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Ulcerative colitis (UC) is a progressive intestine inflammatory disease that is prone to recur. Herein, we utilize microarray
technology and bioinformatics to reveal the underlying pathogenesis of UC and provide novel markers. Colonic biopsies were
taken from eight UC patients and eight healthy controls. Three differentially expressed miRNAs (DEMIs) and 264 differentially
expressed genes (DEGs) were screened using mRNA and miRNA microarray. Most DEGs were significantly associated with
immune response and were markedly enriched in the IL-17 signaling pathway. Among the target genes of DEMIs, PHLPP2
overlapped with DEGs and the downregulation of PHLPP2 group was mainly involved in the epithelial–mesenchymal
transition. PHLPP2 was downregulated in UC patients, which was validated in 5 GEO datasets and qRT-PCR. The ROC curve
demonstrated that PHLPP2 has a perfect ability to distinguish UC patients from healthy controls. Moreover, PHLPP2 was low
expression in patients with active UC. CIBERSORT algorithm indicated that the abundance of gamma delta T cells (P = 0:04),
M0 macrophages (P = 0:01), and activated mast cells (P < 0:01) was significantly greater than that of the control group. The
Spearman correlation analysis showed that PHLPP2 was positively correlated with the proportion of activated NK cells
(rho = 0:62, P = 0:013) and Tregs (rho = 0:55, P = 0:03), but negatively correlated with those of activated mast cells (rho = −0:8,
P < 0:01) and macrophages (rho = −0:73, P < 0:01). These results indicate that PHLPP2 is associated with immune cells in the
pathogenesis of UC, as well as provide new prospects and future directions of investigation.

1. Introduction

Ulcerative colitis (UC), a progressive and chronic inflam-
matory disease of the intestine, is one of the common
inflammatory bowel diseases (IBDs) that cause huge bur-
den on individuals and their family [1]. Genetic, environ-
mental, and immunological factors contribute to UC
pathogenesis [2, 3]. Despite major advances in therapeutic
resources, the mechanisms underlying UC pathogenesis
are multifaceted and have not been fully elucidated. Even
with the newest treatments, remission rates are less than
50% and the emergence of drug resistance is inevitable
[4]. Therefore, a comprehensive analysis of the pathogene-
sis and development of possible treatment strategies for
UC are urgently required.

MicroRNAs (miRNAs) are a class of endogenous non-
coding RNAs having a length of 19−25 nucleotides. miRNAs
repress translation and promote mRNA degradation by
interacting with the 3′ untranslated region of the target
mRNA [5]. miRNAs are implicated in various pathological
and physiological processes, such as cell proliferation, differ-
entiation, apoptosis, and metabolism [6]. Recent studies
have reported that miRNAs participate in the regulation of
the intestinal mucosal barrier and mucosal immune system
[7–9]. The aberrant expression of miRNAs has implications
in UC development. A study of miRNAs can help explore
the disease pathogenesis and identify new biomarkers.

The intestinal immune system is involved in UC pro-
gression [10]. During acute inflammation, patients present
with heavy infiltration of inflammatory cells, including mast
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cells, lymphocytes, macrophages, and dendritic cells, in the
intestinal mucosa [11]. Recent evidence suggests that some
miRNAs and mRNAs can regulate the cytokine gene expres-
sion in immune cells and have essential roles in regulating
the immune response. MiR-29 downregulates the interleu-
kin- (IL-) 12/23 expression or indirectly downregulates the
IL-23 expression by inhibiting activated transcription factor
2, thereby inhibiting the activation of Th17 cells [12]. There-
fore, the evaluation of different types of infiltrating immune
cells is important for elucidating the underlying mechanisms
of UC pathogenesis.

In the present study, crucial genes and miRNAs associ-
ated with UC pathogenesis were identified using the micro-
array technique, and their expression, function, and
interaction were evaluated using bioinformatics analyses.
We also validated key genes in multiple independent data-
sets. Furthermore, we investigated the association between
the identified biomarker and immune cell infiltration in UC.

2. Materials and Methods

2.1. Patients and Samples. The study was approved by the
Ethics Committee of People’s Hospital of Xinjiang Uygur
Autonomous Region (No. 2015110). The diagnosis of ulcer-
ative colitis was established on the basis of clinical, endo-
scopic, and histological criteria. Eight patients with UC
and eight age-, gender-, and ethnically matched normal con-
trols (NC) were enrolled. Normal controls with infectious
diseases, autoimmune disease, or cancers were excluded. A
written informed consent was obtained from all the study
participants. Colonic biopsies were collected through colo-
noscopy. In patients with UC, biopsies were performed at
the sites of active inflammation in rectum. The biopsy tissue
was derived from the rectum in normal controls. Tissues
were snap frozen in liquid nitrogen and stored at −80°C.
Total RNA was isolated using the mirVana™ isolation kit.
mRNAs and miRNAs were screened using Affymetrix Pri-
meView™ Human Gene Expression Array and Agilent
Human miRNA Microarray (Release 21.0, 8 × 60K), respec-
tively. Data analysis was performed using Agilent Gene-
Spring software.

2.2. Data Processing. Differentially expressed miRNAs
(DEMIs) and differentially expressed genes (DEGs) between
UC and normal tissues were identified using the “limma”
package of R software. For the selection of DEMIs and
DEGs, ∣log2 fold change ðFCÞ ∣ >1 was considered as the
standard, and a P value of <0.05 was considered statistically
significant. The DEGs and DEMIs were plotted using the
“ggplot2” and “pheatmap” packages in R version 4.1.2.

2.3. GO, KEGG, and DO Analysis. To detect related signaling
pathways and potential biological functions of the DEGs,
gene ontology (GO) functional enrichment, KEGG pathway,
and disease ontology analyses were performed using the
“clusterProfiler” [13] and “DOSE” [14] R package. P value
of <0.05 was considered as the criterion for statistical
significance.

2.4. Identification of the Key Genes. Databases, namely, miR-
TarBase (http://mirtarbase.cuhk.edu.cn/php/index.php),
miRDB (http://mirdb.org/), and TargetScan (http://www
.targetscan.org/vert_72/), were used to predict the target
genes of the DEMIs. Moreover, the intersection of the pre-
dicted target genes of DEMIs obtained using three databases
was considered as the final target genes. The genes overlap-
ping between the DEGs and final target genes were defined
as the key genes.

2.5. Gene Set Enrichment Analysis. Gene set enrichment
analysis (GSEA) version 4.1.0 software was used to further
analyze the potential function of the key genes with a per-
mutation of 1000. The patients were categorized into “high”
and “low” groups based on the median expression value of
the key genes. Hallmark pathways were performed to deter-
mine the crucial functions of the key genes. A false discovery
rate ðFDRÞ < 0:25 and a nominal P value of <0.05 referred to
the statistically significant difference.

2.6. Validation of the Key Genes. The expression of key genes
was further validated in GSE48958 [15], GSE73661 [16],
GSE75214 [17], GSE87473 [18], and GSE92415 datasets.
Additionally, the PHLPP2 expression in active and inactive
patients was validated. The receiver operating characteristic
(ROC) curve was plotted to assess the ability of the selected
genes to distinguish between UC patients and controls.

2.7. Evaluation of Immune Cell Infiltration. To compare
immune cell abundance between UC patients and healthy
samples, we used our dataset, which comprised eight UC
samples and eight healthy control samples, for the assess-
ment of tissue-infiltrated immune cells. The “CIBERSORT”
algorithm was used to calculate the relative proportions of
22 types of infiltrating immune cells. Significant alterations
in immune cells were identified using the Wilcoxon test at
P < 0:05. Pearson correlation test was performed to investi-
gate the correlation between the expression of key genes

Table 1: Primer sequences.

Name Primer sequence

PHLPP2
F-CTTACATCTCGTCCTTTGCACT

R-GGTCGTTCAGTAGGTTCCAGTC

β-Actin (human)
F-CATGTACGTTGCTATCCAGGC

R-CTCCTTAATGTCACGCACGAT

Table 2: Clinical characteristics of the study population.

Ulcerative colitis
group

Healthy control
group

Number of patients 8 8

Mean age in years (y) (±
SD)

45:50 ± 11:58 45:63 ± 11:30

Male sex 50% 50%

Ethnicity

Han 50% 50%

Uygur 50% 50%
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and relative immune cell abundance. A P value of <0.05 was
considered statistically significant.

2.8. Quantitative RT-PCR. Total RNA was extracted from
colonic tissues using Trizol (Invitrogen, USA) and quanti-
fied by a NanoDrop spectrophotometer (Thermo). cDNA
was synthesized using a TIANScript RT kit (Tiangen, Bei-
jing, China). Quantitative PCR amplification of cDNAs
was performed on a LightCycler 480 Real-Time PCR System
(Roche, USA). The mRNA level of genes was detected with
SuperRealPreMix Plus kits (TIANGEN, Beijing, China).
Expression levels of target genes were normalized to β-actin
mRNA levels. The primers for the qRT-PCR are listed in
Table 1.

3. Results

3.1. Screening of Differentially Expressed mRNAs and
miRNAs. Table 2 presents the basic data of the participants
in both groups. After analyzing with the criteria of adjusted
P < 0:05 and ∣log2FC ∣ >1, three DEMIs and 264 DEGs were
screened. The expression of these genes and miRNAs is
shown in Figure 1. For specific DEMIS and DEGs, see Sup-
plementary Tables 1 and 2.

3.2. Functional Enrichment Annotation. To further explore
the functions of DEGs, we performed GO, KEGG, and DO
analyses. The enriched GO annotation included immune
response, extracellular matrix organization, and the regula-
tion of inflammatory responses in the BP category.
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Figure 1: Identification of differentially expressed genes and differentially expressed miRNAs from mRNA and miRNAmicroarray. (a) Heat
map of the DEMIs. (b) Heat map of the DEGs.
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Endoplasmic reticulum lumen, collagen-containing extracel-
lular matrix, and cytoplasmic vesicle lumen were included in
the CC category. Receptor-ligand activity, endopeptidase
activity, and extracellular matrix structural constituent were
included in the MF category (Figure 2(a)). The KEGG path-
way analysis mapped DEGs to the IL-17 signaling pathway
and cytokine−cytokine receptor interaction pathway
(Figure 2(b)). DO analysis suggested that these DEGs were
closely linked with oral diseases (Figure 2(c)).

3.3. Identifying the Key Gene. Three databases (miRTarBase,
TargetScan, and miRDB) were used to predict the target
genes of the DEMIs. A total of 366 genes were obtained

using the three databases and were considered as the final
target genes. Only one gene, PHLPP2, intersected with DEGs
(Figure 3(a)). The qPCR results revealed that PHLPP2
expression levels were significantly different between UC
and healthy controls (Figure 3(b)). Analysis of the primary
chip data showed that PHLPP2 was low expression in UC
patients (Figure 3(c)). ROC curves indicated that PHLPP2
was a potential biomarker for distinguishing between UC
patients and healthy controls in our patients’ cohort
(Figure 3(d)).

3.4. GSEA. GSEA is a computational approach for detecting
minor undetectable changes in the gene expression. GSEA
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Figure 2: GO, KEGG, and DO analyses. (a) The bubble plot of enriched GO terms. (b) The bubble plot of the enriched KEGG pathways. (c)
The bubble plot of the enriched DO pathways.
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results indicated that the downregulation of the PHLPP2
group was mainly involved in the epithelial–mesenchymal
transition (Figure 4).

3.5. External Validation of the Key Genes. To further validate
the ability of PHLPP2 to distinguish between UC patients
and controls, we examined the PHLPP2 expression in GEO
datasets. PHLPP2 exhibited a significantly low expression
in patients with UC from 5 datasets (GSE48958,
GSE73661, GSE75214, GSE87473, and GSE92415)
(Figure 5(a)). The ROC curve showed that PHLPP2 has an
ability to distinguish between UC patients and healthy con-
trols (Figure 5(b)). We also validated the PHLPP2 expression

in active and inactive patients. The result shows that
PHLPP2 was low expression in patients with active UC
(GSE48958 and GSE75214) (Figure 6).

3.6. Immune Cell Infiltration Analysis. In our data, the abun-
dance of gamma delta T cells (P = 0:04), M0 macrophages
(P = 0:01), and activated mast cells (P < 0:01) was signifi-
cantly greater than that of the control group, whereas acti-
vated NK cells (P = 0:02) and resting mast cells (P < 0:01)
showed the reverse expression pattern (Figure 7(a)). The
Spearman correlation analysis of the expression of PHLPP2
and immune cells showed that PHLPP2 is positively corre-
lated with the proportion of activated NK cells (rho = 0:62,
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Figure 3: Identification of the key genes. (a) Venn diagram showing the overlap between differentially expressed genes and predicted targets
of the differentially expressed miRNAs. (b) The qPCR results revealed that PHLPP2 expression levels were significantly different between
UC and healthy controls. (c) PHLPP2 expression in the primary chip data. (d) ROC curve for PHLPP2 in the primary chip data.
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Figure 5: The expression level of PHLPP2 in the GEO database. (a) PHLPP2 was downregulated in UC patients in GSE48958, GSE73661,
GSE75214, GSE87473, and GSE92415. (b) ROC curves reflecting the ability of PHLPP2 to distinguish between ulcerative colitis and healthy
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P = 0:013) and Tregs (rho = 0:55, P = 0:03), but negatively
correlated with those of activated mast cells (rho = −0:8, P
< 0:01) and M0 macrophages (rho = −0:73, P < 0:01)
(Figures 7(b)–7(d)).

4. Discussion

UC is an autoimmune disease with a long-lasting course and
a high recurrence rate. Patients with long-standing and/or
extensive UC have an increased risk of developing colorectal
cancer. With the advent of next-generation sequencing and
gene chip technologies, researchers can identify DEMIs
and DEGs responsible for the initiation and progression of
diseases. Therefore, combining the expression data derived
from the microarray and comprehensive bioinformatics
analysis is a convenient approach. In this study, three miR-
NAs (miR-424-5p, miR-155-5p, and miR-192-5p) and 264
mRNAs were screened. Among the predicted target genes
of the DEMIs, PHLPP2 intersected with DEGs. Therefore,
we speculated that PHLPP2 is associated with the patholog-
ical mechanism of UC.

Previous studies have reported the significance of the
miRNAs, which were identified in our study. Studies have
reported a high expression of miR-155 in activated UC
patients. Compared with the control group, a 1.22- to 2.33-

fold level change of miR-155 was increased in UC samples
[19, 20]. miR-155 could participate in the regulation of UC
development by negatively regulating the TLR4 signaling
pathway via targeting SHIP1 and SCOS1 [21]. Another
mechanism of miR-155 involved in UC would be to modu-
late the Th17 cell differentiation and antigen presentation
in dendritic cells [22]. Our results are consistent with those
reported by Zahm et al. and Wu et al. who found decreased
expression of miR-192 in the sigmoid colon of patients with
UC [23, 24]. However, the specific mechanism of action of
miR-192 is unclear. The impact of miR-424 on UC is indis-
tinctive. miR-424 has been studied mostly in tumors and is
aberrantly expressed in multiple cancers such as renal clear
cell carcinomas [25], colon cancer [26], chronic leukemia
[27], pancreatic cancer [28], and ovarian cancer [29]. More-
over, miR-424 plays a dual role as it acts both as a tumor
suppressor [30, 31] and as a cancer promoter [28, 32]. In
conclusion, microRNAs are implicated in intestinal inflam-
mation and immunity in UC, providing a new direction
for exploring the pathogenesis and target-specific therapy
for UC.

PHLPP2 codes for homologous pleckstrin-homology-
domain leucine-rich-repeat protein phosphatases. PHLPP2
expression is considerably downregulated in various human
cancers [33–36]. It can negatively regulate AKT and PKC
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Figure 6: Validation of the expression of PHLPP2 in active and inactive UC patients. (a) PHLPP2 was low expression in patients with active
UC. (b) ROC curves reflecting the ability of PHLPP2 to distinguish between active UC and inactive UC.
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signaling pathways by directly dephosphorylating AKT and
PKC [37, 38]. Similarly, our data showed that PHLPP2 is
downregulated in UC patients, and this finding can be ver-
ified from multiple GEO datasets. We compared PHLPP2
expression in active and inactive UC patients from the
datasets and found that PHLPP2 is downregulated in
patients with active UC compared with that in patients
with inactive UC. These results corroborate the findings
of Wen et al. [39] who found that PHLPP downregulation
led to an increase in the Akt activity with the consequently
reduced intestinal epithelial cell (IEC) apoptosis. The
short-term downregulation of PHLPP showed positive
impacts on protection against excessive death of IECs.
However, long-lasting activation of PI3K/Akt signaling
induces IEC proliferation [40, 41], which ultimately results
in the development of colitis-associated cancer [42].
Recent studies have also found that the loss of PHLPP2
expression contributes to epithelial pyroptosis facilitating
rapid progression of colitis [43]. Additionally, using GSEA,
we found that the low-expressed PHLPP2 group was sig-
nificantly enriched in the epithelial–mesenchymal transi-
tion- (EMT-) related pathway. As others have reported,
PHLPP2 knockdown induces an increase in the levels of
EMT markers [44]. Intestinal wall fibrosis is a common
late complication of UC characterized by superficial
inflammation of the rectum and colon, and its intestinal
fibrosis is generally limited to the submucosa [45]. Increas-
ing evidence has supported a role for EMT in the patho-
genesis of IBD-associated intestinal fibrosis and
potentially suggests the use of the EMT signature as a
molecular tool to assess cancer risk in patients with active
UC lesions [46, 47]. Taken together, we can infer that
chronic and repeated inflammation-induced PHLPP loss
contributes to the development of colitis-associated cancer.

Results of the KEGG analysis indicated that DEGs were
mainly enriched in the IL-17 pathway. IL-17 is an important
proinflammatory factor that promotes the infiltration of
inflammatory cells in UC [48]. Genetic polymorphisms in
the IL-23/IL-17 axis have a substantial impact on UC [49].
Several IL-17-targeted therapeutic agents have been devel-
oped and proven effective in most animal experiments in
IBD in recent years [50]. The IL-17-targeted therapy may
become a potential new therapy for UC in the future.

Innate and adaptive immunity are the two dominant fac-
tors that drive the progressive tissue damage in patients with
UC [51]. Our results suggested that PHLPP2 is positively
correlated with the proportion of activated NK cells and
Tregs but negatively correlated with activated mast cells
and M0 macrophages. CD4+, CD25+Tregs have immuno-
suppressive effects on the UC pathogenesis and have a major
contribution in maintaining the intestinal immune homeo-
stasis [52]. Tregs secrete IL-10 and TGF-β, which protect
against colitis by suppressing the immune response [53]. A
decrease in Tregs is related to UC pathogenesis [54], which
can be because of the reduction in the quantity and function
of Tregs, leading to the differentiation of CD4+ T cells to
Th17 cells. The increased proportion of Th17 cells further
promotes the secretion of inflammatory cytokines, which
contribute to the progression of inflammatory responses
[55]. Previous studies have reported that the proportion of
macrophages increased with time in the mucosal, submuco-
sal, and muscular layers of rats treated with 2,4,6-trinitro-
benzene sulfonic acid and dextran sulfate sodium [56, 57].
Patients with UC exhibit severe infiltration and macrophage
accumulation in the lamina propria of the colonic mucosa,
which result in hypersensitivity to the stimulation by bacte-
ria and their products and generation of abundant proin-
flammatory cytokines [58]. Targeted regulation of the
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Figure 7: Evaluation of immune cell infiltration. (a) The proportion of 22 types of immune cells between normal samples and ulcerative
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polarization state of macrophages is a potential target for UC
remission. An increased number of mast cells were first
identified by Nolte et al. in the colonic tissue of UC patients
[59]. King et al. [60] subsequently found that during the
active phase of UC, the number of mast cells was 6.3 times
higher than its normal range in the inflammatory region,
19.5 times higher at the junction of diseased and normal tis-
sue, and 15.8 times higher in the normal intestinal segment.
Several studies have reported that mast cells have profound
consequences in UC pathogenesis [61, 62]. Mast cells, after
being stimulated by various factors, are activated and release
various mediators and cytokines, which mediate the inflam-
matory response in the intestine [63, 64]. Therefore, the
inhibition of the activation of enteric mast cells might be a
promising therapy for UC [65]. Our results further indicated
that PHLPP2 functioned in UC by regulating the immune
cells.

5. Conclusions

PHLPP2 was identified as a candidate biomarker that may
participate in UC pathogenesis. PHLPP2 was found to be
correlated with the infiltration of immune cells, particularly
Tregs, macrophages, and mast cells. The biological functions
and pathways of the selected genes offer a holistic under-
standing of the underlying molecular mechanisms in UC.
However, a more detailed investigation is required to vali-
date the proposed mechanism.
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