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Abstract

This study was inspired by the need to estimate pointwise confidence intervals (CIs) for a

nonlinear dose-response model from a dose-finding clinical trial. Profile likelihood based CI

for a nonlinear dose response model is often recommended. However, it is still not com-

monly used in dose-finding studies because it cannot generally be calculated explicitly.

Most previous research has mainly focused on the performance of the profile likelihood

based CI method compared with other common approaches. However, there are still no

reports on computing profile likelihood based pointwise CIs for an entire dose-response

curve. Based on a previous dose-finding trial with binary-response data, this present study

proposed to calculate profile likelihood based pointwise CIs by using the bisection method

with proper calculation order for doses in the curve plus crude search when the expected

response is close to a boundary. The convergence could be improved by applying appropri-

ate starting values for the optimization procedure with straightforward programming tech-

niques. The algorithm worked well in most cases based on the simulation study and it can

be applied more generally to other dose-response models, and other type of data like nor-

mally distributed response. It would indeed be great to be able to use profile likelihood

approaches more routinely when constructing pointwise CIs for nonlinear dose-response

models.

Introduction

In dose-finding studies, together with parameter estimates from the fitted dose-response

model, the pointwise confidence intervals (CIs) of the expected response for doses on the

entire curve that characterize the uncertainty of the fitted model are always needed to provide

essential information for identifying the optimal dose (s). To compute CIs for parameters, the

Wald-type CI is the most commonly used approximate CI mainly because of its intuitive

appeal and computational ease. However, the use of this approach in nonlinear dose-response

models and binomial inferences has been discouraged because of its woeful performance [1–

5]. The profile likelihood approach is one of the recommended methods for generating CIs for
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parameters from a nonlinear dose-response model [3–5]. Compared with Wald-type CI, the

profile likelihood based CI generally has a better coverage, can avoid aberrations such as limits

outside [0,1], and takes monotonicity into account. Furthermore, it even performs better than

the bootstrap method (nonparametric percentile method) in some situations, such as when

boundaries are used in the estimation of parameters in a nonlinear model [3–5].

However, profile likelihood based CI generally cannot be calculated explicitly, and is even

more difficult to calculate when coping with two or more parameters in a nonlinear model

[1,6,7]. Non-convergence occurs frequently when generating profile likelihood based CI

through calculations by iteratively optimizing parameters, which is the most common cause of

the calculation’s breakdown. The calculation can become more challenging when generating

pointwise CIs for a large number of dose-points on a highly flexible nonlinear model [1,7].

This could be the reason why profile likelihood based pointwise CI is not commonly used for

nonlinear dose-response models in clinical trials. Previous research has mainly focused on

evaluating the performance of the profile likelihood approach for nonlinear dose-response

models compared with other approaches [3–5,8]. However, there are to date no reports on

computing pointwise CIs for an entire dose-response curve based on the profile likelihood

approach. Considering the significant advantages of the profile likelihood based CI compared

with other approaches [3–5], we aimed in the present study to investigate the implementation

of profile likelihood based pointwise CIs for nonlinear dose-response models.

In this paper, we first discuss the issues when implementing the profile likelihood approach

based pointwise CIs with an example from clinicaltrials.gov that has a binary efficacy endpoint

in dose-response analysis. Subsequently, we outline the feasible methods to deal with the issues

from an implementation point of view, and then a simulation study is performed to test the

algorithm in different sample sizes and to evaluate the performance of profile likelihood based

CIs for all doses for the entire curve compared with two other commonly used methods (Wald

and Bootstrap approach based on nonparametric percentile method). Finally, conclusion and

its discussion are presented.

The motivation

The data that motivated this present study and that were used to illustrate the proposed analy-

sis were extracted from trial NCT02131662 on clinicaltrials.gov. The trial was a phase 2 dose-

finding study that was randomized and placebo-controlled with a total of four active doses (0.5

mg, 1 mg, 2 mg, and 4 mg) and placebo. The primary variable was assumed to be binomially

distributed; the number of responders (n)/total number of participants (N) in each group

from the lowest dose (0 mg, placebo) group to the highest dose (4 mg) group were as follows

n/N = 1/58, 18/60, 34/61, 33/61, and 36/60. The dose-response model (4-parameter logistic

model) was applied to investigate the dose-response relationship, which was assumed to be a

monotonically increasing function in dose.

We next describe the issues and how to obtain profile likelihood based pointwise CIs with

relatively general approaches based on this dataset. The analyses presented here are post-hoc
analyses. In addition, normal-based pointwise Wald-type CIs and bootstrap pointwise CIs

based on nonparametric percentile method were constructed to provide a direct comparison

with the profile likelihood approach.

The 4-parameter logistic model as a generalized nonlinear model was specified as previ-

ously described [9,10]:

f ðd; p0;Emax;ED50; dÞ ¼ p0 þ Emax=f1þ e½ðED50 � dÞ=d�g; ð1Þ

Where p0 is the basal effect for d (dose) equal to -infinity, Emax is the maximum effect
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attributable to the drug (compared with the basal effect, the maximum increase of drug effect),

ED50 is the dose at which 50% of Emax is achieved, and δ is the hill slope parameter controlling

the rate of dose-dependent change in the effect. The estimation for the 4-parameter logistic

model is based on maximum likelihood assuming binomial distributions. The 4-parameter

logistic model is expected to have more flexible settings in dose-response analysis for binomi-

ally distributed data compared with 2-parameter logistic models, because it generalizes the

usual logistic model to allow the lower and upper response asymptotes to be greater than zero

and less than one, respectively. For example, the placebo effect result is a response greater than

zero in the placebo group, or not all participants have the expected response to a drug [11].

This is the general case expected in clinical trials. However, this flexibility is at the cost of a

higher dimensional optimization and makes harder to compute.

The commonly used algorithms for computing profile likelihood based CI include the one

proposed by Venzon and Moolgavkar which is based on a modified Newton-Raphson iteration

[7], the bisection method, and grid search [3,12]. For the algorithm proposed by Venzon and

Moolgavkar, it has been noted that non-convergence might occur when assumptions are not

met, including when the gradient at the maximum likelihood (ML) estimation deviates from

zero, or when the likelihood is not close to a quadratic form, thus making the initial value of

the iteration algorithm too small or too large [12]; This becomes even more challenging when

fitting a nonlinear curve [7]. This algorithm was applied in our present example, but the non-

convergence issue halted the implementation when handling four parameters and computing

pointwise CIs for the entire curve from this highly flexible nonlinear model, which could not

be fixed by simple programming techniques. Therefore, methods for general purposes with

relative straightforward techniques, i.e., bisection method plus crude search, were considered

and tested in order to minimize non-convergence readily by applying the appropriate initial

values for iteration with simple programming techniques. All information needed for the itera-

tion can be taken directly from the output from a previous fitting and no extra efforts were

required to calculate their derivatives with these methods. Indeed, this has made the calcula-

tion very easy when computing the pointwise CIs.

The algorithm for computing pointwise CIs

To obtain the pointwise CIs, a grid of doses ranging from the lowest dose to the highest dose

(0–4 mg) was defined. A total of 41 equidistant points, d� (0–4 mg, by 0.1 mg), were defined in

our example. The grid of values can be extended to obtain greater accuracy, if necessary. In

addition, we reparameterized the model to encompass our target parameter which is the

expected response p� in our case. We replaced Emax with a function of p� in model (1),

Emax ¼ ðp
� � p0Þf1þ e½ðED50� d�Þ=d�g

thus making the model contain p�

f ðd; p0; p
�; d�; dÞ¼ p0 þ ðp

� � p0Þf1þ e½ðED50 � d�Þ=d�g=f1þ e½ðED50 � dÞ=d�g ð2Þ

This is in principle the usual approach for estimating confidence intervals of a certain estimate

[3,4,8]. After the reparameterization, the profile likelihood versus the expected response can be

obtained in the model [8], and subsequently to obtain the CI of p� for each specific dose d� in

the defined grid like other parameters.

Bisection method

We started the implementation of the bisection method on our example. The bisection method

is a simple and robust root-finding method. In our example, the search algorithm stopped

Profile likelihood based pointwise confidence intervals for nonlinear dose-response models
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when the difference between the upper and lower bound of the search interval was less than

the convergence tolerance set in advance. The midpoint of the next-to-last search interval was

taken as the lower or upper confidence limit. The greater accuracy can be obtained by setting

smaller convergence tolerances.

A reasonable lower and upper bound of the initial search interval can speed up the conver-

gence in bisection method. The natural upper boundary for binomial data is 100%, which

could be used as the upper bound of the initial search interval in the calculation of the upper

confidence limit for each dose. However, as dose-response models are often monotone, for

monotone models, if the model fits significantly better than the constant model, for example,

based on a likelihood ratio test, the profile likelihood based confidence bounds will be mono-

tone [4]. Because the pointwise CIs can be estimated sequentially, the monotonicity of confi-

dence limits can be taken into account to facilitate the calculation when setting the lower and

upper bound of the initial search interval of a dose. Thus, for a specific dose apart from the

highest dose in the dose grid defined above, the already calculated upper confidence limit for

the expected response of the immediate dose that is higher to this specific dose can be a good

alternative to the upper bound of the initial search interval for its upper confidence limit.

Therefore, we started the calculation for upper confidence limits from the highest dose. In our

case, the highest dose was 4 mg, and the upper bound of the initial search interval for the

upper confidence limit of the expected response for this dose was set as p̂ þ 5seðp̂Þ, where p̂
is the ML estimate of the expected response to 4 mg and seðp̂Þ is the standard error of the

expected response to 4 mg. In the simulation study (the simulation section), there were no

upper confidence limits of the expected response to 4 mg that were larger than p̂ þ 3:5seðp̂Þ in

all the tested sample sizes. The maximum multiple of seðp̂Þ for different sample sizes based on

profile likelihood CIs from the simulation study for our example can be found in Table 1.

Thus, the value used as the upper bound of the initial search interval for 4 mg was a reasonable

value which was large enough to cover the upper confidence limit of the expected response to

4 mg. In our case, this value is less than 100%. However, if this value is higher than 100% due

to a very high expected response of the highest dose, 100% should be used as the upper bound

of the initial search interval for the highest dose for binomial data. A reasonable lower bound

of the initial search interval for the upper confidence limit of the expected response for each

dose can be its ML estimate. A similar approach was implemented to calculate the lower point-

wise confidence limits of the curve, except that the calculations were started from the lowest

dose. Therefore, for a specific dose apart from the lowest dose in the dose grid, the already cal-

culated lower confidence limit for the expected response of the immediate dose lower to this

dose can be used as the lower bound of the initial search interval for its lower confidence limit.

The lowest dose in our case was 0 mg. To simplify the calculation the lower bound of the initial

Table 1. Maximum multiple of seðp̂Þ for dose 0 mg and 4 mg based on profile likelihood confidence intervals for

different sample sizes from the simulation study.

Maximum multiple of seðp̂Þa

for lower limit

Maximum multiple of seðp̂Þa

for upper limit

n 0 mg 4 mg 0 mg 4 mg

20 1.4 2.1 16.6 3.3

50 1.8 2.7 10.3 3.2

70 1.9 1.8 11.6 2.4

100 1.8 1.6 8.7 1.8

a p̂ is the maximum likelihood estimate of the expected response rate; seðp̂Þ is the standard error of the expected

response rate. seðp̂Þ is computed based on approximate normality.

https://doi.org/10.1371/journal.pone.0210953.t001
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search interval for the lower confidence limit of 0 mg dose was set at 0%. Based on the simula-

tion study (the simulation section), there were no lower confidence limits of the expected

response to 0 mg that were less than p̂ � 2seðp̂Þ in all the tested sample sizes, which is a value

very close to 0 in our case. Similarly, the ML estimate of the expected response for each dose

can be used as the upper bound of the initial search interval for the lower confidence limit of

this dose. In addition, the ML estimates for all parameters from a previous fitting were used as

the starting values of the parameters for the next optimization.

An alternative feasible solution is to start the calculation from the lowest dose for the upper

confidence limits and from the highest dose for the lower confidence limits. For example,

when calculating pointwise upper confidence limits for a specific dose, the already calculated

upper confidence limit for the expected response of the immediate dose lower to this dose can

be used as the lower bound of the initial search interval for its upper confidence limit. In this

way, a reasonable upper bound of the initial search interval for the upper limit for a dose is

needed to be set. However, we have met some problems with our example when handling

doses at or close to 0 mg which is described in next section, therefore we started the calculation

from the highest dose for the upper confidence limits.

Crude search

With the above-mentioned approach, non-convergence did not occur in the calculation for

most doses in our example, which worked well except in those doses with a very low expected

response rate (close to 0%). In our example, this issue was more relevant to the upper confi-

dence limits calculation for doses at or close to 0 mg. It is well known that suitable starting val-

ues of parameters are needed to ensure convergence of the estimation algorithm when

reparameterizing nonlinear regression models [13,14]. In our case, ML estimates from the

nearby fitting could be the suitable starting values for a specific fitting. To implement this, a

crude search for the confidence limit starting from the ML estimate of the expected response

of a dose was considered. In this way, we could easily take the ML estimates of three nuisance

parameters from the immediate previous fitting as the starting values for the next fitting. The

search stopped when the profile log-likelihood value of the fitting was lower than the threshold

lðp̂Þ � 0:5w2
1
ð0:95Þ; where l(.) is the log likelihood function and w2

1
ð0:95Þ is the 0.95 quantile of

a chi-squared distribution with one degree of freedom. The non-convergence can be avoided

to a large degree in this way; if not, smaller search-steps can be applied until no convergence

issue occurs. With few attempts in our example, searching with a step increase of 1% was used

when the profile log-likelihood value was far from the threshold, and an increase of 0.1% was

used when the searching was close to the threshold. If needed, refining the searching steps

around the upper limit can be applied to get greater accuracy. For doses higher than 0 mg, the

search can start from the upper confidence limit of the 0 mg dose or of a corresponding lower

nearby dose. In our example, the crude search was applied for doses lower than 0.3 mg. As

mentioned, this issue occurred more often when calculating the upper limits for doses at or

close to 0 mg in our example. However, if the same issue occurs for the lower limits calcula-

tion, the same method can be applied. Although this method made the calculations take longer

in standard cases, it worked well and appeared necessary for doses at or close to 0 mg.

Results

The profile likelihood based pointwise CIs are shown in Fig 1. To give a direct comparison,

normal-based pointwise Wald-type CIs and bootstrap pointwise CIs based on nonparametric

percentile method are also provided (Fig 1).

Profile likelihood based pointwise confidence intervals for nonlinear dose-response models
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The disadvantages of the normal-based pointwise Wald-type CIs were obvious in our exam-

ple, which has been also discussed in previous reports as follows: the lower confidence limits of

a dose nearby placebo are negative [2,4]; pointwise CIs are non-monotone as function of dose

[4]; coverage rates are not correct for some doses [3,4,15], especially for doses between two

observed doses. The non-monotone lower or upper limits by Wald approach partly depend on

the experimental design and the chosen model. We tested this with our data in a different

dose-response model: Emax model and also tested this with a better dose design (simulated

data): 0.7 mg group was added between 0.5 mg and 1 mg groups. The Wald-type CIs were

monotone in both scenarios.

Bootstrap pointwise CIs have been computed based on the nonparametric percentile

method, which is a good approach to construct CIs especially for nonlinear dose-response

models [3,16,17]. In our example, the results from the bootstrap method were similar to those

from the profile likelihood approach (Fig 1).

Computation of the profile likelihood based pointwise CIs with the algorithm we proposed

was performed with SAS (version 9.2). SAS macros for bisection method were developed

based on the macros called ‘Plkhci’ and ‘BinomialProfile’ defined in Millar R’s book [6]. The

estimation for the 4-parameter logistic model was obtained using PROC NLMIXED with

assuming binomial distributions. The full SAS code based on our example is provided in S1

Appendix. Boundaries were used to improve convergence, which are described in S1

Fig 1. Pointwise confidence intervals for a 4-parameter logistic model. Three different methods are shown to estimate confidence intervals.

https://doi.org/10.1371/journal.pone.0210953.g001
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Appendix. Wald-type CIs were obtained using PROC NLMIXED directly [18]. The resampling

for bootstrap was performed with PROC SURVEYSELECT in SAS (version 9.2) with 1,000

bootstrap samples [16,19].

The code can be easily adjusted and used for other type of dose-response models. We tested

the proposed algorithm with the data example (normally distributed response) used in the

paper by Baayena and Hougaard [4] to calculate the profile likelihood based pointwise CIs for

the full curve and the effect curve fitted with Emax model. The dataset for this example is avail-

able from the R package DoseFinding [20]. The proposed algorithm worked well and the

pointwise intervals were almost identical to those showed on the figures provided in the paper

by Baayena and Hougaard. The code for this normally distributed response example is similar

and obtainable upon request.

A simulation study

To test the algorithm proposed in different sample sizes and to evaluate the performance of the

profile likelihood approach in different doses for the entire curve, a simulation study was per-

formed. The simulation study was based on the example discussed in the motivation section

with the following doses (0 mg, 0.5 mg, 1 mg, 2 mg, and 4 mg) in a simulated 4-parameter

logistic model. The coefficients were chosen to be the ML estimates based on our example

(p0 = 0.15%, Emax = 56.9%, ED50 = 0.49 mg, δ = 0.14). Sample sizes of 20, 50, 70, and 100 per

dose-group were generated. For each sample size, we simulated 1,000 datasets. For each set of

data, the profile likelihood, normal-based Wald, and nonparametric percentile bootstrap

pointwise 95% CIs were calculated. For the nonparametric percentile bootstrap, 1,000 resam-

ples were generated. Simulation study was written in SAS (version 9.2).

For the calculations with medium and relatively large sample sizes (n = 50, 70, or 100), the

profile likelihood based pointwise CIs with the approaches defined above worked generally

well. However, the non-convergence happened more frequently in the calculation for the

small sample size (n = 20); thus, crude searches for more doses were applied. To reduce the

efforts spent on debugging, a higher dose for using crude search was set in the simulation, as

crude search is always a workable approach. In the simulation for the sample size of 20, the

profile likelihood based pointwise CIs were constructed successfully for 99.8% of the datasets,

and pointwise CIs in two datasets were not constructed successfully based on the logistic

model due to a U-shape curve expected from the resamples. It was rather difficult to obtain

convergence with the defined logistic dose-response model. For the other sample sizes, point-

wise CIs were constructed for all datasets without failure.

In addition, we evaluated the coverage rates for the three common approaches in different

doses simultaneously via the simulation study (Fig 2). For all approaches and all sample sizes

tested, the coverage rates were very close to the nominal level for doses in or close to plateau

(in our case, the doses were higher than 1 mg). For doses around or below ED50(~0.5 mg),

Wald-type and nonparametric percentile bootstrap performed erratically, but the coverage

rates were generally lower than the nominal level. Especially for the small sample sizes, the cov-

erage rates of these two approaches were constantly lower than the nominal level. However,

profile likelihood based pointwise CIs were much closer to the nominal level and were superior

to all other methods for those low doses, even in small sample sizes.

Discussion and conclusion

In this study, we have addressed the computation of profile likelihood based pointwise CIs for

a nonlinear 4-parameter logistic model with binomially distributed data based on a phase 2

dose-finding trial. An algorithm, the bisection method with proper calculation order for doses

Profile likelihood based pointwise confidence intervals for nonlinear dose-response models
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in the curve, plus crude search when the expected response was close to a boundary, was pro-

posed. The starting values for a specific fitting with the ML estimates of parameters from previ-

ous fitting and the log likelihood value for each fitting can be taken from the standard output

of the SAS procedure with straightforward programming techniques, with no extra efforts.

The non-convergence can be minimized significantly with this proposed approach.

In the simulation study, we applied and tested this algorithm in different sample sizes. They

were relatively easy to use or implement and worked well in most cases. However, for small

sample sizes, the calculation failed for very few datasets due to odd resampling data. In prac-

tice, this could be avoided by defining a more appropriate dose-response model based on

observed data. In addition, in our simulation study, we observed that the coverage rates of pro-

file likelihood based pointwise CIs were closer to the nominal level than the other approaches,

Fig 2. Coverage rates of confidence intervals for each dose-point in a 4-parameter logistic curve. Three different methods are shown to

estimate the coverage rates.

https://doi.org/10.1371/journal.pone.0210953.g002
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including the bootstrap method, for almost all doses, especially for doses with an expected

response rate close to 0%. The good performance of the profile likelihood approach was con-

sistent in each tested sample size including the small sample size. Our example and the simula-

tion study both confirmed that Wald-type pointwise CIs perform badly in nonlinear models,

including non-monotone CIs, yielding an unreasonably lower confidence limit of the expected

response to placebo and incorrect coverage rates for some doses [2–4].

We also conclude that the crude search is relatively time-consuming and might make the

calculation take longer in standard cases. The profile likelihood pointwise confidence intervals

for the entire curve were computed in our example in approximately a minute and a half

which is comparable to a bootstrap approach with 2,000 bootstrap samples. Nevertheless, the

algorithm as proposed in this present study is essentially workable and appears to be necessary

especially for doses with response rates close to 0% when facing highly flexible nonlinear mod-

els. The non-convergence can be minimized by straightforward program techniques, which

may motivate people to apply this approach in this field. In addition, considering the ongoing

increasing speed of the computer systems, the speed of calculation should not be a limiting fac-

tor for not using this simple and robust algorithm, especially when handling nonlinear models

requiring intensive computations. We tested the algorithm in an example with normally dis-

tributed response fitted with Emax model. The code provided in S1 Appendix can be easily

changed and used. Therefore, although we only discussed the issues and application for a

4-parameter logistic dose-response model with binomially distributed data, the same consider-

ations could be applied in other dose-response models with different type of data. This algo-

rithm can be applied more generally.

Overall, from a practical point of view, we believe that the implementation of this relatively

straightforward algorithm can promote the application of the profile likelihood approach for

constructing pointwise CIs for nonlinear dose-response models.

Supporting information

S1 Appendix. SAS program to compute profile likelihood based pointwise confidence

intervals.
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