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Abstract: Since its discovery and characterization in the early 1980s as a virus that attacks 

the immune system, there has been some success for the treatment of human immunodefi-

ciency virus-1 (HIV-1) infection. However, due to the overwhelming public health impact of 

this virus, a vaccine is needed urgently. Despite the tireless efforts of scientist and clinicians, 

there is still no safe and effective vaccine that provides sterilizing immunity. A vaccine that 

provides sterilizing immunity against HIV infection remains elusive in part due to the following 

reasons: 1) degree of diversity of the virus, 2) ability of the virus to evade the hosts’ immunity, 

and 3) lack of appropriate animal models in which to test vaccine candidates. There have been 

several attempts to stimulate the immune system to provide protection against HIV-infection. 

Here, we will discuss attempts that have been made to induce sterilizing immunity, including 

traditional vaccination attempts, induction of broadly neutralizing antibody production, DNA 

vaccines, and use of viral vectors. Some of these attempts show promise pending continued 

research efforts.
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Introduction
Since its discovery and characterization in the early 1980s as a virus that attacks the 

immune system, leaving patients unable to fight off opportunistic infections, there has 

been an ebb and flow of effective treatments and hope as scientists continue to search 

for ways to eradicate human immunodeficiency virus-1 (HIV-1) from the human popu-

lation similar to what has been accomplished in the case of smallpox. The majority of 

the effort and nearly all of the success has come in the area of patient treatment rather 

than inhibition of contraction or spread of the virus. A class of treatments, antiret-

roviral therapies (ARTs) and later highly active antiretroviral therapies (HAARTs), 

has been the mainstay of disease control during the last 15 years. Notwithstanding 

the increased life span of patients, increased time to full-blown AIDS, and decreased 

contraction of opportunistic infections and AIDS-related diseases (ie, non-Hodgkin’s 

lymphoma, Kaposi’s sarcoma, etc) by patients treated with HAART, there are several 

reasons why development of an HIV-1 vaccine is still warranted. Five of these reasons 

are as follows: 1) nearly two-thirds of the patients who contract HIV-1 live in under-

developed countries and cannot afford the expensive HAART regimen,1 2) both the 

ART and HAART regimen are complex and are disruptive to patients’ lives and diets, 

making long-term compliance an issue,2 3) the potential side effects of ART/HAART 

treatments negatively affect the long-term health of patients and include diabetes, 

cardiovascular disease, fractures, etc,3–5 4) development of HAART drug resistance, 
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and 5) the  presence of latent HIV-1 reservoirs harboring viral 

strains that were produced through mutation throughout the 

duration of the infection of the host also play a role in the 

failure of HAART.6 These reasons, as well as many others, 

underscore the need for a prophylactic HIV-1 vaccine.

Possibly, the strongest argument for development of 

a prophylactic vaccine may be the need for control of the 

virus spread worldwide. Every day, 7500 patients world-

wide are infected with HIV-1.1 Production of a vaccine that 

could inhibit infection, reduce spread, or both would aid 

in the reduction of the burden of AIDS and AIDS-related 

diseases. The expenses incurred by the AIDS epidemic can 

hardly be calculated. They range from tens of thousands of 

dollars per patient for the HAART regimen, to millions of 

dollars required for building of orphanages by governments 

for children whose parents have succumbed to the disease, 

to the unknown cost of educational materials and condoms 

in the effort to prevent further spread of the disease. This 

public health challenge has not gone unnoticed and has been 

addressed by scientists’ ongoing efforts to develop a safe and 

effective HIV-1 vaccine.

Prophylactic vs therapeutic vaccines
A prophylactic HIV-1 vaccine would offer sterilizing immu-

nity to patients, preventing infection upon presentation of the 

virus. A prophylactic vaccine must also be effective at all pos-

sible portals of HIV-1 entry, especially the mucosa.7 For this 

to occur, the vaccine must offer broad and durable immunity. 

Several consortia have worked diligently to produce a vac-

cine that will induce broadly reactive neutralizing antibodies 

(Nabs). These consortia include major international efforts as 

well as efforts of individual countries, regions, and institu-

tions including, but not limited to: the International AIDS 

Vaccine Initiative Neutralizing Antibody Consortium,8 the 

Center for HIV-AIDS Vaccine Immunology, the HIV Vac-

cine Trials Network, US Military HIV Research Program, 

the Collaboration for AIDS Vaccine Discovery, and the 

Vaccine Research Center at the National Institutes of Allergy 

and Infectious Diseases of the National Institutes of Health. 

To date, however, no HIV-1 candidate vaccine has induced 

broadly reactive Nabs.8

In the absence of a vaccine that can prevent infection 

of HIV-1, there are still many benefits to be realized from 

production of a therapeutic vaccine. A therapeutic vaccine 

would be supremely valuable if it were able to increase the 

titer of virus necessary for infection, increase the time to 

clinical manifestation of virus, control viral load after infec-

tion, and reduce secondary transmission.9–13 A vaccine that 

could induce this type of response would invariably decrease 

contagiousness, decrease the need for costly and potentially 

dangerous ART/HAART, and decrease the number of oppor-

tunistic infections of patients.

While the effect of controlling the normal HIV-1 pathol-

ogy with therapeutic vaccines will be favorable for the 

individual patient as well as society, the effect of preventing 

HIV-1 infections in humans with a prophylactic vaccine is 

also broadly appealing. This potential for eradicating the 

HIV-1 virus from human hosts drives scientists to continue 

to find ways to circumvent the challenges presented by this 

unique virus in order to induce production of the Nabs that 

are critical for sterilizing immunity. This review, therefore, 

will focus on the specific challenges presented by HIV-1 and 

strides that have been made toward creating a prophylactic 

vaccine, including past efforts that have failed and lessons 

that have been learned from those failures. We will also 

discuss novel vaccine options and some of the promising 

trials that are currently underway.

Current challenges to creating  
an HIV-1 vaccine
While several problems face scientists who are attempting to 

create an HIV-1 vaccine, three problems in particular have 

posed extremely daunting challenges. These three problems 

are 1) degree of diversity of the virus, 2) ability of the virus to 

evade the hosts’ immunity, and 3) lack of appropriate animal 

models in which to test vaccine candidates. These three major 

problems will be discussed in more detail below.

Degree of diversity
Traditionally, prophylactic vaccines have been made by expos-

ing some part of a pathogen’s structure as an antigen to the 

host’s immune system, and eliciting an immune response, 

resulting in the production of long-term memory lymphocytes 

that are capable of mounting a strong immune response upon 

later infection with the pathogen. The premise upon which 

this manipulation of the immune system is based is the abil-

ity of the immune system to make long-lasting antibodies to 

conserved structures on exposed proteins that are native to the 

pathogen. Ideally, both humoral and cell-mediated immunity 

would be induced creating long-lasting immunity. Traditional 

attempts to recreate this process using live attenuated simian 

immunodeficiency virus-1 (SIV-1) viruses in an effort to 

vaccinate macaques against SIV-1 have been proven safe and 

effective in macaques that were subsequently challenged with 

SIV-1.14,15 However, an incidental study of the effect of live-

attenuated HIV-1 (containing deletions of the nef gene and 
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the long terminal repeat) was proven pathogenic in humans 

when three out of six treated patients developed late-onset 

immunosuppression.16–18 Killed viruses have also been tested 

as a potential vaccine approach, but safety concerns have 

halted their use. These safety concerns include incomplete 

inactivation of the virus leading to potential residual infectiv-

ity during the vaccine preparation.19 Due to the ineffective-

ness of traditional vaccine approaches to date, scientists have 

attempted to use recombinant HIV-1 proteins to stimulate the 

production of Nabs. These attempts failed due to their inability 

to induce a lasting, broad range of Nabs that would inhibit 

infection in humans.20–23 Perhaps these failures are a result of 

the inherent diversity of HIV-1. This diversity has presented 

a major roadblock to development of a prophylactic vaccine. 

There are three main groups of HIV-1 (M, O, and N)24 as well 

as a recently discovered group, P.25 Each group consists of 

several subtypes, clades. The various clades display biological 

differences with respect to transmission,26 replication,27 and 

disease progression.28,29 These differences result in an inabil-

ity to produce a generalizable vaccine that would induce the 

breadth of Nabs necessary to counter an infection by a wide 

range of HIV-1 clades that may be encountered in a natural 

setting.30 The degree of diversity seen in HIV-1 is greater than 

that of any other virus observed.31,32 This problem is being 

addressed by development of multiclade (multiple env and/

or subtype B gag, pol, nef)33,34 and mosaic vaccines which 

incorporate sets of 10 immunogenic proteins from 4 different 

clades or bivalent proteins from clades B and C.35–37 There are 

proof of principle studies that illustrate immunological protec-

tion against HIV-1 in nonhuman primates that were passively 

treated with broadly reactive Nabs.38–40 These studies show that 

protection against infection with HIV-1 can be conferred by 

the presence of broadly reactive Nabs. The next step toward 

production of a prophylactic vaccine would involve induction 

of production of these or similar broadly reactive Nabs by the 

host’s immune system.

immune evasion
The rate at which the HIV-1 virus mutates, due to the nature 

of the reverse transcriptase enzyme responsible for transcrib-

ing its RNA, ensures that nearly every daughter virion will 

have a different genome than its parent.41 When these changes 

occur in the HIV-1 Env protein that is needed for antibody 

recognition, they inhibit the immune system’s ability to 

mount a sufficient response. One attempt to circumvent this 

problem has been to induce the production of Nabs to the 

conserved regions of HIV-1 proteins. A major problem with 

this approach is that the conserved regions of HIV-1 proteins 

are often shielded from exposure to Nabs within the HIV-1 

envelope. The native structure of the envelope protein, report-

edly the only HIV-1 protein susceptible to Nabs,31 shields it 

from the immune system as a glycosylated trimer of heterodi-

mers. The glycosylation of the envelope protein allows for 

the carbohydrates to masquerade as ‘self’ thereby forming 

an immunologically silent face and protects neighboring 

epitopes via an ‘evolving glycan shield’.42–44 Additionally, 

the gp41 coreceptor binding site, another conserved site, is 

not presented until primary binding to CD4+ has occurred.45 

An attempt to create antibodies to the CD4-binding region of 

the gp120 protein was made in rhesus macaques in 2007 and 

results indicated that vaccinated hosts were able to withstand 

challenge with SHIV.46 Other attempts to create an HIV-1 

vaccine have focused on overcoming the ability of HIV-1 

to escape immune surveillance through use of antibodies 

that are able to neutralize diverse isolates of HIV-1. These 

antibodies include PG9, PG16,47 2F5, 2G12, 4E10, b12,48–51 

and most recently sCD4-17b52 and others.53 Identification 

of these antibodies gives hope that their induction or the 

induction of other such broadly reactive Nabs may provide 

the basis for a prophylactic vaccine in the future.

Lack of appropriate animal models
The use of animal models for development of therapeutics 

offers the benefit of thorough testing and validation prior to 

introduction of a vaccine in humans. In the past, vaccines were 

made by observing and then mimicking the immune response 

mounted by individuals who had recovered from a particular 

disease. To date, however, there are no known cases of indi-

viduals who have recovered from HIV-1 infection. However, 

data can be gathered from long-term nonprogressors – patients 

who have been infected with HIV-1 for at least 7 years and do 

not display any HIV-1-related symptoms.54,55 Another option 

that may be critical to the development of a prophylactic 

vaccine is the use of relevant animal models. Such models 

will allow for analysis of the effect of a potential vaccine on 

an intact host prior to use in humans.

One particular challenge with the use of animal models 

for development of a prophylactic HIV-1 vaccine is that there 

are very few naturally occurring disease models of HIV-1. 

Only a few nonhuman primates are susceptible to infection 

with HIV-1 and infected animals do not progress to AIDS.56 

Therefore, it is important to use other disease models that 

mimic the HIV-AIDS pathologic progression.57 One such 

potential model is feline immunodeficiency virus (FIV). FIV 

was discovered in 1986 and is known to cause an AIDS-like 

disease in domestic cats and mimics HIV-related dementia 
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in humans.58 A vaccine for FIV was approved by the FDA 

in 2002.59 While the FIV model is potentially informative, 

its use is not sufficient as a basis for development of a pro-

phylactic HIV-1 vaccine.

An ideal animal model would display a pathological 

response to infection with HIV-1 that is very similar to the one 

that occurs in humans. Unfortunately, HIV-1 does not cause 

pathology leading to the development of AIDS in any host 

other than humans.60–63 However, animal models have been 

developed and used that allow partial understanding of the 

pathology of HIV-1, the natural immunological response to 

infection, and the response of the host to novel therapeutics. 

One of these models involves the simian immunodeficiency 

virus
MAC

 (SIV
MAC

) that replicates and causes an AIDS-like dis-

ease in baboons, cynomolgus, and pigtailed macaques. While 

the similarities of SIV
MAC

 to HIV-1 have allowed for insight 

into pathology, transmission, and immunological response of 

the infected host to the virus, the differences between SIV
MAC

 

and HIV-1 are still too great to be able to draw conclusions 

regarding potential human responses to an HIV-1 prophylac-

tic vaccine.63 Therefore, to broaden the scope of animal model 

usage, a chimeric SHIV virus was engineered to incorporate 

both SIV and HIV-1 proteins or genes.64 While macaques 

infected with SHIV do go on to develop AIDS, the time to 

progression is much different from the time to progression 

to AIDS of HIV-1-infected humans. Infection of macaques 

with SIV
mac

251 strain mimics HIV-1 infection in humans by 

leading to chronic, slow disease progression. Route and dose 

required for infection, viral tropism, replicative capacity of 

the viruses, and pathology of SIV/SHIV-infected monkeys 

are all very different than these parameters in humans.65,66 

This distinction has been well characterized by the recent 

Phase IIb STEP trial, which involved 3000 healthy, unin-

fected volunteers. The result of this trial was termination at 

its first scheduled efficacy assessment due to its failure to 

suppress viral load in subsequently infected individuals and 

then-suspected increased HIV-1 infection due to interac-

tion of the immune system with vaccine components.67 The 

vaccine, a recombinant adenovirus serotype 5 (Ad5) virus 

incorporating the gag, pol, and nef genes from HIV-1, had 

been previously tested in an SHIV model in macaques and the 

results of that experiment were not suggestive of the results 

of the human trial.68

This disparity underscores the need for animal models 

that more closely reflect the pathology seen in human infec-

tion with HIV-1 as well as identification of immunological 

correlates of protection that reflect control of HIV-1 viral load 

in human subjects. Therefore, the search for an appropriate 

animal model or the appropriate use of current animal models 

in the search for a prophylactic HIV-1 vaccine continues. 

Until a model can be derived that will allow for observa-

tion of each stage of infection, progression of disease, and 

response of the immune system in a way that is comparable 

to this process in humans, we will not be able to logically 

predict which vaccine candidates should be moved forward 

to clinical trials.

Several attempts to stimulate the immune system to pro-

vide protection against HIV infection have been attempted 

so far (Table 1). Hope for creating a prophylactic vaccine 

lies in the ability of the scientific community to identify and 

induce a broad neutralizing antibody response that would 

offer sterilizing immunity to vaccinated patients. To this end, 

several novel approaches are being studied.

Novel vaccine options
As mentioned in the previous section, there are several daunt-

ing problems facing scientists who are attempting to create an 

HIV-1 vaccine. In hopes of creating a vaccine which elicits 

sterilizing immunity to HIV-1, researchers have focused 

their efforts on (1) the use of plasmid DNA vaccines, (2) live 

recombinant vectors for vaccine development (expressing or 

presenting HIV antigens), and (3) mucosal immunity. These 

critical topics will be discussed in more detail below.

Plasmid DNA vaccines
Vaccines should elicit a robust immune response that is 

long lasting and is able to provide protection against various 

strains of a pathogen. Plasmid DNA vaccinations can induce a 

strong humoral and T-cell response. DNA-based vaccination 

has been used as a powerful tool to fight against parasitic, 

fungal, bacterial, and viral infections.115–119 There are multiple 

advantages for using plasmid DNA for vaccination: they 

are generally safe, nontoxic, and through the delivery of a 

gene encoding important immunogenic epitopes, the DNA-

based vaccine exploits biosynthetic machinery of the host 

cell. One such example was in 1990, whereby Wolff and 

colleagues illustrated protein expression after intramuscular 

(IM) injection of plasmid DNA into myocytes.120 Despite 

these promising results, there had been speculation regard-

ing DNA vaccination strategies. For example, it was shown 

that protein production in response to DNA plasmids that 

contained HIV inserts elicited substantial cellular response 

in mice and nonhuman primates. However, these products 

were poorly immunogenic in humans.

One strategy to improve immune response of the plas-

mid DNA vaccine strategy is by coadministration of DNA 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2011:5 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

13

Prophylactic vaccine for Hiv-1

Table 1 Historical vaccine attempts to inhibit Hiv-1 infection

Vaccine attempt Mechanism of action Outcome References

Live attenuated
Nef-deleted viruses Deletion of nef gene in Siv;  

deletion of nef gene in Hiv
excellent short-term protection in  
nonhuman primates. Disease-causing  
mutants generated from vaccine

14,69–72

Siv1A11 Deletion of vpr and a portion of gp41 Animals never developed immunodeficiency 
but were not protected against challenge  
with wild-type virus

73

SivMAC-M4 Multiple mutations in the transmembrane protein 
intracytoplasmic domain

Animals developed immunodeficiency 1 year  
after infection with this virus but showed low 
or undetectable viremia levels 1 year  
post-challenge with Siv251

74

Whole inactivated HIV-1a

Simian model Formaldehyde-inactivated or subunit Siv 
vaccines

Animals resistant to infection with Hiv  
produced in human cells but not Hiv  
produced in macaque cells

75–77

Feline model Dual inactivated strains used for vaccination Protection against heterologous  
strains conferred

78–81

Protein subunits and synthetic peptides
Recombinant env  
glycoproteins

Stimulate humoral immune response Some antibody production and lymphocyte  
proliferation but no clinical benefit to date

82–90

Recombinant Gag subunits Stimulate humoral response induced production of anti-p24 antibodies 
but no clinical benefit

91–94

DNA vaccines
Direct injection encoding Hiv-1 env and rev Produced a robust humoral and  

cellular response
95

Viral vectors expressing HIV-1 genes
Retroviral vectors CD4-specific transduction of HIV-1  

genes: env, vpu, tat, and rev
induction of humoral and cellular anti- 
Hiv-1 responses in vivo

96,97

Rabies virus Attenuated Rv-expressing Siv-1 proteins SivMAC-challenged macaques expressed 
higher antibody and CTL responses 
than nonvaccinated controls

98,99

Alphavirus Hiv-1 strain R2 env expression  
followed by administration of  
soluble oligomeric gp120

induction of humoral and cell-mediated 
responses that were protective against 
heterologous Hiv challenges in rhesus 
macaques

100

Canarypox Prime with ALvAC-Hiv (vCP1521)  
boost with AiDSvAX B/e

inhibition of infection noted in vaccinees, 
although viremia was not reduced in those  
vaccinees that did become infected

101

Adeno-associated viruses Gene transfer in muscle of antibodies  
or antibody-like immunoadhesins

Long-lasting neutralizing activity in serum  
of monkeys against Siv

102

Ads vaccination with a recombinant Ad5 construct induction of humoral and cellular responses 
in mice, dogs, chimpanzees, or nonhuman 
primates

103–106

Other
virus cocktails Hiv-1 vaccination with successive immunizations 

containing recombinant DNA, recombinant  
vaccinia virus, and recombinant env proteins

Following challenge with SHiv strains that  
were not used in vaccination cocktail, four of 
six vaccinated macaques lived through the  
44-week observation period as compared  
to one of six control macaques

107

Fibroblasts immunization with retroviral vector-transduced 
fibroblasts expressing human immunodeficiency  
virus type-1 iiiB eNv/Rev proteins

induction of CTL and antibody responses 
in rhesus monkeys

108

Dendritic cell-based vaccines immunization with retroviral-vector transduced 
dendritic cells

induction of CTL and antibody responses  
in cynomolgus monkeys

109

virus-like particles Goal – present artificially produced partial HIV-1 
proteins in order to stimulate Nabs

Humoral and cellular response  
achieved in mice or rabbits

110–114

Note: aProof of principle studies using Siv or Fiv.
Abbreviation: CTL, cytotoxic T-lymphocyte.
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 plasmids coding for cytokines (eg, INF-g, IL-2, IL-12, IL-18, 

and IL-15).121–124 A second strategy which has been utilized 

to improve plasmid DNA vaccination has been the admin-

istration of plasmid DNA with adjuvants (eg, CpG oligode-

oxynucleotides), or the use of DNA-delivery systems (eg, 

microparticles, cochleates, and linear polyenimines).125–128 

A third strategy to improve vaccine efficacy involves the 

coadministration of plasmid DNA in combination with viral 

vectors. For instance, research performed by Harari and col-

leagues in 2008 demonstrated that vaccination by means of an 

HIV-1 clade C DNA prime in combination with a pox vector 

(NYVAC) boost induces a reliable polyfunctional and long-

lasting anti-HIV T-cell response in human participants.129 

Along these same lines, work recently published by Jaoko 

and group demonstrated safety and immunogenicity of a 

multiclade HIV-1 Ad-based vaccine alone or in combina-

tion with a multiclade HIV-1 DNA vaccine in Africa. These 

results also demonstrated that DNA priming increased the 

frequency and magnitude of cellular and humoral responses; 

however, there was no effect of recombinant Ad5 dosage on 

immunogenicity endpoints.130

The previously mentioned DNA-delivery strategies have 

been used in combination with viral vectors or alone by 

means of a variety of immunization routes (eg, IM, intrave-

nous [IV], intradermal [ID], intranasal [IN], oral, rectal, or 

vaginal). In the majority of reported studies, DNA vaccines 

have been administered by the IM and/or ID routes. However, 

as it relates to HIV vaccination, mucosal immunity could 

potentially be an important factor to consider, with mucosal 

immunity being achieved optimally by IN or oral routes of 

administration. The topic of mucosal immunity will be dis-

cussed in more detail in a later section within this review.

After immunization, it is assumed that the DNA vaccina-

tion immunogen is produced in the skeletal muscles, dendritic 

cells, and macrophages at the site of immunization. However, 

in adults, the skeletal muscles are not involved in a high level 

of protein synthesis as compared to the liver. Therefore, the 

delivery of DNA to cells, which are capable of high protein 

synthesis, such as hepatocytes, epithelia cells of the intestines, 

or salivary pancreas, may result in high levels of protein 

expression. The hepatocytes express enzymes involved in 

the formation of intrachain and interchain disulfide bonds 

required for proper folding and assembly of proteins. In 

addition, the liver expresses glycosyltranferases, which are 

essential for synthesis of both N- and O-linked glycan side 

chains; this may not be the case for other cell types,131,132 the 

significance of this point being the fact that broadly cross-

clade Nabs such as 2G12 recognize glycan moieties on the 

heavily glycosylated HIV-1 envelope antigens.44,133,134 Another 

advantage of protein expression within the liver is that signifi-

cantly lower amounts of DNA are needed for protein expres-

sion of a particular antigen in the hepatocytes vs another cell 

type. For the immunization of humans, milligram quantities 

of DNA are necessary to achieve adequate levels of immune 

response.119 Any method whereby there would be a reduction 

in DNA quantity needed to vaccinate humans would provide 

significant economic advantages. Based on the previously 

mentioned reasons, it is not a surprise that the liver has been 

exploited extensively as a site for gene delivery due to its 

ability to produce proteins and glycoproteins.135–138

Hydrodynamic delivery is the application of controlled 

hydrodynamic pressure in capillaries to enhance endothelial 

and parenchymal cell permeability; this methodology had its 

inception in the late 1990s with investigations into intravas-

cular injection of plasmid DNA solution for gene delivery in 

whole animals.139–142 Hydrodynamic plasmid DNA delivery 

is well tolerated in mice. In 2008, Raska and colleagues 

demonstrated in mice that IV hydrodynamic vaccination 

with HIV-1 envelope DNA injections resulted in high levels 

of expression of HIV antigen in the liver. In mice, immuno-

logical data illustrated that hydrodynamic administration of 

HIV-1 plasmid DNA was superior to vaccination with DNA 

by IN, ID, IM, and intrasplenic routes. Further results illus-

trated that after boosting, hydrodynamic vaccination yielded 

levels of HIV-1-specific antibodies that were 40-fold higher 

than those elicited by other routes tested.132

However, this delivery scheme is not feasible in large 

animals and humans. As an alternative, receptor-mediated 

DNA binding to hepatocytes could be a viable approach. 

 Molecules with terminal galactose residues covalently linked 

to DNA are recognized by the hepatocyte-expressed galactose-

specific asialoglycoprotein143 receptor for internalization.144 

This alternative would avoid delivery through the hepatic 

system and the need for expansion of the blood volume. 

In addition, galactose-linked DNA packaged in delivery 

vehicles such as liposomes, choleates, or microspheres can 

be given by oral administration, which would be absorbed by 

the intestine and ultimately delivered to the hepatic vein. As 

an additional alternative to hydrodynamic delivery in humans, 

it might be possible to express HIV antigens in the liver by 

means of plasmid DNA delivery via viral vectors such as the 

Ad. Ads have been shown to transduce the liver efficiently 

in vivo by means of the hexon proteins.145,146 In this regard, 

production of translation of HIV-1 proteins primarily in the 

liver might allow for the production of heavily glycosylated 

HIV-1 envelope antigens and thus the production of Nabs.
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Live recombinant vectors for vaccine 
development
Viral vectors are potent inducers of cellular and humoral 

response. Viral vectors can express proteins from bacteria 

or viral pathogens to vaccinate against infectious diseases. 

There are several viral vaccine vectors that have been used 

successfully in models for vaccination. These vectors include 

alphaviruses, human rhinoviruses (HRVs), Ads, picornavi-

ruses, poxviruses, measles viruses, influenza, and vaccinia 

viruses.30,129,147–156 Each of these vectors has its respective 

disadvantages and advantages with respect to vaccine devel-

opment. Some advantages of a few of these vectors include 

their ability to naturally infect a wide variety of cell types and 

tissues of interest.157–162 Each respective vector has its own 

set of disadvantages. For instance, one disadvantage of using 

the poliovirus or the HRV as a vaccine vector is the insert 

size limit restriction of these vectors as compared to the large 

insert size (∼8 kb) accommodation of Ad vectors.

The most common disadvantage of the majority of viral 

vaccine vectors is reduced vaccine efficacy due to vector pre-

existing immunity (PEI).163–167 Various strategies have been 

employed to circumvent the problems associated with vector 

PEI. Specifically, as it relates to Ad vectors, PEI is a tremen-

dous problem. Of the identified serotypes of Ad vectors, 

human serotypes 5 (Ad5) and 2 (Ad2) have been the most 

extensively used for gene therapy protocols. Ad5 has been 

used for HIV-1 vaccination protocols, most recently in the 

STEP study. As it relates to Ad2 and Ad5, PEI to these vectors 

may be found in up to 50% of the American population and 

up to 95% of the population of other countries. This Ad PEI 

can limit the effectiveness of Ad-based vaccinations.168–170 To 

circumvent Ad2 or Ad5 PEI, researchers have employed the 

use of vector chimeras,166,171 use of alternative serotypes,172–178 

and the use of nonhuman Ads,151 such as chimpanzee Ad. The 

chimpanzee Ad virus was demonstrated to not be significantly 

neutralized by human sera, which gives chimpanzee Ad an 

advantage for human vaccine development.179–181

Other strategies have been used to reduce the immune 

response against Ad vectors such as the use of helper- 

dependent Ad (HD-Ads) vectors,182–187 the use of Ad deliv-

ery in combination with biochemical modifications such as 

PEGylation,188–194 and the use of vector delivery by means 

of cell vehicles.195,196 With respect to the HD-Ads, these 

vectors were produced to further increase the safety and 

cloning capacity of first-generation Ad vectors. HD-Ads 

lack Ad genes and contain only the packaging signals and 

end terminal repeats. These vectors were designed to avoid 

cellular immunity and diminish liver toxicity, thus promoting 

long-term transgene expression.197–200 The reduced immune 

response against HD-Ads has allowed for transgene expres-

sion in mice and baboons for years.182,183,185,200 This long-term 

transgene expression could be helpful for antigen production 

for an HIV vaccine, thus producing an opportunity to have 

increased protection against HIV, with reduced frequency 

of vaccinations.

Although Nabs to Ad5 may reduce the immunogenicity 

of Ad5-based vectors in animal model systems, their effect 

on the immunity in subjects with previous Ad5 exposure is 

still largely unknown. As previously mentioned, the STEP 

trial, which tested a Merck recombinant Ad5 (rAd5) vaccine 

(encoding HIV-1 gag, pol, and ne1 genes), failed to yield 

protection, either by lowering viral load or by decreasing 

acquisition of infection.13 Analysis of data from this study 

aroused speculation that subjects with pre-existing Nabs 

from wild-type Ad5 infection had an increased risk of HIV 

infection after vaccination. One recent study has shown that 

there was no causative role for Ad5-specific CD4+ T cells in 

increasing HIV-1 susceptibility in the Merck trial.201 In this 

regard, there are multiple studies ongoing to elucidate a con-

crete finding with respect to the role of Ad5 PEI and increased 

activation of CD4+ T cells in the mucosal milieu.202,203

Recently, there was a report by Cheng and colleagues that 

attempted to characterize the specificity of rAd5 Nabs in Ad5-

immune subjects and determine the impact of Ad exposure 

on immune responses elicited by Ad5-based vaccinations. 

Cheng and colleagues reported that rAd5 Nabs were directed 

toward different components of the Ad virion, depending 

on whether the Ad5 infection was natural or from Ad-based 

HIV vaccine trials. For example, Ad Nabs generated by 

natural infection are directed primarily to fiber components, 

while vector exposure elicits responses primarily to capsid 

proteins other than fiber. Nabs elicited by natural infection 

significantly reduced the CD8+ and CD4+ cell responses to 

HIV Gag after DNA/rAd5 vaccination. This report concluded 

that Ad5 Nabs differ based on the route of exposure and that 

previous Ad5 exposure compromises Ad5 vaccine-induced 

immunity to weak immunogens, such as HIV-1 Gag.204 These 

results have a tremendous impact on HIV-1 vaccine trials and 

the design of next generation viral vaccine vectors.

Viral vectors such as Ad, influenza, and polio have been 

used as vaccine vectors for many reasons. One important 

advantage of these vectors, which makes them attractive, 

is that they can provide mucosal immunity because they 

can easily infect the mucosal surfaces as well as act to 

induce cytokine and chemokine production at the mucosal 

entry sites. Ad, influenza, and polio also have the advantage of 
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being able to be delivered orally, without the use of needles. 

This is an important fact in developing countries where needle 

cost is prohibitive to vaccine administration. As it relates to 

HIV vaccine development, mucosal immunity is a debatable 

factor to consider.

Mucosal Hiv immunity
When deciding upon a vaccine agent, the importance of con-

sidering if the ultimate goal is to induce systemic immunity, 

mucosal immunity, or both is worth careful consideration.205–207 

It is believed that 80% of HIV-1 i nfection will occur from 

heterosexual viral transmission and most of the rest will occur 

from homosexual or perinatal transmission.152 Although the 

biology of sexual transmission is poorly understood, it is 

clear that the essential first step in the infection pathway is 

the transfer of infectious virus or HIV-infected cells through 

the mucosal surfaces. After HIV has entered a new host, the 

HIV or HIV-infected cells will soon encounter susceptible 

host target cells at the mucosal point of entry where the virus 

replicates and then invades local lymphatic tissues, initiat-

ing systemic HIV infection. On this basis, strong immunity 

is required to provide a protective immunological barrier 

at the most common point of entry, the mucosal surfaces 

of the reproductive tract. Due to the compartmentalization 

of the secretory and systemic immune systems, parenterally 

administered antigens do not consistently stimulate mucosal 

immunity.152 Therefore, it is important to consider a vaccine 

regime that induces mucosal immunity.

Since CD4+ CCR5+ memory T cells are the primary target 

of HIV infection in the gut and mucosa and rapid depletion 

of this subset occurs early after infection,208,209 several stud-

ies have investigated the role of HIV mucosal immunity. 

Previous studies have demonstrated the importance of a 

mucosal SIV/HIV vaccine producing both strong mucosal 

antibody and CD8+ response capable of blocking the escape 

of virus from the intestinal mucosa into systemic lymphoid 

organs.207,210–214 However, in other instances, the necessity 

of exclusive mucosal HIV immunity will be further debated 

based on the promising results found in a heterologous 

prime/boost regimen using DNA/89.6-expressing SIV and 

HIV-1 transcripts215,216 and modified vaccinia virus Ankara 

(MVA/89.6)-expressing SIV and HIV-1 transcripts under 

the control of vaccinia virus early/late promoter. In this 

case, either ID or IM DNA/MVA vaccination was able to 

provide protection against a intrarectal SHIV-89.6 chal-

lenge.153 Along these same lines, recently, promising results 

were found by Hessell and colleagues in 2010. Hessell and 

colleagues demonstrated that after an IV administration of 

monoclonal antibodies 2F5 or 4E10 to six monkeys followed 

by a SHIV
ba-L

 challenge, five out of six monkeys from either 

group showed complete protection and sterilizing immunity. 

A low level of viral replication could not be ruled out for the 

six monkeys in either group.217

Replicative Ad yields a robust immune response at the 

mucosal sites partly because Ad is known to infect and repli-

cate in epithelial cells.218–221 Various strategies have been used 

to achieve mucosal immunity via the oral route. One such 

strategy embodies the development of replication-defective 

recombinant Ad serotype 41 (Ad41) vector.222 Serotype 41 

vectors are being currently used because Ad41 has a natural 

tropism for the gut and causes no pathological disease outside 

of the gastrointestinal tract.223 Ad41 vectors are likely to have 

a preferential tropism for the gut because Ad41 appears to 

have a resistance to acidic pH224 and the capsid configuration 

of long and short fibers allows the Ad41 virus to preferentially 

infect the gut.177,225

Live recombinant vectors for vaccine 
development engineered to  
express/present Hiv-1 antigens
As previously mentioned, viral vectors are potent inducers 

of cellular and humoral responses. Of note, viral vectors 

have been practically used for human applications and have 

progressed treating a variety of disease contexts such as 

cancer and infectious diseases.226–229 Traditional viral vector 

immunization embodies the concept that the vector uses the 

host cell machinery to express antigens, which are encoded 

as transgenes within the viral vector. Cellular and humoral 

immune responses are generated against these antigens. Over 

the last 20 years, several viral vectors have been derived to 

express HIV-1 antigens for vaccine purposes.

Some researchers have taken an alternative approach to 

conventional transgene expression of antigens by means of 

viral vectors; this alternative approach embodies the capsid 

incorporation of antigens. This innovative paradigm is based 

upon the vector presenting the antigen as a component of the 

capsid rather than an encoded transgene. Incorporation of 

immunogenic peptides into the vector capsid offers potential 

advantages. In this regard, the processing of the capsid-

incorporated antigen via the exogenous pathway should 

result in a strong humoral response similar to the response 

provoked by native Ad capsid proteins. In this arrange-

ment, potentially, HIV peptide antigens accrue the potent 

immunostimulatory effects of the native Ad vector capsid 

proteins, which effectively perform an adjuvant function. 

On this basis, the immune response directed against vector 
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capsid proteins with repetitive vector administration should 

achieve a booster effect against the incorporated antigen.230 

Most importantly, as it relates to HIV infection, this strategy 

yields the potential of generating antibodies to HIV proteins. 

Recent crystallographic, cryo-electron tomography, and 

molecular modeling studies have provided valuable insight 

to molecular surfaces recognized by antibodies as well as 

assisted in rationale vaccine design of immunogens.231–235 

These structural technologies can also potentially improve 

the abilities of scientists to advance the antigen capsid-

incorporation strategy. If the antigen capsid incorporation 

is effective, it can provide a way forward with respect to 

inducing sterilizing immunity.68,236,237

The antigen capsid-incorporation strategy has been 

used for Ad-based vaccines in the context of many 

diseases.230,238–242 One of the first examples where the antigen 

capsid- incorporation strategy was used was with research 

performed by Crompton in 1994.242 Crompton and colleagues 

inserted an eight-amino acid sequence of the VP1 capsid pro-

tein of poliovirus type 3 into two regions of the Ad2 serotype 

hexon. One of the chimeric vectors produced grew well in 

tissue culture. In addition, antiserum raised against the Ad 

with the polio insert specifically recognized the VP1 capsid 

of polio type 3. As it relates to Ad5 serotype, Wu and group 

demonstrated that His
6
 epitopes could be incorporated into 

Ad hexon hypervariable regions (HVRs) 1–7 (now reclassi-

fied as 1–9) without perturbing viral viability and any major 

biological characteristics such as replication, thermostability, 

or native infectivity. This study by Wu and colleagues dem-

onstrated that His
6
 appeared to be surface exposed at these 

regions.243 With respect to peptide incorporation within Ad5 

hexon, HVR2 and HVR5 appear to be the most promising 

locales for peptide/antigen incorporation based on X-ray and 

peptide analyses along with molecular studies.244 Our labora-

tory and others have focused on incorporations at HVR5 or 

single-site incorporations (such as fiber and pIX).230,238–241-

,243,245,246 However, we recognized that the ability to place 

antigen within multiple sites of the Ad capsid protein would 

hold important potential for presenting multiple epitopes/

antigens or several copies of the same epitope within a single 

Ad vector-based vaccine.

In an effort to create multivalent HIV vaccine vectors, 

our 2008 study explored the use of Ad5 HVR2 and HVR5 

in hopes of creating vectors which contained HIV antigenic 

epitopes at both locales. To compare the flexibility and capac-

ities of Ad5 HVR2 and HVR5, we genetically incorporated 

identical epitopes of incrementally increasing size within 

HVR2 or HVR5 of Ad5 hexon. We incorporated identical 

epitopes ranging from 33 to 83 amino acids within the Ad5 

hexon HVR2 or HVR5 region. Viable viruses were produced 

with incorporations of 33 amino acids plus a 12-amino acid 

linker at HVR2 or HVR5. In addition, viable viruses were 

produced with incorporations of up to 53 amino acids plus a 

12-amino acid linker at HVR5. With respect to identical anti-

gen incorporations at Ad5 HVR2 or HVR5, HVR5 was more 

permissive allowing an epitope incorporation of 65 amino 

acids in total. These model antigens were surface exposed 

via ELISA analysis. In vivo immunization with these vectors 

illustrated an antigen-specific immune response.240

Along these same lines, Abe and colleagues evaluated the 

ability of Ad5-based vectors expressing an HIV transgene to 

induce antigen-specific immune responses under Ad5 preim-

mune conditions. To overcome limitations that are generally 

experienced as a result of PEI to Ad5, they constructed 

vectors that have a modification in the HVR5. Their study 

characterized various immunological parameters generated 

by these vectors such as vector neutralization, acquisition 

of adaptive immune response, and comparison of protec-

tive immunity. First, in order to evaluate the utility of the 

modified Ad vector, they measured the neutralizing activity 

of sera by a modified Ad vector. They administered Ad-Luc 

(luciferase protein expressed as a transgene in the Ad E1 

region), Ad-HisLuc (His
6
 epitope presented in HVR5 region 

and luciferase protein expressed as a transgene), or Ad-END/

AAALuc vector (containing three amino acid mutations in 

HVR5 and expressing luciferase protein) to mice IM. After 

administration of these vectors, neutralizing activity against 

Ad5 was observed for 0–8 weeks. The hexon-modified vector 

(Ad-HisLuc) generated the lowest Ad5-specific neutralizing 

activity, which was significantly lower than what was gener-

ated by Ad-Luc at weeks 6 and 8, and by Ad-End/AAALuc 

vector at week 8. The individual neutralizing activity of 

Ad-HisLuc immunization was significantly lower than that 

of Ad-Luc immunization. Additional studies performed 

by Abe and colleagues support the concept that modified 

hexon thwarts Ad5 Nabs and promotes cellular immune 

 responses.247 Studies performed by this research group indi-

cate that a change in the immunogenic epitope is necessary 

to avoid neutralization by pre-existing Nabs.

Our recently published work exploits the antigen capsid-

incorporation strategy for HIV vaccination. Our novel vec-

tors were constructed in hopes of moving toward the goal of 

creating vectors that will provide cellular and humoral HIV 

immunity. Our study is the first of its kind to genetically 

incorporate an HIV antigen within the Ad5 hexon HVR2 

alone or in combination with genomic incorporation of a 
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Gag transgene (Ad5/HVR2-MPER-L15(Gag)). In this study, 

we successfully incorporated a 24-amino acid epitope of 

HIV-1 within HVR2. The HIV-1 region selected for HVR2 

incorporation was the membrane proximal ectodomain region 

(MPER) derived from HIV-1 glycoprotein 41 (gp41). Our 

rationale for choosing a portion of the MPER (EKNEKEL-

LELDKWASLWNWFDITN) derived from gp41 was based 

on the fact that the gp41 envelope protein ectodomain is a 

target of three broadly neutralizing anti-HIV-1 antibodies.248 

When the MPER was incorporated into HVR2 in combina-

tion with transgene expression, we observed growth kinet-

ics and thermostability changes similar to those of other 

capsid-incorporated vectors generated in other studies,249,250 

indicating that incorporation of the MPER epitope within 

HVR2 was not dramatically detrimental to virological 

characteristics.250,251 In addition, we demonstrated that the 

MPER epitope is surface exposed within HVR2. Most impor-

tantly, we observed a humoral anti-HIV response in mice vac-

cinated with the hexon-modified vector. The MPER-modified 

vector allows boosting compared to AdCMVGag, possibly 

because the Ad5/HVR2-MPER-L15(Gag) Ad elicits less anti-

Ad5 immune response. It is possible that the MPER epitope 

reduced the immunogenicity of the Ad5 vector. This finding 

is noteworthy because HVR2 has not been fully explored 

for antigen capsid-incorporation strategies.252 These vectors 

are currently being analyzed by cryo-electron microscopic 

analysis to determine the critical correlates related to antigen 

placement/configuration and immune response.

In addition, with respect to HIV-1 vaccination, the antigen 

capsid-incorporation strategy has been evaluated within the 

context of HRV. Research groups have constructed human 

rhinovirus:HIV-1 chimeras in an effort to stimulate immunity 

against HIV-1.148,253 In an effort to develop HIV-1 vaccines, 

researchers within this same group generated combinatorial 

libraries of HRV capsid-incorporated HIV-1 gp41 epitope. 

Their results indicated that they were successful in eliciting 

antibodies whose activity can mimic the Nab effect.149

Commercial and clinical Ad development of HIV-1 

vaccines have progressed preferentially more than vector 

systems such as HRV because the flexibility of Ad generally 

exceeds current rhinovirus systems. For example, because 

HRV is a relatively small RNA virus, the HRV platform 

can display an array limited to 60 copies of a single HIV-1 

epitope.148,253 In contrast, the Ad vector platform allows incor-

poration of the HIV-1 MPER epitope into three structurally 

distinct locales, including HVR2, HVR5,247 and protein IX 

(our unpublished data). In comparison, the Ad MPER anti-

gen capsid-incorporation display platform could present an 

array of 720 HIV-1 epitope copies within Ad hexon and 240 

HIV-1 epitope copies within pIX. If a multivalent Ad vector 

is generated with HIV-1 epitopes within the hexon and the 

pIX locales, this would represent 960 HIV epitopes within 

one Ad vector. Another significant difference between the 

Ad and HRV platforms is in the number of locales that have 

been successfully used for heterologous epitope insertion. 

Finally, in contrast to the rhinovirus that lacks this capacity, 

the Ad platform has sufficient coding capacity allowing for 

HIV-1 transgene expression in combination with presenting 

the same or a different antigen on the viral capsid surface. 

This latter finding is important because it provides the basis 

for constructing vectors that will provide cellular and humoral 

HIV-1 immunity. Vectors which provide both cellular and 

humoral immunity may be the way forward with respect to 

prophylactic HIV vaccine development.

Promising results in an effort  
to produce an HIV vaccine
Recently, there have been encouraging developments regard-

ing HIV vaccination. In the 1980s, in Thailand, there was 

a substantial increase in the prevalence of infection with 

HIV-1.254–256 By first observation, these groups consisted of 

intravenous-drug users and commercial sex workers; this 

infected group then expanded to the general population.101 By 

the mid 1990s, the overall seroprevalence of HIV-1 reached a 

peak of 3.7% among members of the Royal Thai Army and 

of 12.5% among people from Northern Thailand.255,257 The 

Thai Ministry of Public Health acted by starting an effective 

HIV-prevention campaign. With this effort, the number of 

new HIV-1 infections per year decreased from an estimated 

143,000 in 1990 to 14,000 in 2007.255,258–260 Although this 

decrease was promising, there was still a desire to do more 

to prevent HIV infection. To achieve this goal, an HIV Phase 

III study was begun.

The Thai Phase III HIV vaccine study, also known as 

RV144, opened in the fall of 2003. The placebo-controlled 

trial tested the safety and effectiveness of a prime-boost 

regimen of two vaccines: ALVAC-HIV vaccine (the prime), 

a modified canarypox vaccine, and AIDSVAX B/E vaccine 

(booster), a gp 120 vaccine. The vaccines were based on the 

subtype E and B HIV-1 strains that commonly circulate in 

Thailand. The subtype B HIV-1 strain is the most commonly 

found strain in the United States. The trial, conducted in the 

Chonburi and Rayong provinces of Thailand, enrolled 16,402 

women and men aged 18–30 years at various levels of risk 

for HIV infection. Study participants received the placebo 

or ALVAC HIV vaccine at enrollment and again after 1, 3, 
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and 6 months. The placebo or AIDSVAX B/E vaccine was 

given to participants at 3 and 6 months. Participants were 

tested for HIV-1 infection every 6 months for 3 years. During 

each clinic visit, study participants were counseled on how 

to prevent HIV-1 infection.

The results showed that 74 of 8198 placebo recipients 

became infected with HIV-1 compared with 51 of 8197 par-

ticipants who received the vaccine. This level of effectiveness 

in preventing HIV-1 infection was found to be statistically 

significant. The vaccine strategy had no effect, however, on 

the amount of virus in the blood of volunteers who acquired 

HIV-1 infection during the study. Based on the final analysis 

of the study, the surgeon general of the US Army, the trial 

sponsor, announced that the prime-boost investigational 

vaccine regimen was safe and 31% effective in preventing 

HIV-1 infection. With respect to an HIV-1 vaccine that can 

provide sterilizing HIV immunity, this is the best result 

in humans to date. However, the modest protection effect 

appeared limited to low-risk individuals, and there were data 

which suggest that this effect was confined to the first year fol-

lowing administration of the vaccine. Efforts must continue 

to focus on evaluating the immune response induced by the 

vaccine to establish potential correlates of protection.

Conclusion
Over the last three decades, the world has been faced with 

the emergence and subsequent epidemic of HIV/AIDS. 

There has been much progress with respect to diagnosis and 

prevention. On the treatment front, there have been several 

significant advances with respect to drug development (ie, 

ART/HAART). However, there is a desperate need for an 

effective and safe vaccine. There has been tremendous dif-

ficulty with regard to developing a vaccine that provides 

sterilizing immunity. This has been the case due to some of 

the factors mentioned in this review such as HIV diversity, 

immune evasion, and lack of appropriate animal models. Due 

to these obstacles, many researchers assumed that the control 

of HIV-1 viremia by vaccination would be a more realistic 

goal than the development of sterilizing immunity.

The road to a safe and effective HIV-1 vaccine received 

a serious setback in the fall of 2007 with the premature ter-

mination of the Merck-HIV-1 Vaccine STEP trial due to the 

lack of efficacy and early speculation that the vaccine might 

have increased the risk of HIV infection in some popula-

tions of vaccinees. In late 2009, promising results came in 

from Thailand in response to their efforts to create a safe 

and  effective vaccine against HIV-1. A community-based, 

randomized, multicenter, double-blinded, placebo-controlled 

efficacy trial using a prime-boost combination showed 31% 

effectiveness in preventing HIV-1 infection. These results 

lend promise to the hope of producing an HIV-1 vaccine 

vector that yields sterilizing HIV-1 immunity.

In the future, research scientists must work together to 

increase HIV-1 vaccine effectiveness beyond 31%. Realization 

of this goal may be accomplished by some of the techniques 

mentioned in this review, such as acquisition of HIV mucosal 

immunity, development of effective prime-boost strategies, 

development of better animal models, better molecular antigen 

modeling and presentation, avoidance of PEI (by the means of 

using novel vector serotypes in combination with PEGylation), 

and/or induction of Nabs (by means of capsid incorporation of 

HIV antigens within viral vectors). These are just a few consid-

erations that scientists and clinicians must consider with respect 

to the development of an effective and safe HIV-1 vaccine. 

Scientists and clinicians must also consider that one vector or 

scheme may not be sufficient with respect to providing effective 

HIV-1 immunity and some combination of the above-mentioned 

potential strategies may offer the most promising method of 

producing an effective HIV-1 prophylactic vaccine.
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