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Abstract

Group A Streptococcus (GAS) skin infections are caused by a diverse array of strain types

and are highly prevalent in disadvantaged populations. The role of strain-specific immunity

in preventing GAS infections is poorly understood, representing a critical knowledge gap in

vaccine development. A recent GAS murine challenge study showed evidence that sterilis-

ing strain-specific and enduring immunity required two skin infections by the same GAS

strain within three weeks. This mechanism of developing enduring immunity may be a signif-

icant impediment to the accumulation of immunity in populations. We used an agent-based

mathematical model of GAS transmission to investigate the epidemiological consequences

of enduring strain-specific immunity developing only after two infections with the same strain

within a specified interval. Accounting for uncertainty when correlating murine timeframes to

humans, we varied this maximum inter-infection interval from 3 to 420 weeks to assess its

impact on prevalence and strain diversity, and considered additional scenarios where no

maximum inter-infection interval was specified. Model outputs were compared with longitu-

dinal GAS surveillance observations from northern Australia, a region with endemic infec-

tion. We also assessed the likely impact of a targeted strain-specific multivalent vaccine in

this context. Our model produced patterns of transmission consistent with observations

when the maximum inter-infection interval for developing enduring immunity was 19 weeks.

Our vaccine analysis suggests that the leading multivalent GAS vaccine may have limited

impact on the prevalence of GAS in populations in northern Australia if strain-specific
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immunity requires repeated episodes of infection. Our results suggest that observed GAS

epidemiology from disease endemic settings is consistent with enduring strain-specific

immunity being dependent on repeated infections with the same strain, and provide addi-

tional motivation for relevant human studies to confirm the human immune response to GAS

skin infection.

Author summary

Group A Streptococcus (GAS) is a ubiquitous bacterial pathogen that exists in many dis-

tinct strains, and is a major cause of death and disability globally. Vaccines against GAS

are under development, but their effective use will require better understanding of how

immunity develops following infection. Evidence from an animal model of skin infection

suggests that the generation of enduring strain-specific immunity requires two infections

by the same strain within a short time frame. It is not clear if this mechanism of immune

development operates in humans, nor how it would contribute to the persistence of GAS

in populations and affect vaccine impact. We used a mathematical model of GAS trans-

mission, calibrated to data collected in an Indigenous Australian community, to assess

whether this mechanism of immune development is consistent with epidemiological

observations, and to explore its implications for the impact of a vaccine. We found that it

is plausible that repeat infections are required for the development of immunity in

humans, and illustrate the difficulties associated with achieving sustained reductions in

disease prevalence with a vaccine.

Introduction

The development of immunological memory following infection or vaccination against a par-

ticular pathogen enables a more rapid and enhanced immune response during subsequent

infections. The characteristics of this immunological memory at an individual host level—such

as the degree or duration of immune protection against subsequent pathogen encounters—

impact epidemiological dynamics at the host population level [1, 2].

Routine vaccination programs targeting pathogens comprised of a single serotype (i.e., one

immunologically-equivalent strain), such as the mumps and measles viruses, inhibit sustained

transmission because they result in the accumulation of hosts with enduring immunological

memory (herd immunity) effective against all pathogen genotypes [3, 4]. For pathogens with

multiple serotypes (i.e., multi-strain pathogens), such as Neisseria meningitidis [5], poliovirus

[6], Streptococcus pneumoniae [7] and dengue virus [8], infection by one strain may lead to an

immune response that is strain-specific, providing less, if any, protection against other strains

(cross-strain immunity). As a result, the link between an individual’s immune response and

the accumulation of herd immunity at the host population-level can be more complex for

multi-strain pathogens, posing challenges for understanding their transmission and for control

[1, 2, 9–15].

An important human pathogen with very high strain diversity is group A Streptococcus
(GAS), which, globally, is comprised of over 230 molecular sequence types [16] and over 290

distinct genotypes [17]. GAS generally causes infections of the skin or throat that are mild and

easily treated. However, mild GAS infection can also lead to more serious invasive and

immune-mediated disease with high mortality rates [18]. Hence, populations with high rates
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of mild GAS infections tend to also suffer from high rates of invasive disease and immune

sequelae, such as acute rheumatic fever, rheumatic heart disease and acute post-streptococcal

glomerulonephritis [18]. These GAS “hyper-endemic populations” also tend to have much

higher strain diversity compared to populations with a low prevalence of GAS [19]. For exam-

ple, dozens of strains of GAS are reported to co-circulate in the Indigenous communities of

tropical northern Australia, where the median prevalence of GAS skin infections is 45% (IQR

34.0–49.2%) in children, and the incidence of acute rheumatic fever is among the highest

reported in the world [18, 20–24]. There is a lack of population prevalence data of GAS skin

infection in non hyper-endemic populations [20]. However, in the US, where rheumatic heart

disease prevalence is estimated to be amongst the lowest levels in the world [25], just three

strains accounted for over 50% of GAS throat isolates collected from children over a seven

year period [26].

Despite the high global burden of GAS disease [18], currently there is no licensed GAS vac-

cine, although there are a number in the vaccine pipeline [27, 28]. A critical knowledge gap in

GAS vaccine development is our limited understanding of how strain-specific immunity might

prevent GAS infection (particularly skin infection) and, in turn, shape patterns of transmission

across different populations. Epidemiological studies indicate that GAS skin infection is much

less frequent in adults than in children [20, 24, 29, 30], suggesting that people may be able to

acquire enduring immunity to particular GAS strains following skin infection. However, if

enduring strain-specific immunity to GAS is possible, the high rates of repeat skin infections

observed in children in hyper-endemic regions [30–32] suggest that it is slow to develop. More-

over, an association between the age-related immunity to GAS and the acquisition of GAS spe-

cific antibodies suggest the need for repeated GAS exposures for enduring immunity [33]. A

recent study in mice showed evidence that sterilising strain-specific and enduring immunity

required two skin infections by the same GAS strain within three weeks [34]. A single infection,

or two infections by the same strain that occurred greater than three weeks apart did not result

in the generation of memory B cells, but rather only short-lived strain-specific immunity. An

analogous mechanism of acquiring enduring strain-specific immunity from GAS skin infection

in humans may be a significant impediment to the accumulation of herd immunity, particu-

larly in populations with high numbers of circulating strains.

In this work we develop an agent-based mathematical model that simulates the transmis-

sion of multiple strains of GAS in a population where hosts can only acquire enduring immu-

nity protecting against reinfection by a particular strain if they experience two repeated

episodes of infection by this strain within a specified time interval. To the best of our knowl-

edge, this is the first time a transmission model of any pathogen has accounted for this type of

strain-specific immunity. We simulate our model to (i) understand the population-level conse-

quences of hosts requiring two episodes of infection within a given time frame to obtain

enduring strain-specific immunity; (ii) determine whether epidemiological observations of

GAS in an Australian Indigenous population are consistent with this type of immune response;

and to (iii) investigate how one of the leading multivalent strain-specific GAS vaccines could

potentially alter the prevalence of GAS in the Australian Indigenous context. Understanding

generated may be crucial for predicting and understanding future population effects of GAS

vaccines currently in development (see [27, 28] for reviews of the current state of GAS vaccine

research).

Methods

In this section we describe our agent-based model of GAS transmission, the selection of

model parameters based on available epidemiological studies, and our in silico experiments.
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Model of GAS transmission

Our agent-based model simulates the transmission of n(t) strains of GAS in a well-mixed host

population (where agents correspond to hosts) of constant size N, in discrete time t. We

assume the population is situated in a geographical region where nmax strains of GAS are in cir-

culation so that 0� n(t)� nmax. Each strain is assumed to have on average identical transmis-

sibility, cause infections with identical baseline average duration, and be equidistant to each

other in ‘antigenic strain space’ (in which distance corresponds to antigenic dissimilarity, as

was assumed in [35]) so that each strain prompts a distinct immune response in hosts.

The model tracks the age, infection and immunity status of each host through time.

Changes in host infection and immunity status occur due to the clearance of infections, trans-

mission events, and waning immunity (detailed below), and are updated synchronously at the

end of each day. New susceptible individuals aged zero are introduced into the population at a

per capita rate d to replace individuals that are lost due to natural death. We also model migra-

tion at a per capita rate of α (detailed below).

Infection. In high incidence settings, multiple strains of GAS have been concurrently

detected in the same and different skin lesions of individuals [36]. Therefore, in our model,

hosts can be co-infected by multiple strains. We assume that a host can have a maximum of κ
infections at any one time (including multiple infections of the same strain), and that the sus-

ceptibility of hosts to infection decreases as the total number of infections in each host

increases. These assumptions incorporate the effects of pathogen populations directly compet-

ing for space and resources within the host, or indirectly interacting via the host immune

response. We calculate the relative susceptibility r of host i to an uninfected host as

r ¼ 1 �
giðtÞ
k

� �x

; ð1Þ

where gi(t) is the total number of infections of host i at time t and x> 0 is a number scaling the

level of resistance to acquisition of new infections due to the competitive advantage of already

established infections. Clearly, if host i is uninfected then r = 1, and if the host is at infection

carrying capacity κ then r = 0.

Each day, each infecting strain will clear with probability Γ = 1 − exp(−γ/s), where 1/γ is the

mean duration of infection of a host without prior immunity, and s is the expected relative

duration of infection of a host compared to a host without prior immunity (detailed below). If

a host has multiple infections of the same strain and this strain clears during a time step, then

we assume that all infections of that strain in the host clear simultaneously.

Transmission. In the model, each host has on average c contacts with other hosts per day.

The contacts of infected hosts are chosen uniformly at random from the population, and the

outcomes of these contact events are then determined (i.e., whether or not a transmission

event occurs). We specify that transmission may only occur one-way from the infected host to

their contacts. The probability of a contact resulting in transmission is B = βr, where β is the

baseline probability of transmission, and r is the relative susceptibility of a host to an unin-

fected host (detailed above). If the infected host has more than one infection, only one of these

co-infections can possibly transmit during a single contact event. For co-infected hosts, we

choose one infection uniformly at random to attempt transmission. If this attempt fails, then

the contact event does not result in transmission. These rules correspond to the assumption

that co-infected hosts are not necessarily more infectious than hosts with a single infection.

We also specify that a host may only contract a maximum of one infection per day.

With these assumptions, we can calculate the basic reproduction numberR0, which is the

expected number of secondary infections caused by a single infected host introduced into a
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completely susceptible host population. A pathogen is expected to cause an outbreak or

become endemic in a host population if R0 > 1. In our model, R0 is defined as

R0 ¼
cb

gþ d þ a
: ð2Þ

Immunity. Based on observations in the mouse model of GAS skin infection discussed

above [34], we assume that the clearance of any host’s first infection by a particular strain con-

fers temporary immunity. This temporary immunity has a strain-specific effect of strength σ
(where 0� σ� 1) and a cross-strain effect of strength ω1 (where 0� ω1� σ) that lasts for a

duration w for all hosts and strains.

If a host has temporary strain-specific immunity to a particular strain and is reinfected by

the same strain, clearance of this subsequent infection leads to enduring strain-specific immu-

nity that prevents reinfection by this strain and confers enduring cross-strain immunity of

strength ω2 that is effective against strains that a host does not have temporary or enduring

strain-specific immunity to. However, if this temporary immunity wanes, then a subsequent

infection by this strain will only confer temporary immunity with the same characteristics as a

first infection. This natural history of infection is summarised in Fig 1. Henceforth, we refer to

the duration w, as the ‘maximum inter-infection interval’ that enables the development of

enduring strain-specific immunity.

We note that in the model, it is possible for a host without any prior strain-specific immu-

nity of a strain to experience multiple infections of a particular strain simultaneously. Due to

our assumptions about strain clearance (detailed above), all infections by the same strain will

clear simultaneously in the model when the host recovers from this strain, leading to a single

immune response. We assume that such a clearance event only confers temporary immunity.

Fig 1. Model of the natural history of disease with respect to a single strain. A: Hosts without prior immunity to a particular strain (S) become

infected by contacting infected hosts (I1 or I2). These infections (I1) clear at an average rate γ which confers temporary immunity (R1). This temporary

immunity reduces the duration of a subsequent infection (I2) by a factor dependent on the strength of temporary strain-specific immunity (σ) if the

subsequent infection occurs within a short-enough time window (the maximum inter-infection interval, w) from the time of clearance (green line). If

infection does not occur within this time frame (blue line), then temporary immunity wanes and a subsequent infection has the characteristics of a first

infection. If temporary immunity does not wane before the next infection, then the clearance of this next infection occurs faster, and confers enduring

immunity protecting against further infection (R2). B: An example of a host’s immune response (solid black line) following three episodes of infection

by the same strain. Here, the temporary immunity acquired following the first infection wanes before the second infection. The clearance of the second

infection leads again to temporary immunity. However this becomes enduring immunity following the clearance of the third, more timely, infection.

https://doi.org/10.1371/journal.pcbi.1007182.g001
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In the mouse model [34], the effect of the immune response was assessed by determining

the number of colony forming units in skin and blood samples (bioburden) collected six days

post inoculation. These showed a reduction in bioburden of approximately 90% for second

infections of the same serotype compared to the first infection, provided that the second infec-

tion occurred within three weeks of the first. However, if the second infection was a different

serotype, this reduction in bioburden ranged from approximately 0–30%. Our model does not

explicitly represent bioburden within hosts. However, a reduction in bioburden during an

infection could conceivably result in a reduced duration of infection and/or reduced infec-

tiousness of a host during a contact event, or possibly prevent the host from ever being infec-

tious (i.e., the host is no longer susceptible to infection). In our model, we translate the

reduction in bioburden due to host immunity into a reduction in the duration of infection.

We note that a reduced duration of infection also corresponds to a reduction in the overall

infectiousness of a host since a host will have less opportunities for transmission over the

course of a shorter infection. Furthermore, with this assumed effect of immunity, further

immune memory may be gained by a repeated exposure as if the host were totally naïve.

For each host i their expected relative duration of an infection by strain j compared to a

host with no immunity is

s ¼

1 � s; if the host has temporary strain‐specific immunity to strain j;

1 � o1; if the host has only temporary strain‐specific immunity to other strains;

0; if the host has enduring strain‐specific immunity to strain j;

1 � o2; if if the host has no strain‐specific immunity to strain j and

enduring strain‐specific immunity to other strains;

1; otherwise:

ð3Þ

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Clearly, if a host has no immunity then the expected duration of an infection is not reduced

from the baseline duration 1/γ (since s = 1 in this case). If a host has temporary strain-specific

immunity of a strain at the time they are infected by this strain, then the expected duration of

infection is reduced according to the strength of temporary strain-specific immunity σ (so that

s = 1 − σ). A host with enduring strain-specific immunity to a strain is essentially completely

protected against infection by this strain (since a subsequent infection by this strain will have

zero duration). Without strain-specific immunity to a strain, a host may still have a shorter

expected duration of infection by that strain if they have either temporary or enduring immu-

nity of other strains at the time of infection (since either s = 1 − ω1 or s = 1 − ω2 in these cases).

Migration. In host settings where GAS disease is hyper-endemic and where high numbers

of GAS strains typically co-circulate, different strains of GAS have been observed to move

sequentially through communities rather than persist indefinitely [21–24]. The introduction of

novel strains and previously circulating strains into these populations is thought to be enabled

by host mobility [37, 38]. Therefore, in our model, each day A hosts (where A is a Poisson dis-

tributed random variable with mean αN, and α is the per capita migration rate) are chosen uni-

formly at random to be replaced by immigrants. Immigrants are assumed to have a similar

immune profile to individuals in the population. This is implemented by specifying that an

immigrant will have the same immune profile as an individual selected uniformly at random

from the population. Immigrants may also be infected with up to one copy of infection of any

strain (chosen uniformly at random from all nmax strains in the region). The prevalence of
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infection in immigrants is set at 10% to be consistent with the asymptomatic carriage rate of

GAS across all age groups and population settings [39].

Summary statistics

Two metrics are used to summarise transmission dynamics in our model at the population-

level at time t: the diversity of strains D(t), and the prevalence of infected hosts P(t). We choose

these summary statistics as they can be calculated from existing epidemiological data of GAS

transmission [24]. Strain diversity is a measure of the total number of strains as well as how

evenly strains are distributed across all infections in the host population. We calculate strain

diversity using Simpson’s reciprocal index, D(t):

DðtÞ ¼
MðtÞðMðtÞ � 1Þ
P

jmjðtÞðmjðtÞ � 1Þ
; ð4Þ

where mj(t) is the number of infections of strain j in the host population at time t, and M(t) is

the total number of infections in the host population at time t. The prevalence of infected hosts

in a host population, P(t), is calculated as

PðtÞ ¼
1

N

X

i
1Zþ giðtÞð Þ � 100%; ð5Þ

where 1ZþðgiðtÞÞ is the indicator function of the subset Zþ (the positive integers) of the set of

all non-negative integers Z0 which takes the value of one when giðtÞ 2 Z
þ (i.e., when host i has

at least one infection) and zero otherwise. We define pathogen extinction to be the case where

the prevalence P(t) = 0.

In silico experimental approach

Since GAS is endemic in human populations, we only consider endemic transmission dynam-

ics in our model. All simulations are run for at least 50 years to allow the epidemiological

dynamics to reach a quasi-steady state where the level of immunity in the population reaches a

stable level. The level of immunity in the population is determined by the distribution of the

number of strains that hosts in the population currently have immunity to, Y(t), the mean of

which is given by Ŷ ðtÞ. We define the quasi-steady state (where Ŷ ðtÞ is stable) as the endemic

equilibrium. We also define P�, D� and Ŷ � to be, respectively, the endemic values of the sum-

mary statistics P(t) and D(t) and of the mean population immunity Ŷ ðtÞ. These are calculated

by taking the mean values of P(t), D(t) and Ŷ ðtÞ across the previous 5 years (that is, for t 2 [45,

50] years).

Selection of model parameters. Table 1 shows the parameters in our model and the val-

ues we considered in our simulations. Parameters were selected to reflect GAS transmission an

Indigenous population of northern Australia, where GAS disease is hyper-endemic and the

majority of GAS infections are skin infections [24].

The population size N and the number of strains circulating in the region nmax are set at

2500 and 40 respectively to be consistent with community sizes [24] and the number of strains

circulating [19] among Indigenous populations of northern Australia. The mean duration of

infection 1/γ is set at 14 days to be consistent with clinic data collected in this setting [22–24].

The number of daily contacts c is calculated using household contact data collected in

remote Australian Indigenous communities [41]. In this setting, it is estimated that individuals

make approximately 22 contacts per day on average in households. Due to a lack of data

describing contact patterns outside of households in these populations, we make the
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assumption that an individual will have roughly half the number of contacts outside of house-

holds compared to within households (approximately 11 contacts per day), as has been

assumed previously for a model of influenza transmission in this setting [41]. Therefore, we set

the mean number of daily contacts c to be 33.

Migration patterns are not described in this settings. We set the per capita expected migra-

tion rate α to 0.002 per week which corresponds to an average of 5 migration events per week

when the population size N = 2500. With the prevalence of infection in migrants set to 10%,

infected migrants enter the population approximately once every two weeks, which is consis-

tent with genomic analysis of GAS isolates collected across two Indigenous communities in

Northern Australia [42].

Values for parameters relating to the effects of immunity are determined from the mouse

model of GAS skin infection [34]. We set the strength of temporary strain-specific immunity σ
to 0.9 and the strength of temporary and enduring cross-strain immunity to 0.1. These values

are based on the respective observations of 90% and 0-30% reduction in bioburden in the

mouse due to strain-specific and cross-strain immunity [34].

To date, R0 has not been calculated for GAS. We explore values of R0 ranging from 1–10

(detailed below). For each combination of the parameters fR0; 1=g; cg considered, the baseline

transmission probability β is calculated using Eq (2).

There is also limited data on co-infection for GAS, which is not always accounted for dur-

ing data collection or when typing GAS specimens. We consider nine different co-infection

scenarios defined by different values of the co-infection carrying capacity κ and the level of

resistance to co-infection x (detailed below).

What are the population-level consequences of enduring strain-specific immunity

being contingent on repeat infections?. The maximum inter-infection interval w was esti-

mated to be three weeks in the mouse model [34]. It is not clear how this timespan translates

in humans. Based on comparisons in mice versus humans of lifespan, the time of weaning, and

the age of adulthood onset, the equivalent 3-week timespan in humans could be estimated,

respectively, as either 104 weeks, 19 weeks or 420 weeks, respectively [43]. Therefore, to under-

stand the population-level consequences of enduring strain-specific immunity being contin-

gent on repeated episodes of infection of the same strain, we consider all three of these

estimates for the maximum inter-infection interval w in humans, as well the case where w

Table 1. Parameter values.

Symbol Description Values / Range Ref.

N Population size 2500 [24]

nmax Number of strains circulating in region 40 [24]

d Per capita death rate (years−1) 1/71 [40]

c Mean number of daily contacts 33 [41]

α Mean per capita rate of migrations (weeks−1) 0.002 [42]

σ Temporary strain-specific immunity strength 0.9 [34]

ω1 Temporary cross-strain immunity strength 0.1 [34]

ω2 Enduring cross-strain immunity strength 0.1 [34]

1/γ Baseline mean duration of infection (days) 14 [22–24]

w Maximum inter-infection interval (weeks) {3,19,104,420,1} [43]

R0 Basic reproduction number [1, 10] -

κ Maximum number of co-infections per host {10, 20, 40} -

x Level of resistance to co-infection {1,10,100} -

https://doi.org/10.1371/journal.pcbi.1007182.t001
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remains unchanged between the mouse and human, that is, when w = 3 weeks. We also con-

sider the null case where there is no upper bound on the time allowed between the first and

second infections for clearance of the second infection to confer enduring immunity, that is,

when w =1.

We explore values of R0 in increments of 0.5 ranging from 1–10. This range includes values

of R0 that are consistent with estimates for other pathogenic bacteria that occupy similar

niches to GAS: S. pneumoniae [44, 45] and Staphylococcus aureus [46] (R0 ¼ 2–3). It also

allows for the possibility that GAS may have a higher than expected R0 in Indigenous popula-

tions of northern Australia, where factors such as household crowding [41] and poor access to

clean water [47] may increase transmissibility.

Finally, we consider scenarios with κ 2 {10, 20, 40} and x 2 {1, 10, 100}. These co-infection

parameters affect the shape of the function r (Eq (1)) governing the relative probability of

transmission to a host relative to an uninfected host during a contact event with an infected

host, as shown in S1 Fig. With increasing x, the chances of a host acquiring additional infec-

tions decreases as their number of co-infections approaches κ.

For each value of w, R0, κ and x considered, we perform 80 simulations of our model.

From each set of simulations, we obtain distributions for the values of the summary statistics

at equilibrium (the endemic prevalence P� and endemic strain diversity D�) as well as the

endemic mean population immunity Ŷ �, from which we calculate their mean values, and

25%–75% quantiles.

Are our model outputs consistent with epidemiological data?. Next, we determine

whether data simulated from our model (with any of the estimates of w, R0, κ and x consid-

ered) is consistent with epidemiological data collected in a hyper-endemic population (a com-

munity indigenous to Northern Australia [24]). In this previous study, prospective

surveillance of a population of approximately 2500 people was carried out monthly over a 23

month period. Swabs were taken from the throats of all participants and any skin sores of par-

ticipants and GAS isolates underwent strain typing (according to emm sequence, which is the

sequence at the 50 end of a locus found in all GAS isolates that encodes the M-protein, a cell-

surface protein). From this data we calculate the prevalence and strain diversity at each time

point and use this to estimate the endemic prevalence and strain diversity in this setting. As

this study did not collect serological data, we cannot estimate endemic population immunity.

For each parameter scenario, the comparison to real data is achieved by first simulating

transmission until the dynamics reach equilibrium (for 50 years) before continuing the simula-

tion for a further 22 months, sampling the data monthly in a manner reflective of the previous

study’s surveillance protocol [24]. Specifically, 548 people were enrolled in the study in this

community and the number of consultations each month ranged from 21 to 211. For each

model realisation we assign 548 hosts uniformly at random from the whole population into

the study, and from this pool of hosts, each month we sample, uniformly at random, the same

number of hosts that were seen in the corresponding month of the study. We then compare

the distributions of sampled P� and D� to those calculated from the real data.

What is the potential impact of a multivalent vaccine?. A number of GAS vaccines are

in the vaccine pipeline, including multivalent vaccines targeted towards serotypes associated

with pharyngitis and invasive disease in Northern America and Western Europe [48]. While

these targeted multivalent vaccines are predicted to provide high strain coverage in their target

populations, the coverage in other populations where disease burden is much greater is pre-

dicted to be much lower [17, 19]. For example, at the time of design, a leading multivalent

GAS vaccine was estimated to target only 25% of the serotypes of GAS circulating in
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Indigenous populations of Australia, and 85-90% of serotypes in Northern America (ignoring

any potential cross reactivity between serotypes) [19].

To investigate how a targeted 30-valent vaccine could potentially alter the prevalence of

GAS in the Indigenous Australian context, we simulate the effects of a vaccination program

consisting of routine vaccination and a one-off catch up campaign. The routine vaccination

program vaccinates children when they reach one-year of age. At the commencement of the

intervention, a one-off catch-up campaign vaccinates primary school-aged children in the

population (aged 5–11 years). In the absence of a currently licensed vaccine, or any real-world

studies to determine optimal vaccination schedule or vaccine effectiveness, we explore the

extreme assumption that vaccine immunity is life-long, protects against all strains in the vac-

cine, and has an effectiveness of 90% (which takes into account both imperfect vaccine protec-

tiveness and imperfect program coverage). This allows us to assess the greatest possible impact

of immunisation. Lesser impacts on population dynamics are anticipated for a vaccine with

only temporary protection.

A region-wide vaccination program will likely alter the overall prevalence of vaccine versus

non-vaccine strains in the region. Therefore, strains infecting immigrants are no longer chosen

uniformly at random from all nmax strains in the region. Instead, we define the probability

pv(t) to be the probability that a strain infecting an immigrant will be a vaccine strain at time t.
This is calculated as

pvðtÞ ¼ ðnvðtÞ þ 1Þ=ðnvðtÞ þ nnvðtÞ þ 2Þ; ð6Þ

where nv(t) and nnv(t) are, respectively, the number of vaccine strains and non-vaccine strains

present in the population at time t. This expression for pv(t) is chosen so that (1) there is a

small chance that an infected migrant will be carrying a vaccine strain when there are no vac-

cine strains currently present in the population (since pv(t)> 0); and (2) there is a small chance

that an infected migrant will be carrying a non-vaccine strain when there are no non-vaccine

strains currently present in the population (since pv(t)< 1). Since we are unsure how the vac-

cine will affect the overall prevalence of infection, we make the conservative assumption that

the prevalence of infection in immigrants remains unchanged at 10%. For every infected

immigrant, if it is determined (via the probability pv) that their infecting strain is a vaccine

strain, then this strain is chosen uniformly at random from the set of all vaccine strains. Con-

versely, if it is determined that their infecting strain is a non-vaccine strain, then this strain is

chosen uniformly at random from the set of all non-vaccine strains. The vaccination status of

any immigrants coming into the population are determined in the same way as their immune

profiles—by specifying that the immune profile and vaccination status be the same as that of

individuals in the population sampled uniformly at random.

We assess a range of vaccine scenarios that vary by the extent to which the 30-valent vaccine

is tailored to the Australian Indigenous population context. We consider scenarios where the

vaccine protects against infection by 25% of GAS strains circulating in the region (10 strains),

an intermediate case where there is 50% strain coverage (20 strains), and a best-case scenario

where all 30 strains targeted by the vaccine are strains that are currently circulating in the

region (corresponding to 75% strain coverage). For each of these scenarios, we also explore the

effect of further tailoring the vaccine to the population by choosing the vaccine strains to be

the most-prevalent strains at the commencement of the intervention, as opposed to a random

selection of strains (which might arise if the vaccine were tailored to another population

setting).

We compare the base-line (pre-vaccine) endemic epidemiological dynamics with those cal-

culated post-vaccine (after a further 100 years to allow the epidemiological dynamics to re-
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equilibrate). We also consider the short-term impact of the vaccine during the first two years

of implementation. The intervention scenarios considered are further broken down into those

where routine vaccination is, or is not, supplemented by the one-off catch-up campaign target-

ing primary school aged children.

Results

The total prevalence of infection and strain diversity are maintained by the

successive reintroduction of strains

In our model, endemic transmission is characterised by continuous strain turnover rather

than the persistence of individual strains over long periods of time, which is consistent with

GAS epidemiological observations within endemic settings [21–24]. When individual strains

appear in the population, they either fade out quickly or cause an outbreak that can last for a

period of months before going locally extinct and then reappearing some time later due to a

re-importation. Outbreaks of individual strains can also partially overlap, but this overlap is

reduced for larger outbreaks (Fig 2A).

Despite the unstable nature of individual strains, a positive overall prevalence of infection

P(t) and diversity of strains D(t) can be maintained in the population over long periods of time

(Fig 2B and 2C) if the maximum inter-infection interval w and the basic reproduction number

R0 are appropriately specified (this is expanded upon below). In such cases, P(t) and D(t)
oscillate around stable positive values at endemic equilibrium as individual strains sporadically

Fig 2. The prevalence of infection and strain diversity are maintained by the successive reintroduction of strains. Output from one realisation of

the GAS transmission model over a ten-year period that follows the population reaching a quasi-steady, i.e., an endemic equilibrium (after 45 years).

(A) The number of infections of each strain, (B) the total prevalence of infected hosts P(t), (C) strain diversityD(t), (D) the number of hosts immune to

each strain, (E) the mean (line) and inter-quartile range (shading) of the number of strains that hosts have immunity to (shown here as a percentage of

the total number of strains in circulation in the region, Y(t)/nmax
� 100%), and (F) the final distribution of the number of infections per infected hosts

(at t = 55 years). Here, R0 ¼ 3, 1/γ = 2 weeks, c = 33 per day, α = 0.002 per capita per week, nmax = 40, n(0) = 35, N = 2500, w = 19 weeks, x = 10, σ = 0.9,

and ω1 = ω2 = 0.1.

https://doi.org/10.1371/journal.pcbi.1007182.g002
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appear, cause an outbreak, and then fade out. This outbreak-type behaviour of individual

strains is due to successive rapid accumulations and slow decays of the number of hosts

immune to each strain following strain re-importations (Fig 2D). Despite the unstable nature

of population immunity with respect to individual strains, the mean number of strains that

hosts are immune to, Ŷ ðtÞ, does not undergo oscillations at endemic equilibrium (Fig 2E).

Instead, it is maintained at close to a constant level Ŷ �. With R0 ¼ 3, hosts have enduring

immunity to approximately 50% of the 40 strains in circulation at endemic equilibrium (mean

21.4, IQR 13.6–29.2).

For a fixed value of the inter-infection interval w, increasing R0 above unity initially causes

both an increase in the endemic prevalence P� and strain diversity D� until their maxima are

achieved somewhere between 2 < R0 < 6 for all values of w considered (Fig 3). Further

increases to R0 result in a slow decrease for both of these quantities. Therefore, a non-mono-

tonic relationship exists between the basic reproduction number R0 and both the endemic

prevalence P� and strain diversity D�. For a fixed value of R0, increasing w from the value esti-

mated in the mouse model of infection (3 weeks), to the smallest estimate of the equivalent

timespan in humans (19 weeks) has a substantial effect on reducing both the endemic preva-

lence P� and strain diversity D� for all values of R0 > 1 considered (Fig 3). Further increases

to w (beyond 19 weeks) correspond to increasingly smaller reductions in the endemic preva-

lence P� and strain diversity D� for all values of R0 > 1 considered.

Variation to either of the co-infection parameters κ and x over the ranges considered here

has a limited effect on the described relationships between R0, w and both the endemic preva-

lence P� and strain diversity D� (S2 and S3 Figs). Even if there is low resistance to co-infection

(x = 1 or x = 10), the low endemic prevalence of infected hosts (generally P� < 15%), means

there is limited opportunity for infected hosts to contact each other and acquire additional

infections (Fig 2F).

The co-infection parameters κ and x also have a limited effect on population immunity at

endemic equilibrium (S4 Fig). In contrast to P� and D�, only R0 has a substantial affect on the

Fig 3. The relationship between R0 and w, and the endemic prevalence P� and strain diversity D�. The mean (lines)

and the interquartile ranges (shaded regions) of (A) the total endemic prevalence of infected hosts, and (B) endemic

strain diversity D�, from 80 simulations of the model, when the maximum inter-infection interval w is the value

estimated in the mouse model of GAS skin infection (3 weeks), when it is equal to three estimates of the equivalent

timespan in humans (19, 104 and 420 weeks), and when there is no maximum inter-infection interval specified (w =1

weeks), as a function of the basic reproduction number R0 (horizontal axis). Here, R0 2 ½1; 10�, 1/γ = 2 weeks, α =

0.002 per capita per week, c = 33, nmax = 40, n(0) = 30, N = 2500, x = 10, σ = 0.9, and ω1 = ω2 = 0.1.

https://doi.org/10.1371/journal.pcbi.1007182.g003
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mean endemic level of population immunity Ŷ �. In all model scenarios considered, Ŷ �

increases monotonically with R0 and is relatively insensitive to w (S4 Fig). This is likely due to

the rapid outbreak-type behaviour of individual strains. While the dynamics of a strain out-

break are controlled by all model parameters, the long-term enduring immunity dynamics are

largely driven by the effective reproduction number, which increases slowly as enduring

immunity is lost in the population due to migration and the birth of new susceptible hosts.

Model outputs are consistent with epidemiological data collected in a

hyper-endemic population

The distributions of the endemic prevalence P� and strain diversity D� obtained from the sam-

pled simulated data as well as from the real data collected in a hyper-endemic setting all show

large variation (Fig 4, S4 and S5 Figs) which likely reflects the sparse sampling of these quanti-

ties as well as their oscillating nature at endemic equilibrium (as illustrated in Fig 2B and 2C).

For both P� and D�, there is little difference in the distributions simulated with w> 19 weeks,

suggesting that the maximum inter-infection w is only identifiable if it is sufficiently small

when using these statistics to summarise transmission dynamics.

When we compare the real and simulated distributions of the endemic prevalence P�, we

find that there is the greatest overlap of the interquartile ranges when the values of the inter-

infection interval w are set to either w = 3 weeks or w = 19 weeks, and when the basic repro-

duction number R0 is set between 2 � R0 � 5 (Fig 4A). This is true for all values of the co-

infection parameters κ and x considered (S4 Fig). The corresponding simulated distributions

of endemic strain diversity D� show substantial overlap with that of the real data for all values

of w considered (Fig 4B). Again, this pattern does not change if we alter the co-infection

parameters κ and x (S5 Fig). Therefore, we conclude that epidemiological data collected in a

hyper-endemic population is most consistent with our simulated data generated when the

inter-infection interval is between three and nineteen weeks and 2 � R0 � 5.

Fig 4. Model outputs are consistent with epidemiological data collected in a hyper-endemic population. The

distribution of (A) the total endemic prevalence P� of infected hosts and (B) endemic strain diversityD�, from 80

simulations of the model, when the maximum inter-infection interval w is the value estimated in the mouse model of

GAS skin infection (3 weeks), when it is equal to three estimates of the equivalent timespan in humans (19, 104 and

420 weeks), and when there is no maximum inter-infection interval specified (1 weeks). Results are compared to

population data (red) collected in one Indigenous community in the Northern Territory (NT) of Australia [24]. Here,

R0 ¼ 2:5, 1/γ = 2 weeks, c = 33 per day, α = 0.002 per capita per week, nmax = 40, n(0) = 30, N = 2500, x = 10, σ = 0.9,

and ω1 = ω2 = 0.1. Similar results are obtained for 2 � R0 � 5 for all values of w considered, as evidenced by the

results shown in Fig 3, and so these results are not shown.

https://doi.org/10.1371/journal.pcbi.1007182.g004
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Impact of a targeted multivalent vaccine is dampened by strain

replacement

When we consider the impact of a targeted multivalent (serotype-specific) vaccine on trans-

mission, we find that the effects of the vaccine program in the short term (over the first 2 years

post introduction) and in the long term (once the system reaches a new endemic equilibrium)

depend on the number of distinct strains in circulation that the vaccine protects against (Fig

5). Only short-term vaccine impact is dependent on the prevalence of each vaccine strain at

the commencement of the intervention, and the choice of whether or not to implement the

one-off catch-up campaign.

Specifically, in vaccine scenarios with the one-off catch-up campaign, prevalence P(t) is

quickly reduced following commencement of the vaccine program compared to equivalent

scenarios without the catch-up campaign (Fig 5A–5C). This reduction in prevalence is greater

when the vaccine is targeted towards the most-prevalent strains in the population at the time

of the intervention, particularly for strain coverage less than 50% (Fig 5D–5F). However, prev-

alence rebounds in the months following the catch-up campaign to levels that are seen in

equivalent scenarios without the catch-up campaign, particularly for low vaccine coverage. On

average, this occurs within a year when the strain coverage in the vaccine is 25%. When the

coverage is 50% or 75%, on average, this process takes greater than two years.

In the long term, we find that the vaccine reduces the endemic prevalence P� by an amount

that is less than the percentage of circulating strains targeted by the vaccine. Specifically, with

25%, 50% and 75% strain coverage in the vaccine, the median endemic prevalence P� is

reduced by 20%, 39% and 66% respectively. The failure to fully sustain initial reductions in

prevalence following vaccine introduction is due to the partial replacement of vaccine strains

with non-vaccine strains, as evidenced by the corresponding small reductions in median

endemic strain diversity D� of 14%, 20% and 38%, respectively.

Discussion

Incomplete understanding of the the immune response to GAS infection in individuals and

the development of herd immunity in host populations represents a key barrier to the develop-

ment of a globally effective GAS vaccine. Current consensus is that the immune response to

GAS infection is largely strain (serotype)-specific [27]. Recent evidence in a murine model of

GAS skin infection raises the possibility that the longevity of this immune response may be

contingent on individuals experiencing a repeat episode of infection by the same strain within

a narrow time window [34]. As yet, there is no direct evidence for an analogous immune

response to GAS infection in humans.

Indirect evidence for immunity being contingent on repeat infections

The results of our mathematical modelling study indicate that epidemiological observations of

GAS infections in a population with high rates of GAS disease are consistent with enduring

strain-specific immunity being contingent on repeated infection with the same strain. Both

epidemiological observations [21–24] and the data simulated from our model with a suffi-

ciently long maximum inter-infection interval w are reflective of there being a continuous

turnover of GAS strains in the population rather than individual strains persisting over long

periods of time (see Fig 2). In our model, this strain cycling is enabled by (1) infected hosts

migrating into the population and triggering outbreaks of new or previously-circulating

strains; (2) the accumulation of hosts with enduring immunity which causes these strains to go

locally extinct; and (3) the loss of sufficient herd immunity due to the continual influx of
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Fig 5. Impact of a targeted multivalent vaccine is dampened by strain replacement. (A–F) The mean (lines) and interquartile range (shaded regions)

from 80 simulations of the model showing the prevalence over time, before and after the initiation of a vaccine intervention with (A,D) 25% strain

coverage; (B,E) 50% strain coverage; and (C,F) 75% strain coverage. (A–C) Strains targeted by the vaccine are the most-prevalent strains at the initiation of

the intervention. Scenarios with routine vaccination only (green), are compared against those where routine vaccination is supplemented with a one-off

catch-up campaign (blue). (D–F) Routine vaccination is supplemented with a one-off catch-up campaign. Scenarios where strains targeted by the vaccine

are the most-prevalent strains at the initiation of the intervention (blue), are compared against those where vaccine strains are randomly selected (black/

grey). (G–H) The distributions of the (G) prevalence; and (H) strain diversity, calculated at endemic equilibrium pre vaccination (red boxplot) compared

against those calculated post vaccination when there is (yellow) 25%, (green) 50% and (light blue) 75% strain coverage in the vaccine, when those strains

targeted by the vaccine are the most-prevalent strains at the initiation of the intervention, and when there is a one-off catch up campaign as well as routine

vaccination. Here, R0 ¼ 3, w = 19 weeks, 1/γ = 2 weeks, c = 33, α = 0.002 per capita per week, nmax = 40, n(0) = 30, N = 2500, x = 10, σ = 0.9, and ω1 = ω2 =

0.1.

https://doi.org/10.1371/journal.pcbi.1007182.g005
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susceptible hosts into the population (through birth and migration) which eventually allows a

future reimportation to trigger another outbreak. We found that our model best matches real

epidemiological data when the maximum inter-infection interval w is between 3 and 19 weeks,

and if the basic reproduction number R0 is between 2 and 5.

An alternative hypothesis of the immune response to GAS skin infection is that enduring

strain-specific immunity can be acquired through the clearance of a single infection. Mathe-

matical models of other multi-strain pathogens that incorporate this type of immune response

can also exhibit high strain turnover in host populations and result in a non-monotonic rela-

tionship between R0 and the endemic prevalence [1, 49], similar to what is observed in our

model. However, this hypothesis precludes individuals experiencing repeated infections by the

same GAS strain, which has been observed in children in high-incidence settings [22]. Another

alternative hypothesis is that skin infection can never lead to enduring strain-specific immu-

nity, but only temporary strain-specific immunity, thus allowing repeat infection by the same

strain once immunity has waned. Future modelling work could consider whether there are

conditions under which such a model is also consistent with GAS epidemiological data col-

lected in high-incidence settings.

Epidemiological consequences of immunity being contingent on repeat

infections

Our study demonstrates the broader epidemiological consequences of enduring strain-specific

immunity being contingent on repeated episodes of infection. Pathogen transmissibility has

competing effects on the likelihood of hosts acquiring enduring immunity in our model,

which leads to a complex relationship between transmissibility and prevalence.

Increasing the basic reproduction number R0 from small values initially corresponds to a

rise in the endemic prevalence of infection P� due to increased transmission. This increase in

P� continues until transmission reaches a critical level whereupon it becomes more feasible for

hosts to encounter the same strain twice within the required time window w and acquire

enduring immunity. In this regime, further increases to R0 correspond to increased levels of

herd immunity that eventually lead to reductions in the endemic prevalence P� for further

increases to R0. However, these further increases to R0 correspond to increasingly smaller

reductions in the endemic prevalence P�, possibly because the reduction in duration of out-

breaks of individual strains (which coincide with increases to transmissibility) impacts the

extent to which hosts can experience multiple episodes of infection of the same strain during a

single outbreak. This is supported by the corresponding convergence of population immunity

Ŷ � towards a maximum value for high values of R0.

A possible consequence of a non-monotonic relationship existing between R0 and the

endemic prevalence is that interventions designed to reduce R0 (e.g., via social interventions

to improve household crowding or access to healthcare or running water) may lead to different

outcomes in populations characterised with different baseline R0. For example, an interven-

tion that leads to a substantial reduction in prevalence in one population may lead to very little

change or even an increase in prevalence in a different population that has a higher baseline

R0.

Short and long-term benefits of tailoring a multivalent vaccines to target

populations

Our study also demonstrated how our model can be used to interpret and predict the effects of

a targeted multivalent-vaccine intervention in a high-incidence setting. A key determinant of

long-term vaccine impact is the number of strains that the vaccine protects against that are
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circulating in the greater geographic region of the population. The greatest long-term reduc-

tions in prevalence occur when all strains in the vaccine are those in circulation, indicating the

importance of customising a multivalent vaccine to particular host settings, or incorporating

more conserved antigens with multivalent formulations [17].

Nevertheless, the high strain turnover that characterises transmission is likely to limit the

long-term effectiveness of a targeted multivalent vaccine that does not protect against every
strain in circulation. In our model, the replacement of vaccine strains with non-vaccine strains

occurred within a few years of the implementation of the vaccine intervention. This occurred

even when there was 75% vaccine strain coverage, and following significant short-term reduc-

tions in prevalence. While it may be the case that initial reductions in prevalence following the

introduction of the vaccine cannot be sustained, it may be possible for long-term benefits to

arise if the vaccine is rolled out in combination with other interventions designed to reduce

transmission. It will be crucial to conduct surveillance for a number of years following vaccine

introduction to evaluate short- and long-term vaccine impact.

Limitations and future work

In our model of GAS transmission in an Indigenous population of northern Australia, we

assume that all GAS infections lead to the same type of immune response—that which was was

observed in the mouse model of GAS skin infection [34]—since the majority of mild GAS

infections in this setting are skin infections [23, 24]. However, in lower incidence settings, cur-

rent consensus is that GAS causes throat infections more frequently than skin infections [18].

Furthermore, GAS can also be carried in the nose and throat of hosts without symptoms, and,

less frequently, cause invasive disease [18]. It is not clear whether these other types of GAS

infections cause an analogous immune response. If so, future modelling work could consider

transmission and the effect of interventions in populations where other or multiple types of

immune responses to GAS infection occur.

We have assumed that all GAS strains in the model have identical epidemiological charac-

teristics. Further empirical work is needed to determine the validity of this assumption. Given

that all strains share the same ecological niche, any differences in the competitive ability of

strains will likely alter the level of strain diversity that can be sustained over short and long

timescales in populations [50]. Furthermore, perturbations to pathogen population structure

through the implementation of a vaccine targeting a subset of strains is likely to also depend

on the epidemiological characteristics of targeted strains relative to non-targeted strains [50].

There are parallels between our simulation results and observed responses to the multiva-

lent vaccines targeting another highly diverse human pathogen, S. pneumoniae. S. pneumoniae
has over 90 different serotypes, and the multivalent pneumococcal conjugate vaccines (PCVs)

targeted the most prevalent S. pneumoniae serotypes responsible for severe disease in different

populations. The response to the PCVs varied across subgroups within these populations [51,

52]. However, generally there was a decrease in detection of vaccine strains and an increase in

detection of non-vaccine strains following the implementation of PCV programs [53]. This is

speculated to be due, in part, to strain replacement [53], similar to what occurred in our simu-

lations. However, evolutionary factors such as serotype switching [54] and selection dynamics

associated with the accessory genome, which remained relatively unchanged pre and post the

implementation of the PCVs [55], may also have played a role in the observed vaccine

response. Future work could consider exploring similar factors in the context of a GAS vaccine

by incorporating evolutionary dynamics, such as mutation and recombination, into our

model.
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Supporting information

S1 Fig. The effect of co-infection parameters on the shape of the function governing the

relative probability of transmission to an infected host compared to an uninfected host.

The relative probability r(g) of transmission to an infected host compared to an uninfected

host is a function of the number of infections in the host g (horizontal axis). The co-infection

carrying capacity κ and the level of resistance to co-infection x determine the shape of r(g).
Here, r(g) is shown for 0� g� 10, κ 2 {10, 20, 40} and x 2 {1, 10, 100}.

(TIF)

S2 Fig. The relationship between R0, w, κ and x and the endemic prevalence P�. The mean

(lines) and the interquartile ranges (shaded regions) of the total endemic prevalence of infected

hosts P� from 80 simulations of the model, as a function of the basic reproduction number R0

(horizontal axis), for different values of the maximum inter-infection interval w (varied within

each figure panel), the co-infection carrying capacity κ (varied across columns) and the level

of resistance to co-infection x (varied across rows). Here, R0 2 ½1; 10�, 1/γ = 2 weeks, α =

0.002 per capita per week, c = 33, nmax = 40, n(0) = 30, N = 2500, σ = 0.9, ω1 = ω2 = 0.1, w 2 {3,

19, 104, 420,1} weeks, κ 2 {10, 20, 40} and x 2 {1, 10, 100}. Note that the interquartile ranges

overlap for w> 3 weeks.

(TIF)

S3 Fig. The relationship between R0, w, κ and x and the endemic diversity D�. The mean

(lines) and the interquartile ranges (shaded regions) of the endemic strain diversity D� from 80

simulations of the model, as a function of the basic reproduction number R0 (horizontal axis),

for different values of the maximum inter-infection interval w (varied within each figure

panel), the co-infection carrying capacity κ (varied across columns) and the level of resistance

to co-infection x (varied across rows). Here, R0 2 ½1; 10�, 1/γ = 2 weeks, α = 0.002 per capita

per week, c = 33, nmax = 40, n(0) = 30, N = 2500, σ = 0.9, ω1 = ω2 = 0.1, w 2 {3, 19, 104, 420,1}

weeks, κ 2 {10, 20, 40} and x 2 {1, 10, 100}. Note that the interquartile ranges overlap for

w> 3 weeks.

(TIF)

S4 Fig. The relationship between R0, w, κ and x and the mean endemic level of population

immunity Ŷ �. The mean (lines) and the interquartile ranges (shaded regions) of the mean

endemic level of population immunity Ŷ � from 80 simulations of the model, as a function of

the basic reproduction number R0 (horizontal axis), for different values of the maximum

inter-infection interval w (varied within each figure panel), the co-infection carrying capacity

κ (varied across columns) and the level of resistance to co-infection x (varied across rows).

Here, R0 2 ½1; 10�, 1/γ = 2 weeks, α = 0.002 per capita per week, c = 33, nmax = 40, n(0) = 30,

N = 2500, σ = 0.9, ω1 = ω2 = 0.1, w 2 {3, 19, 104, 420,1} weeks, κ 2 {10, 20, 40} and x 2 {1, 10,

100}. Note that all interquartile ranges overlap.

(TIF)

S5 Fig. Comparison of the endemic prevalence P� estimated from population data col-

lected in one Australian Indigenous community, to P� estimated by sampling model out-

puts. Model outputs are generated for a range of values of co-infection parameters κ (varied

across columns) and x (varied across rows), and the inter-infection infection interval w (varied

within each figure panel). Distributions of P� for each parameter combination were obtained

from 80 simulations of the model. Here, R0 ¼ 2:5, 1/γ = 2 weeks, α = 0.002 per capita per

week, c = 33, nmax = 40, n(0) = 30, N = 2500, σ = 0.9, ω1 = ω2 = 0.1, κ 2 {10, 20, 40}, x 2 {1, 10,
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100}, and w 2 {3, 19, 104, 420,1} weeks.

(TIF)

S6 Fig. Comparison of the endemic diversity D� estimated from population data collected

in one Australian Indigenous community, to D� estimated by sampling model outputs.

Model outputs are generated for a range of values of co-infection parameters κ (varied across

columns) and x (varied across rows), and the inter-infection infection interval w (varied within

each figure panel). Distributions of D� for each parameter combination were obtained from 80

simulations of the model. Here, R0 ¼ 2:5, 1/γ = 2 weeks, α = 0.002 per capita per week, c = 33,

nmax = 40, n(0) = 30, N = 2500, σ = 0.9, ω1 = ω2 = 0.1, κ 2 {10, 20, 40}, x 2 {1, 10, 100}, and w 2
{3, 19, 104, 420,1} weeks.

(TIF)
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20. Bowen AC, Mahé A, Hay RJ, Andrews RM, Steer AC, Tong SY, et al. The global epidemiology of impe-

tigo: a systematic review of the population prevalence of impetigo and pyoderma. PLoS One. 2015; 10

(8):e0136789. https://doi.org/10.1371/journal.pone.0136789.

21. Gardiner DL, Sriprakash KS. Molecular epidemiology of impetiginous group A streptococcal infections

in aboriginal communities of northern Australia. Journal of Clinical Microbiology. 1996; 34(6):1448–

1452. https://doi.org/10.1128/JCM.34.6.1448-1452.1996 PMID: 8735096

22. Bessen DE, Carapetis JR, Beall B, Katz R, Hibble M, Currie BJ, et al. Contrasting molecular epidemiol-

ogy of group A streptococci causing tropical and nontropical infections of the skin and throat. The Jour-

nal of infectious diseases. 2000; 182(4):1109–1116. https://doi.org/10.1086/315842

23. McDonald MI, Towers RJ, Fagan P, Carapetis JR, Currie BJ. Molecular typing of Streptococcus pyo-

genes from remote Aboriginal communities where rheumatic fever is common and pyoderma is the pre-

dominant streptococcal infection. Epidemiology & Infection. 2007; 135(8):1398–1405. https://doi.org/

10.1017/S0950268807008023

24. McDonald M, Towers R, Andrews R, Benger N, Fagan P, Currie B, et al. The dynamic nature of group A

streptococcal epidemiology in tropical communities with high rates of rheumatic heart disease. Epidemi-

ology & Infection. 2008; 136(4):529–539. https://doi.org/10.1017/S0950268807008655

25. Watkins DA, Johnson CO, Colquhoun SM, Karthikeyan G, Beaton A, Bukhman G, et al. Global,

regional, and national burden of rheumatic heart disease, 1990–2015. New England Journal of Medi-

cine. 2017; 377(8):713–722. https://doi.org/10.1056/NEJMoa1603693 PMID: 28834488

26. Shulman ST, Tanz RR, Dale JB, Beall B, Kabat W, Kabat K, et al. Seven-year surveillance of North

American pediatric group A streptococcal pharyngitis isolates. Clinical Infectious Diseases. 2009; 49

(1):78–84. https://doi.org/10.1086/599344 PMID: 19480575

27. Steer AC, Carapetis JR, Dale JB, Fraser JD, Good MF, Guilherme L, et al. Status of research and devel-

opment of vaccines for Streptococcus pyogenes. Vaccine. 2016; 34:2953–2958. https://doi.org/10.

1016/j.vaccine.2016.03.073 PMID: 27032515

28. Fischetti VA. Vaccine approaches to protect against Group A Streptococcal pharyngitis. Microbiology

Spectrum. 2019; 7(3):GPP3–0010–2018. https://doi.org/10.1128/microbiolspec.GPP3-0010-2018

PLOS COMPUTATIONAL BIOLOGY Epidemiological consequences of immunity requiring repeat infection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007182 June 5, 2020 20 / 22

https://doi.org/10.1146/annurev-immunol-031210-101315
http://www.ncbi.nlm.nih.gov/pubmed/21219187
https://doi.org/10.1038/nm0496-437
https://doi.org/10.1038/nm0496-437
http://www.ncbi.nlm.nih.gov/pubmed/8597954
https://doi.org/10.1126/science.280.5365.912
https://doi.org/10.1126/science.280.5365.912
http://www.ncbi.nlm.nih.gov/pubmed/9572737
https://doi.org/10.1007/s00285-002-0163-9
http://www.ncbi.nlm.nih.gov/pubmed/12439588
https://doi.org/10.1098/rspb.2006.3668
http://www.ncbi.nlm.nih.gov/pubmed/17015366
https://doi.org/10.1098/rspb.2007.0415
http://www.ncbi.nlm.nih.gov/pubmed/17504739
https://doi.org/10.1073/pnas.0712019105
http://www.ncbi.nlm.nih.gov/pubmed/18815379
https://doi.org/10.1086/668598
http://www.ncbi.nlm.nih.gov/pubmed/23234842
https://doi.org/10.1016/j.meegid.2014.10.011
https://doi.org/10.1016/j.meegid.2014.10.011
http://www.ncbi.nlm.nih.gov/pubmed/25460818
https://doi.org/10.1016/S1473-3099(05)70267-X
http://www.ncbi.nlm.nih.gov/pubmed/16253886
https://doi.org/10.1586/erv.09.133
http://www.ncbi.nlm.nih.gov/pubmed/19905872
https://doi.org/10.1371/journal.pone.0136789
https://doi.org/10.1128/JCM.34.6.1448-1452.1996
http://www.ncbi.nlm.nih.gov/pubmed/8735096
https://doi.org/10.1086/315842
https://doi.org/10.1017/S0950268807008023
https://doi.org/10.1017/S0950268807008023
https://doi.org/10.1017/S0950268807008655
https://doi.org/10.1056/NEJMoa1603693
http://www.ncbi.nlm.nih.gov/pubmed/28834488
https://doi.org/10.1086/599344
http://www.ncbi.nlm.nih.gov/pubmed/19480575
https://doi.org/10.1016/j.vaccine.2016.03.073
https://doi.org/10.1016/j.vaccine.2016.03.073
http://www.ncbi.nlm.nih.gov/pubmed/27032515
https://doi.org/10.1128/microbiolspec.GPP3-0010-2018
https://doi.org/10.1371/journal.pcbi.1007182


29. Danchin MH, Rogers S, Kelpie L, Selvaraj G, Curtis N, Carlin JB, et al. Burden of acute sore throat and

group A streptococcal pharyngitis in school-aged children and their families in Australia. Pediatrics.

2007; 120(5):950–957. https://doi.org/10.1542/peds.2006-3368 PMID: 17974731

30. McDonald MI, Towers RJ, Andrews RM, Benger N, Currie BJ, Carapetis JR. Low rates of streptococcal

pharyngitis and high rates of pyoderma in Australian aboriginal communities where acute rheumatic

fever is hyperendemic. Clinical infectious diseases. 2006; 43(6):683–689. https://doi.org/10.1086/

506938 PMID: 16912939

31. Rantz LA, Maroney M, Di Caprio JM. Infection and reinfection by hemolytic streptococci in early child-

hood. The American Journal of Medicine. 1952; 13(1):98–99. https://doi.org/10.1016/0002-9343(52)

90108-3

32. Raynes JM, Frost HR, Williamson DA, Young PG, Baker EN, Steemson JD, et al. Serological evidence

of immune priming by Group A streptococci in patients with acute rheumatic fever. Frontiers in microbi-

ology. 2016; 7:1119. https://doi.org/10.3389/fmicb.2016.01119 PMID: 27499748

33. Brandt E, Hayman W, Currie B, Carapetis J, Wood Y, Jackson D, et al. Opsonic human antibodies from

an endemic population specific for a conserved epitope on the M protein of group A streptococci. Immu-

nology. 1996; 89(3):331–337. https://doi.org/10.1046/j.1365-2567.1996.d01-754.x PMID: 8958044

34. Pandey M, Ozberk V, Calcutt A, Langshaw E, Powell J, Rivera-Hernandez T, et al. Streptococcal Immu-

nity Is Constrained by Lack of Immunological Memory following a Single Episode of Pyoderma. PLoS

Pathog. 2016; 12(12):e1006122. https://doi.org/10.1371/journal.ppat.1006122 PMID: 28027314

35. Gog JR, Grenfell BT. Dynamics and selection of many-strain pathogens. Proceedings of the National

Academy of Sciences. 2002; 99(26):17209–17214. https://doi.org/10.1073/pnas.252512799

36. Carapetis J, Gardiner D, Currie B, Mathews JD. Multiple strains of Streptococcus pyogenes in skin

sores of aboriginal Australians. Journal of clinical microbiology. 1995; 33(6):1471–1472. https://doi.org/

10.1128/JCM.33.6.1471-1472.1995 PMID: 7650169

37. Shulman ST, Stollerman G, Beall B, Dale JB, Tanz RR. Temporal changes in streptococcal M protein

types and the near-disappearance of acute rheumatic fever in the United States. Clinical infectious dis-

eases. 2006; 42(4):441–447. https://doi.org/10.1086/499812 PMID: 16421785

38. Steer AC, Law I, Matatolu L, Beall BW, Carapetis JR. Global emm type distribution of group A strepto-

cocci: systematic review and implications for vaccine development. The Lancet infectious diseases.

2009; 9(10):611–616. https://doi.org/10.1016/S1473-3099(09)70178-1 PMID: 19778763

39. Oliver J, Wadu EM, Pierse N, Moreland NJ, Williamson DA, Baker MG. Group A Streptococcus pharyn-

gitis and pharyngeal carriage: A meta-analysis. PLoS neglected tropical diseases. 2018; 12(3):

e0006335. https://doi.org/10.1371/journal.pntd.0006335 PMID: 29554121

40. Australian Bureau of Statistics. Life Tables for Aboriginal and Torres Strait Islander Australians, 2015-

2017, ‘Table 1.6: Life tables for Aboriginal and Torres Strait Islander Australians, Northern Territory–

2015-2017’, data cube: Excel spreadsheet, cat. no. 3302.0.55.003; 2018. Available from: http://www.

abs.gov.au/AUSSTATS/abs@.nsf/Lookup/3302.0.55.003Main+Features12015-2017?OpenDocument

[cited 8 January 2019].

41. Vino T, Singh GR, Davison B, Campbell PT, Lydeamore MJ, Robinson A, et al. Indigenous Australian

household structure: a simple data collection tool and implications for close contact transmission of

communicable diseases. PeerJ. 2017; 5:e3958. https://doi.org/10.7717/peerj.3958 PMID: 29085755

42. Marcato A, Lacey JA, Davies MR, Campbell PT, McDonald MI, Price DJ, et al.. Combining whole

genome sequencing and epidemiology to investigate group A Streptococcus transmission in Indigenous

communities; 2019, May. ASID Annual Scientific Meeting, Darwin, Australia.

43. Dutta S, Sengupta P. Men and mice: relating their ages. Life sciences. 2016; 152:244–248. https://doi.

org/10.1016/j.lfs.2015.10.025 PMID: 26596563
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