stability of peptoids. To date, only a few representatives of this compound class, which
holds great promise for future biochemical and medical research, are known [54–59].
Understanding the spatial structure of the peptide-peptoid hybrids allows for the search
for potential targets and enables rational drug design.

Herein, we report the synthesis and structural elucidation of tetramers with different
ratios of amino acids to peptoid monomers. Macrocycles made up of four monomers were
built by head-to-tail cyclization to constrain their conformational flexibility. Crystallographic
data and NMR studies were used to determine the three-dimensional (3D) structures of the
resulting peptide-peptoid hybrids in solid and solution states. This structural investigation
can be a stepping stone for further research on this promising compound class.

2. Results and Discussion

Initially, we aimed to synthesize a congener library of the cyclic tetrapeptide apicidin
(1, Figure 2) [60]. The natural fungal metabolite is known for its ability to inhibit histone
deacetylases (HDAC) and thus to modify the gene expression in eukaryotic cells [15,61–63].
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Our aim was the design of apicidin derivatives capable of the inhibition of the Wnt/β-
catenin signaling pathway. Thus, our structures lacked the characteristic L-2-amino-8-
oxodecanoic acid (Aoda), which is critical for the HDAC activity of apicidin (1) [15].
While analyzing the novel structures, we have observed that replacing individual amino
acids with peptoid monomers has an interesting influence on the spatial structure of the
macrocycles. Herein, we report our findings based on selecting apicidin congeners with
different peptide to peptoid ratios.

Although various chemically and structurally diverse side chains were incorporated
into the library of apicidin derivatives, all congeners had an aromatic amino acid and the
cyclic, N-alkylated amino acid proline in common. Proline was chosen due to its similarity
to the building block of the lead structure apicidin (1), namely pipecolic acid, and its
decreased energy barrier for cis-trans-isomerism [64–66].

Peptide bonds are constrained in their free rotatability due to their strong π-character.
The energy distribution favors two distinct dihedral angles representing cis- and trans-
amide bonds (Scheme 1) [67,68].

Molecules 2021, 26, x FOR PEER REVIEW 3 of 18 
 

 

Our aim was the design of apicidin derivatives capable of the inhibition of the 

Wnt/β-catenin signaling pathway. Thus, our structures lacked the characteristic 

L-2-amino-8-oxodecanoic acid (Aoda), which is critical for the HDAC activity of apicidin 

(1) [15]. While analyzing the novel structures, we have observed that replacing individual 

amino acids with peptoid monomers has an interesting influence on the spatial structure 

of the macrocycles. Herein, we report our findings based on selecting apicidin congeners 

with different peptide to peptoid ratios. 

Although various chemically and structurally diverse side chains were incorporated 

into the library of apicidin derivatives, all congeners had an aromatic amino acid and the 

cyclic, N-alkylated amino acid proline in common. Proline was chosen due to its similarity 

to the building block of the lead structure apicidin (1), namely pipecolic acid, and its de-

creased energy barrier for cis-trans-isomerism [64–66]. 

Peptide bonds are constrained in their free rotatability due to their strong π-character. The 

energy distribution favors two distinct dihedral angles representing cis- and trans-amide 

bonds (Scheme 1) [67,68]. 

 

Scheme 1. The cis-trans-isomerism of peptide bonds. 

Due to the steric hindrance of their side chains, most amino acids form trans-confor-

mations with high energy barriers for cis-trans-isomerism [67,68]. The unusual structure 

of proline results in an equimolar distribution of both the cis- and the trans-conformation 

when incorporated into a polypeptide [64–66]. In nature, isomers of proline are known as 

loop inducers due to cis-bond formation [69,70]. As it is assumed that backbone cis-con-

formations can facilitate the ring closure of tense cyclic tetramers [8,71,72], proline was 

the building block of choice for the design of different macrocycles. 

2.1. Synthesis of Macrocyclic Tetramers  

Hybrid structures consisting of amino acids and peptoid monomers were built upon 

solid support. The synthetic protocol involved the well-known solid-phase peptide syn-

thesis described by Merrifield [73] as well as the submonomer method for the assembly 

of peptoids published by Zuckermann [33] (Scheme 2).  

Scheme 1. The cis-trans-isomerism of peptide bonds.

Due to the steric hindrance of their side chains, most amino acids form trans-conformations
with high energy barriers for cis-trans-isomerism [67,68]. The unusual structure of proline
results in an equimolar distribution of both the cis- and the trans-conformation when incorpo-
rated into a polypeptide [64–66]. In nature, isomers of proline are known as loop inducers due
to cis-bond formation [69,70]. As it is assumed that backbone cis-conformations can facilitate
the ring closure of tense cyclic tetramers [8,71,72], proline was the building block of choice for
the design of different macrocycles.

2.1. Synthesis of Macrocyclic Tetramers

Hybrid structures consisting of amino acids and peptoid monomers were built upon
solid support. The synthetic protocol involved the well-known solid-phase peptide syn-
thesis described by Merrifield [73] as well as the submonomer method for the assembly of
peptoids published by Zuckermann [33] (Scheme 2).

The attachment of the C-terminal amino acid (→ 2) or bromoacetic acid as the first
submonomer of a peptoid building block (→ 4) to a 2-chlorotrityl chloride polystyrene resin
was performed under basic conditions. In the case of amino acids, the Fmoc-protection
group was cleaved using a mixture of 20% piperidine in DMF, resulting in the free primary
amine 3. To build up peptoids, bromoacetic acid was substituted by any desired amine
(→ 5). Depending on the sequence, free amines were either coupled to an amino acid or
bromoacetic acid. Diisopropylcarbodiimide was used as a coupling agent in both cases. To
avoid racemization, hydroxybenzotriazole was added for the attachment of amino acids.

Acetylation and substitution and amino acid coupling and deprotection were carried
out until the desired linear precursor 6 was constructed. Cleavage was performed under
mildly acidic conditions releasing a linear tetramer capable of a head-to-tail cyclization.
The ring closure was carried out following a protocol by Aldrich [74] with the help of the
potent coupling reagent [dimethylamino(triazolo[4,5-b]pyridin-3-yloxy)methylidene]-di-
methylazanium hexafluoro-phosphate (HATU). This iminium salt is known for its potency
in energetically unfavorable couplings, cyclizing constrained tetrapeptides [8,28,75]. To
avoid favored side reactions like cyclodimerizations [72,76,77], a 5.00 mM solution of the
respective linear precursor was added dropwise to a 2.40 mM solution of HATU.
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Scheme 2. Synthetic protocol of cyclic tetramers. [a]: Fmoc-protected amino acid, N,N′-
diisopropylethylamine (DIPEA), N-methyl-2-pyrrolidone (NMP), 21 ◦C, 16 h; [b]: piperi-
dine, dimethylformamide (DMF), 21 ◦C, 3 × 5 min; [c]: Fmoc-protected amino acid, N,N′-
diisopropylcarbodiimide (DIC), hydroxybenzotriazole, NMP, 21 ◦C, 4 h; [d]: bromoacetic acid,
DIPEA, DMF, 21 ◦C, 1 h; [e]: amine, DMF, 21 ◦C, 1–16 h; [f]: 1. bromoacetic acid, DIC, DMF, 21 ◦C,
30 min; 2. amine, DMF, 21 ◦C, 1–16 h; [g]: hexafluoroisopropanol, methylene chloride, 21 ◦C, 16 h;
[h]: [dimethylamino(triazolo[4,5-b]pyridin-3-yloxy)methylidene]-di-methylazanium hexafluorophos-
phate (HATU), DIPEA, DMF, 21 ◦C, 30 h.

Reactive moieties of side chains were masked with protecting groups. Deprotection
was performed immediately after the cyclization step. After ten or eleven reaction steps,
respectively, the synthetic protocol yielded cyclic tetramers, which required only a single
purification step at the end of the reaction sequence. Purification was carried out via
preparative reversed-phase high performance liquid chromatography (HPLC), and product
formation was confirmed via matrix assisted laser desorption ionization-time of flight
(MALDI-TOF) mass spectrometry.

In an initial library, several macrocyclic tetrapeptides of general structure 7 were
synthesized. To match the model structure apicidin (1), proline was incorporated in its
D-configuration. The remaining amino acids were applied in their L-configuration. To
avoid diketopiperazine formation [78,79], D-proline was incorporated as the third building
block during the modular solid-phase synthesis. Approaches with proline as N-terminal
building block yielded low amounts of the desired macrocycles (data not shown). It was
assumed that the low nucleophilicity of the secondary amine prevented cyclization.

For this reason, the sequence of the linear precursors was changed in such a way that
a primary amine was in the N-terminal position (R1). Cyclization of these precursors then
led to moderate yields of the corresponding macrocycles. Nine derivatives with structural
similarity were selected to represent the library of macrocyclic tetramers (Table 1).

The N-terminus of the linear precursors (position R1) consisted of branched aliphatic
or aromatic amino acids. In position R2, different alkyl side chains were incorporated. The
C-terminus (position R3) was built by either L-phenylalanine or L-tryptophan. Ring closure
was carried out by amidation of the N-terminal amine (R1) with the carboxyl function of
the C-terminal, aromatic amino acid (R3). The use of different building blocks did not
influence the overall yield of the reaction. Even additional deprotection steps (compounds
7b and 7g) had no clear effect on the yields of the macrocyclic tetrapeptides. On average,
the cyclic tetramers were isolated in 42% ± 13 overall yield.
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Table 1. Cyclic tetrapeptides of general structure 7 and their respective yields over ten or eleven reaction steps.
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was carried out by amidation of the N-terminal amine (R1) with the carboxyl function of 

the C-terminal, aromatic amino acid (R3). The use of different building blocks did not in-

fluence the overall yield of the reaction. Even additional deprotection steps (compounds 

7b and 7g) had no clear effect on the yields of the macrocyclic tetrapeptides. On average, 

the cyclic tetramers were isolated in 42% ± 13 overall yield. 

In a second library, individual amino acids were replaced by a peptoid monomer. 

Peptoids are peptidomimetics that promise high metabolic stability and outstanding bio-

logical activity [33–35]. Compared to peptides, the side chain is formally shifted from the 

α-carbon to the backbone nitrogen atom. This comes with high conformational flexibility 

as the amide nitrogen loses its capability to serve as a hydrogen bond donor. Moreover, 

the modification of the amide nitrogen lowers the energy barrier of cis/trans isomerization 

[36,37,80,81]. However, a beneficial effect of this enhanced flexibility on the cyclization 
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C-terminus (position R3) was built by either L-phenylalanine or L-tryptophan. Ring closure 

was carried out by amidation of the N-terminal amine (R1) with the carboxyl function of 

the C-terminal, aromatic amino acid (R3). The use of different building blocks did not in-

fluence the overall yield of the reaction. Even additional deprotection steps (compounds 

7b and 7g) had no clear effect on the yields of the macrocyclic tetrapeptides. On average, 

the cyclic tetramers were isolated in 42% ± 13 overall yield. 

In a second library, individual amino acids were replaced by a peptoid monomer. 

Peptoids are peptidomimetics that promise high metabolic stability and outstanding bio-

logical activity [33–35]. Compared to peptides, the side chain is formally shifted from the 

α-carbon to the backbone nitrogen atom. This comes with high conformational flexibility 

as the amide nitrogen loses its capability to serve as a hydrogen bond donor. Moreover, 

the modification of the amide nitrogen lowers the energy barrier of cis/trans isomerization 

[36,37,80,81]. However, a beneficial effect of this enhanced flexibility on the cyclization 
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In a second library, individual amino acids were replaced by a peptoid monomer.
Peptoids are peptidomimetics that promise high metabolic stability and outstanding bio-
logical activity [33–35]. Compared to peptides, the side chain is formally shifted from the
α-carbon to the backbone nitrogen atom. This comes with high conformational flexibility
as the amide nitrogen loses its capability to serve as a hydrogen bond donor. Moreover,
the modification of the amide nitrogen lowers the energy barrier of cis/trans isomeriza-
tion [36,37,80,81]. However, a beneficial effect of this enhanced flexibility on the cyclization
reaction was not observed. The nine macrocyclic hybrids representing a library composed
of tetramers with three amino acids and one peptoid monomer were isolated in 31% ± 14
overall yields (Table 2).

To resemble the model structure apicidin (1), the nine macrocycles 8a–i have an
aromatic amino acid at the C-terminal end (R5) and an adjacent linear alkyl side chain in
common (R3 or R4). The peptoid monomer was inserted at the C- or N-terminal position of
D-proline (R1 or R3). In the latter case, cyclization was performed on the secondary amine of
a peptoid building block, causing a lower yield on average (19% ± 8, 8a–c). Incorporating
a peptoid monomer in the middle of the sequence resulted in overall yields similar to those
obtained for cyclic tetrapeptides (36% ± 13, 8d–i).

Further peptoid building blocks were incorporated into the macrocycles to enhance
structural diversity, resulting in the general structure 9. Table 3 shows a selection of
nine structurally similar apicidin congeners with both aromatic and aliphatic side chains
(Table 3).
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Table 2. Cyclic tetramers of general structure 8 and their respective yields over ten reaction steps.
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The macrocyclic hybrids 9a–i are composed of two peptoid monomers (R1 and R2)
and two amino acids (D-proline and R3) located in alternating order on opposite sides of
the backbone ring system. Aromatic and linear, and cyclic aliphatic peptoid monomers
built the N-terminus of the linear precursors (R1). The individual building blocks did not
influence the overall yields, similar to the yields obtained for hybrids 8a–c that were also
cyclized on a secondary amine (24% ± 11).

2.2. Multiconformational Equilibrium Detected by NMR

Often multiple signal sets are detected in the nuclear magnetic resonance (NMR)
spectra of macrocycles depending on the dielectric properties of the solvent [11,82–84].
This could be due to different conformers present or conformational equilibrium [38,85].
Influencing factors are i.e., side chains, solvent effects, and temperature [71,72]. For the
model structure apicidin (1), as an example, it is known that multiple conformations stem
from cis-trans isomerism of the pipecolic acid building block [83,86].

HPLC purification of the compounds resulted in sharp peaks indicating that one pre-
dominant isomer was synthesized [87–89]. However, NMR-spectra of the cyclic tetramers
corroborated the formation of several conformers for almost every macrocycle (supple-
mental, Table S6). This was most prominent for cyclic tetrapeptides 7a–i, which tended to
assemble in multiconformational equilibria due to multiple degrees of freedom.
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The same applied to the macrocycles with one peptoid monomer. Macrocycles 8a–i
revealed multiple signal sets in solution, indicating different conformers’ formation (sup-
plemental, Table S6). Nuclear Overhauser and exchange spectroscopy (NOESY) spectra
of macrocycle 8f, for example, led to the identification of five separate conformers which
interconverted on the NMR timescale. Surprisingly, the complexity of the spectra of
the hybrids 8a–d was significantly reduced compared to spectra of structures 8e–i. The
peptoid monomer was inserted at the N-terminus in the former ones, resulting in one
dominant structure next to another isomer in approximately 5:1. Therefore, incorporat-
ing a peptoid building block in this position could stabilize distinct isomers, decisive for
biological applications.

For macrocycles 9a–i, one dominant signal set was mostly observed (supplemental,
Table S6). To illustrate this, Figure 3 displays the NH regions of selected macrocycles
from series 8 and 9, which were soluble in pure acetonitrile. In the NH region of series 9
macrocycles, only one peptide bond amide signal is visible. For macrocycles 8c, 8d, 8f, and
8g, one main signal set was accompanied by a second or third signal set of lesser intensity.
Macrocycles from series 7 are not shown here, as the molecules were primarily soluble in
dimethyl sulfoxide (DMSO) (see supplemental, Table S6).
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2.3. Spatial Structure in Solid-State

X-ray diffraction is a highly reliable method to determine the spatial structure of
molecules in the solid-state [90,91]. Crystallization of the macrocyclic hybrids was at-
tempted via evaporation of acetonitrile, isopropanol, and methanol. Most macrocycles
aggregated into amorphous powders during this process, some became viscous oils, and
others produced polycrystalline needle-shaped structures. However, some single crystals
were obtained from multiple attempts for each of the five similar cyclic tetrapeptides 7a,
7b, 7e, 7f and 7h (Figure 4).

Macrocycle 7b represents the only tetrapeptide with a polar building block crystallized
in sufficient quality for X-ray diffraction. In contrast to the other structures, 7b is equipped
with L-serine instead of the alkyl side chain L-norleucine. Thus, the macrocycle 7b is the
only member of the apicidin tetrapeptide library without L-norleucine that crystallized
upon vapor diffusion.

For both tetrapeptides 7a and 7b containing an N-terminal L-isoleucyl residue, the
structure of one isomer was determined via X-ray diffraction. As for the model structure
apicidin (1) [84], at least three independent structures (I, II, III etc.) each were obtained for
macrocycles 7e, 7f and 7h. Their dihedral angles differ slightly from each other but show
the same cis-trans arrangement (Table 4).

To elucidate the backbone conformation, dihedral angles of the individual macrocycles
were measured. The dihedral angleω describes the torsion angle of the axis between the α-
and the amide carbon atom of one amino acid and the axis between the amide nitrogen
and the α-carbon atom of the following building block. Due to the partial double-bond
character of the peptide bond, this angle is forced into two distinct values: ω = 0◦ or
ω = ±180◦. Sterical hindrance can lead to a deviation of the dihedral angles from their
ideal values, but an angle close to ω = 0◦ indicates a cis-conformation while ω = ±180◦

indicates a trans-peptide bond [92].
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Table 4. Dihedral angles of the independent structures of macrocycles 7a, 7b, 7e, 7f and 7h determined via X-ray diffraction
measurements.
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Macrocycle Structure ωA ωB ωC ωD

7a I 155.7◦ 171.1◦ 5.2◦ −167.6◦

7b I 159.0◦ 171.5◦ 6.5◦ −172.7◦

7e
I 157.3◦ 170.1◦ 12.1◦ −173.3◦

II 158.1◦ 169.5◦ 6.5◦ −172.4◦

III 158.5◦ 171.8◦ 13.1◦ −175.6◦

7f

I 160.4◦ 167.9◦ −3.7◦ −172.6◦

II 160.8◦ 167.4◦ 13.6◦ −174.4◦

III 163.3◦ 166.8◦ 9.8◦ −174.8
IV 165.5◦ 163.7◦ 14.6◦ −177.6◦

V 165.3◦ 163.9◦ 10.9◦ −177.0◦

7h

I 157.9◦ 169.0◦ 5.0◦ −170.6◦

II 157.1◦ 169.6◦ −6.9◦ −168.0◦

III 153.1◦ 169.6◦ 13.5◦ −172.7◦

IV 155.3◦ 171.0◦ 3.1◦ −165.6◦
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All conformers of the five macrocycles 7a, 7b, 7e, 7f, and 7h showed a cis-conformation
between the nitrogen atom of their respective D-prolyl residue and the amide carbon of
the adjacent amino acid (ωC). The trans-trans-cis-trans sequence of the backbone has also
been reported for the model structure apicidin (1) [83] and similar cyclotetrapeptides [93].
The largest deviations from the ideal dihedral angle were measured between the nitrogen
atoms of the large aromatic side chains L-phenylalanine or L-tryptophan and the amide
carbon of the following building blocks (ωA).

The measurements of the configurations of the α-carbon atoms showed the expected
stereochemistry: the α-carbon of every D-proline building block was (R)-, the ones of the
remaining amino acids were (S)-configurated. Furthermore, the macrocycles resembled
each other in the location of their side chains: while the aliphatic ring of D-proline pointed
above the ring level, the remaining side chains were located below.

Crystallization preparations of hybrids containing one peptoid monomer provided
single crystals of two compounds: 8e and 8f (Table 5). Both revealed strong structural
similarities to the cyclic tetrapeptides 7a–i. Moreover, the macrocycles 8e and 8f are
equivalent to each other in large parts of their structure but differ in their peptoid-based
alkyl side chain length.

Table 5. Molecular structures of the cyclic hybrids 8e and 8f and their dihedral angles determined via X-ray diffraction
measurements.
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Macrocycle ωA ωB ωC ωD

8e 155.2◦ 169.4◦ 12.2◦ −173.0◦

8f 155.3◦ 170.7◦ 13.5◦ −172.4◦

The dihedral angles of the peptide-peptoid hybrids resemble the ones measured for
cyclic tetrapeptides. Again, a cis-conformation was measured between the nitrogen atom
of D-proline and the amide carbon of the following building block. As for tetrapeptides of
general structure 7, three residues were located on the same side of the ring plane while
the alkyl ring of D-proline pointed towards the opposite direction.

We could not successfully crystallize any cyclic hybrid of compounds with two peptoid
units (series 9). Thus, we decided to use NMR data for the structure elucidation of the
exemplarily chosen macrocycle 9a.

2.4. Spatial Structure in Solution State

Structural information on 9a was obtained by recording NOESY spectra. Internuclear
distances were calculated from NOE cross-peak intensities (see supplemental, Table S2
for details). Using the internuclear distance data from NOESY spectra and dihedral an-
gle information from J-coupling constants, a 3D model for 9a was constructed with the
molecular modeling software Avogadro [94]. This model was further structurally opti-
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mized utilizing a discrete Fourier transform (DFT) approach using the quantum chemical
calculation software Turbomole [95].

However, nuclear Overhauser effect (NOE) data of small molecules is often not suf-
ficient to unambiguously select for one conformation, especially in structural backbone
dynamics. Additional structural information regarding 9a was obtained by extraction of
one- and two-bond residual dipolar couplings (RDCs) in a uniaxially stretched polyethy-
lene glycol (PEG) gel [96]. This was achieved by recording clean in-phase heteronuclear
single quantum coherence (CLIP-HSQC) [97] and P.E.HSQC [98] spectra of the molecule
in an isotropic environment and under anisotropic conditions in a uniaxially stretched
polyethylene glycol (PEG) gel [96]. The RDCs were then used to validate the NOE-derived
structure. To assess whether the RDCs agree with the constructed model, they were an-
alyzed using single value decomposition (SVD) in the MSpin-RDC software [99]. An
SVD omitting the RDC data of the more mobile sidechains yielded acceptable results. The
back-calculated and experimental RDCs were in good agreement, with 7 out of 8 RDCs
fulfilled within the experimental error (supplemental, Table S3). A full back-calculation
including sidechain RDCs can be found in the supporting information (supplemental, Table
S3). Although the deviation between experimental and back-calculated values was higher
in this case, all RDC values were reasonably well reproduced. The constructed model is
therefore largely in agreement with the experimental NOE, J-coupling, and RDC data and
can be seen to represent the dominant solution state structure of 9a.

The 3D model of 9a indicated interesting structural differences compared to the
macrocycles with three or four amino acids (Table 6).

Table 6. Dihedral angles and molecular solution-state structure of the macrocycle 9a determined via NMR measurements.
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Macrocycle ωA ωB ωC ωD

9a −179.3◦ 14.8◦ −177.1◦ −11.2◦

The model of 9a displays an alternating cis-trans-configuration of the cyclic backbone
and an overall oblong ring shape. Thereby, the torsion angles ωA and ωC indicate a
trans-peptide bond between the amino functions of both amino acids and the carbonyl
moieties of the subsequent peptoid monomers. In contrast to previous structures, no
cis-bond was measured between the nitrogen atom of proline and the amide carbon of
the following building block (ωC). Instead, two cis-bonds were detected between the
nitrogen atoms of the peptoid monomers and the subsequent carbonyl carbon atoms (ωB
andωD). Likewise, the dihedral angleωA next to the sterically demanding side chains of
L-phenylalanine was no longer distorted from ideal values (ωA = 179.3◦). Previous studies
on small cyclic peptoids have shown that the cis-trans-cis-trans arrangement represents the
lowest energy conformation and forms during the crystallization process of different cyclic
tetrapeptoids [100–102]. Our data indicate that this characteristic backbone arrangement is
also favored in cyclic hybrids of general structure 9. Thus, with an increase in the peptide-
peptoid ratio, the backbone configuration of apicidin derivatives can be easily modified.

Besides backbone configuration, the side chains of 9a differed from previous deriva-
tives: the side chains were located alternately above and below the ring plane. This
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characteristic orientation is also known for pure peptoid macrocycles of different ring
sizes [41,100,101] and various N-alkylated tetrapeptides [103–108].

Our data indicate that the increase of the peptoid-to-peptide ratio leads to significant
structural changes of the entire macrocycle, which must be considered when developing
potential inhibitors of the Wnt/β-catenin pathway.

3. Materials and Methods

Solvents and reagents were purchased from commercial sources (ABCR, Alfa Aesar,
Carbolution Chemicals, Chempur, Fisher Chemical, Merck Millipore®, Carl Roth and
VWR™) and used without further purification. Detailed information on the synthesis of
peptoids, reagents, methods and instruments is given in the supplemental information.

General procedure for the synthesis of cyclic peptoids: In a fritted syringe, a 2-
chlorotrityl-chloride resin (125 mg, 200 µmol, 1.60 mmol/mg loading density, 100–200
mesh, 1.00 equiv.) was swollen in methylene chloride (DCM) for at least 30 min at 21 ◦C.
After filtration, either a freshly prepared solution of bromoacetic acid (8.00 equiv.) and
N,N′-diisopropylethylamine (DIPEA, 8.00 equiv.) in N,N′-dimethyl-formamide (DMF) or a
Fmoc-protected amino acid (4.00 equiv.) and DIPEA (4.00 equiv.) in N-methylpyrrolidone
(NMP) was added and shaken for 1 h or rather 16 h at 21 ◦C. The resin was extensively
washed with DMF, methanol, and DCM. In the former case, a solution of the corresponding
amine (8.00 equiv.) in DMF was added to the resin and shaken for 1 h at 21 ◦C. In
the latter case, a solution of 20% piperidine in DMF was repeatedly added. Following
extensive washing, either a solution of bromoacetic acid (8.00 equiv.) and N,N′-diisopropyl-
carbodiimide (DIC, 8.00 equiv.) in DMF or a Fmoc-protected amino acid (4.00 equiv.),
1-hydroxybenzotriazole (HOBt, 4.00 equiv.) and DIC (4.00 equiv.) in NMP were added and
shaken for 30 min or 4 h at 21 ◦C. Substitution or rather Fmoc-deprotection and acetylation
or rather amino acid coupling were alternated repeatedly until the desired tetramer was
built. For cleavage, a solution of 33% hexafluoroisopropanol in DCM was added, and the
mixture was shaken overnight. The solvent was removed under an air stream.

For the cyclization, a solution of the respective linear tetramer was added dropwise to a
solution of [dimethylamino(triazolo[4,5-b]pyridin-3-yloxy)-methylidene]-dimethylazanium
hexafluoro-phosphate (HATU, 1.50 equiv.) and DIPEA (8.00 equiv.) in DMF. The mixture
was stirred overnight at 21 ◦C, and the solvent was removed under reduced pressure. The
residue was purified via preparative reversed-phase HPLC (Puriflash™ 4125, Interchim,
Montluçon, France).

Crystal structure determination: The single-crystal X-ray diffraction studies were
carried out on a Bruker D8 Venture diffractometer (Bruker Corporation, Billerica, MA,
USA) with a PhotonII detector at 123(2) K, 173(2) K, or 298(2) K using Cu-Kα radiation
(λ = 1.54178 Å). Dual space methods (SHELXT) [109] were used for structure solution, and
refinement was carried out using SHELXL (full-matrix least-squares on F2) [110]. Hydrogen
atoms were localized by difference electron density determination and refined using a
riding model (H(N, O) free). Semi-empirical absorption corrections were applied. For 7a
and 8e, extinction corrections were applied. The absolute configuration was determined for
all structures refinement of Parsons’ x-parameter [111]. For disorder, restraints, constraints,
and SQUEEZE, see the corresponding cif-files for details. CCDC 2059042 (7a), 2059043 (7f),
2059044 (7e), 2059045 (8f), 2059047 (7h), 2059048 (8e), and 2059049 (7b) contain the supple-
mentary crystallographic data for this paper. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
(Cambridge, UK, (accessed on 14 May 2021)). More details on the single-crystal X-ray
diffraction studies can be found in the supplementary information.

NMR measurements: NMR spectra were recorded at 25 ◦C on an Avance 300 (Bruker
BioSpin, Rheinstetten, Germany) and a Bruker Avance 500 spectrometer. Additional NMR
spectra of peptide-peptoid hybrid 9a were recorded at 30 ◦C on a 600 MHz Avance III
spectrometer with a TCI cryo-probe head (Bruker BioSpin, Rheinstetten, Germany). More
details on the NMR measurements can be found in the supplemental information.

www.ccdc.cam.ac.uk/data_request/cif
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4. Conclusions

The three different classes of tetrameric cyclic peptide-peptoid hybrids presented
here will pave the way to further research on this promising class of compounds. All
macrocycles were designed to resemble the fungal metabolite apicidin (1) but without the
characteristic Aoda side chain, critical for its literature known HDAC inhibitor activity [15].
The cyclic tetramers are accessible in moderate yields by combining different solid-phase
techniques followed by ring closure in solution.

Several studies had previously shown that cyclic tetramers might adopt multiple
conformations in solution, especially interchanging cis and trans peptide bonds [7,11,70].
The active conformation of biologically potent molecules in solution may be selected in
reality from various interconverting conformers. The stability of the single conformers
depends on intra- as well as intermolecular interactions [72]. The conversion rate between
these conformers is quite high, making it difficult to identify every isomer formed [71,72].

Our X-ray and NMR measurements revealed the formation of different isomers in
solid and liquid states for the cyclic tetramers presented. The amount of conformational
variability depended on the number of incorporated peptoid units. Solution state NMR
spectroscopy indicated different conformers for all compounds that exchanged partially
within the NMR time scale. Especially for macrocycles with no or one peptoid monomer,
multiple signal sets were detected. The incorporation of two peptoid monomers led to the
stabilization of one dominant isomer.

Crystallographically detected conformers differed only in details concerning the back-
bone structure of the cyclic ring. Tetrapeptide conformers varied slightly in their dihedral
angles but showed the same cis-trans sequence. The incorporation of one peptoid monomer
did not change this cis-trans arrangement. The insertion of two peptoid monomers signifi-
cantly affected the overall conformation. Instead of one, two cis-bonds were detected in
the resulting macrocycles, indicating that the amount of peptoid monomers influences the
spatial structure of peptide-peptoid hybrids.

With the structural information now in hand, biological targets can be identified, and,
thanks to the modular approach, highly specific hybrids can be easily synthesized. These
new molecules will find application in biochemical and medical research and help elucidate
and sustain life’s complexity. We will continue our work on the activity of our macrocycles
towards the Wnt/β-catenin signaling pathway. So far, we have found some hybrids with
inhibition constants in the range of the model structure apicidin (1, data not shown). The
structural investigations reported herein will help us design different potent inhibitors of the
Wnt/β-catenin pathway, a signaling cascade involved in embryogenesis and homeostasis,
and different diseases such as cancer or neurodegenerative disorders [112–118].

Supplementary Materials: The following are available online: synthetic procedure, crystallographic,
and NMR data.
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