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Abstract: The working principle of lateral flow assays, such as the widely used COVID-19 rapid
tests, is based on the capillary-driven liquid transport of a sample fluid to a test line using porous
polymeric membranes as the conductive medium. In order to predict this wicking process by
simplified analytical models, it is essential to determine an effective capillary radius for the highly
porous and open-pored membranes. In this work, a parametric study is performed with selected
simplified structures, representing the complex microstructure of the membrane. For this, a phase-
field approach with a special wetting boundary condition to describe the meniscus formation and
the corresponding mean surface curvature for each structure setup is used. As a main result, an
analytical correlation between geometric structure parameters and an effective capillary radius, based
on a correction factor, are obtained. The resulting correlation is verified by applying image analysis
methods on reconstructed computer tomography scans of two different porous polymeric membranes
and thus determining the geometric structure parameters. Subsequently, a macroscale flow model
that includes the correlated effective pore size and geometrical capillary radius is applied, and the
results are compared with wicking experiments. Based on the derived correction function, it is
shown that the analytical prediction of the wicking process in highly porous polymeric membranes
is possible without the fitting of experimental wicking data. Furthermore, it can be seen that the
estimated effective pore radius of the two membranes is 8 to 10 times higher than their geometric
mean pore radii.

Keywords: effective capillary radius; wicking; paper-based microfluidics; lateral flow assays;
phase-field; COVID-19

1. Introduction

Wicking is the surface-driven imbibition process in porous microstructures, in which a
non-wetting fluid (gas) is replaced by a wetting one (water), when exposed to a capillary
suction pressure. This capillary phenomenon is strongly promoted by an open-pored and
porous microstructure, which can be found in many materials, such as textiles, woven fibers,
and porous polymeric membranes (PPMs). In particular, PPMs are widely used in lateral
flow assays (LFAs), where they function as an autarkic microfluidic pump system that
transports a liquid sample, containing analyte and detector particles, toward the detection
zone (test and control lines, see Figure 1a).
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Due to this quality, cost-effective and easy-to-use LFAs can be realized, covering a
wide range of applications in medical diagnostics, drugs of abuse control as well as the
environmental monitoring of contamination in water, soil, and air [1]. Particularly in
medical diagnostics, they make it possible to stem and control major pandemics, such
as the severe acute respiratory syndrome (SARS) outbreak of 2003, which happened in
Asia, or the current worldwide COVID-19 outbreak. Thus, by further improving LFAs,
an evident contribution to global health is made [2,3].

However, optimizing and designing PPMs for LFAs is challenging for different reasons,
such as the fact that (i) multiple length scales are involved, (ii) convection, diffusion,
and reaction mechanisms are simultaneously present, and (iii) effective properties of the
complex microstructure are difficult to determine. In particular, the prediction of the fluid
flow across multiple length scales is crucial, as the flow condition inherently affects the
sensitivity of LFAs [4]. In order to bridge the different length scales, the use of appropriate
upscaling methods is necessary. For this purpose, bottom-up approaches are particularly
suitable [5], whereby the information is passed on from the smallest relevant scale to the
next larger scale, by using effective parameters. To enable their application, an accurate
determination of the effective parameters is essential. In particular, regarding the wicking
behavior in PPMs, the use of simplified analytical flow models requires an accurate effective
capillary radius.

a) b) c)

capillary transport

control line

test line

d)

porous membrane

pore space

structure space

capillary bundle

liquid

Figure 1. Graphical overview: (a) A typical design of a lateral flow assay (LFA), with highlighted test
and control lines; (b) scanning electron microscopy (SEM) image of a porous polymeric membrane
(PPM); (c) schematic representation of the pore and the structure spaces [6]; (d) Lucas–Washburn
assumption of a porous medium, as a bundle of parallel capillaries [6].

Many approaches exist to model the wicking process in porous microstructures.
The three most common ones are based on (i) the Lucas–Washburn equation, (ii) Darcy’s
law, and (iii) the Richards equation and are extensively discussed in the literature [3,7–12].
All approaches require different effective properties of the porous media, such as porosity,
permeability, a fiber radius, and a pore radius, while the determination procedure is based
on the volume averaging of the properties in a representative volume element (RVE) [13,14].
Particularly for the permeability, this method is widely used by solving the Stokes equation
in the pore space. Thus, numerous correlations between the porosity, the specific surface
area, and a resulting permeability have been reported [15–18].

However, little attention has been paid to the averaged pore radius in complex porous
microstructures, although it is important for the description of the capillary suction pressure.
As a driving force, this pressure is usually modeled using the Young–Laplace equation,
in which the pressure difference acting across a curved free surface or interface between
two immiscible fluids is expressed as

∆Pcap =
2γlg cos (θe)

rc
. (1)



Membranes 2022, 12, 638 3 of 17

Here, γlg describes the surface tension between the acting fluids and θe is the equilib-
rium contact angle. The main assumption behind Equation (1) is that the capillary pressure
is developed in a cylindrical capillary with the radius rc. Lucas and Washburn transferred
this assumption to a porous medium, by assuming it to be a bundle of aligned capillaries
(see Figure 1d)), each having the same capillary radius [19]. According to this assumption,
the curved free surface in a cylindrical capillary with a mean surface curvature H can be
correlated with the capillary radius rc, by

H =
cos (θe)

rc
, (2)

where the capillary radius rc can also be considered as the geometric pore radius (see
Figure 1c). As long as the perimeter of the cross section in the capillary is closed and
axisymmetric, the Young–Laplace equation can be applied and analytical expressions are
available [20,21]. However, the cross sections of the complex structures are not always
closed, and it is unlikely that they are axisymmetric. Furthermore, flow paths are not
aligned in parallel tubes but show tortuous curves. Therefore, these assumptions are
generally not satisfied for the Young–Laplace equation for PPMs. Thus, a distinction must
be made between the geometric and the effective pore radius [19] of complex porous struc-
tures.

Instead of accurately determining the effective pore radius, it is common to fit the
mathematical wicking models to the experimental results and derive the effective pore
radius or the capillary suction pressure [19,22–26]. The resulting effective pore radius can
be used to accurately describe the fluid flow for one specific PPM; however, prediction
attempts for new wicking structures always require further experiments.

Geometry-based approaches to determine an effective pore radius require a detailed
representation of the pore space, which can be obtained by scanning electron microscopy
(SEM), transmission electron microscopy (TEM), confocal laser scanning microscopy,
or X-ray computer tomography (CT) measurements [27], among others. Alternatively,
digital representations can be approached by algorithmically generating both simplified
and complex capillary pore spaces [28,29]. For the extraction of the effective pore radius,
image processing methods are used to capture morphological properties by voxel-based
algorithms. Fitting spheres in the pore space is one approach where the geometric mean
radius [30,31] of the spheres is considered as the effective pore radius (see Figure 1c).

Another approach focuses more on structural space and assumes that the porous wicks
consist of spherical particles. Since the particle sizes vary along the ligaments, an effective
pore radius is derived on the basis of the particle size distributions [9]. As a third approach,
it is common to determine the pore space volume and the surface of the structural space,
to thus calculate the hydraulic pore radius as an effective radius [32–34]. In [12,32], a
comprehensive summary of different approaches to estimate an effective pore radius for
the wicking process is given.

Approaches based on physical two-phase simulations are reported in the literature
as well. Both closed capillaries with different cross-sectional shapes [29] and open-pored
porous structures [35–37] were generated, while the resulting mean surface curvature of
the fluid and gas interface was studied. As a main result of the investigations, it was shown
that the resulting mean surface curvature is influenced by the cross section and thus affects
the effective pore radius [29].

In this work, two highly porous nitrocellulose membranes (porosities ≈ 85%) are
investigated as polymeric wicks, where each shows a complex microstructure and arbitrary
cross sections with open perimeters of the pores. The objective of this work is to use
physical two-phase simulations to establish a correlation between geometric properties
and an effective pore radius, so as to predict the capillary driven wicking process. For the
derivation, high-resolution X-ray computer tomography experiments were conducted,
and 3D representations of the two membranes were obtained. In our previous work [27],
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a characterization tool was presented, which allows extracting both the pore and the
ligament radius distributions of porous microstructures as the basic geometric properties.

Based on a free energy minimization approach [38–40], mean surface curvatures in
simplified porous 3D geometries with defined geometric properties are calculated and
correlated with an effective pore radius. A final validation of the correlation is done by
applying an analytical model with the derived effective pore radii and by comparing the
prediction to wicking experiments. All applied simulation methods and characterization
tools are implemented in the simulation framework PACE3D [41]. The presented determi-
nation of an effective capillary radius is based on the PhD Thesis [6], which is written in
German. In order to extend the reach to a broader audience, some results of the work are
presented in this article.

2. Materials and Methods
2.1. Mathematical Modeling
2.1.1. Two-Phase Phase-Field Approach

Wetting phenomena in porous media can be explained from (i) a mechanical and (ii) an
energetic point of view. From a mechanical point of view, the pressure drop across a curved
surface (suction pressure) is considered as the driving force, and the fluid is sucked into the
pore space. In terms of free energies, spontaneous wetting arises from the difference in the
total surface energies ∆γ = γsg − γsl, where γsg and γsl represent the interfaces of a solid
substrate (s) and the fluids involved represent the gas (g) and the liquid (l), respectively.
Thus, with a positive difference in the surface energies ∆γ > 0, the total free energy can
only be minimized by wetting the substrate with the liquid. Both views are linked by
Young’s familiar law γlg cos (θe) = γsg − γsl, which gives the ratio of the surface energies
as the cosine of the equilibrium contact angle θe [42].

The wetting process as well as the evolution of free surface curvatures in open-pored
cross sections can be investigated in detail by applying a two-phase phase-field approach,
which is based on a Ginzburg–Landau free energy density functional [38,40]. In this
approach, the two order parameters φg(x, t) and φl(x, t) are introduced for each of the
two phases (gas and liquid), with their values varying from 1 inside to 0 outside the
bulk of the respective phase. Since the order parameters fulfill the side condition of
φl(x, t) + φg(x, t) = 1, only one order parameter φ(x, t) = φl(x, t) = 1− φg(x, t) is sufficient
to describe the investigated two-phase system.

In the considered phase-field approach (e.g., [39]) a diffuse interface is formed between
the two phases. Here, the order parameter continuously varies from φ(x, t) = 1 (in the
liquid) to φ(x, t) = 0 (in the gas), allowing the position of the interface to be tracked in space
and time. Additionally, the model is extended by a wetting boundary condition [39], which
accounts for the difference in the surface energies ∆γ on the substrate and enables the
description of wetting phenomena. The applied two-phase phase-field approach reads as

F(φ) =
∫

Ω

(
εγlg|∇φ|2 + 1

ε
w(φ) + fg(φ)

)
dΩ +

∫
∂sΩ

fw(φ) dS. (3)

Here, Ω is the spatial domain and ε is a parameter related to the thickness of the diffuse
interface. The gradient energy density γlg|∇φ|2 and the multi-obstacle potential w(φ)
together reflect the free surface energy of the liquid–gas interface, while fg(φ) = g · xρI(φ)
represents the hydrostatic pressure depending on the interface position in space x and
the acting gravitational body force g. The energy formulation fw(φ) is used to model the
energy contributions on the substrate surface ∂sΩ as follows:

fw(φ) = γgs + (γls − γgs)I(φ). (4)

Here, the function I(φ) = φ3(6φ2 − 15/φ + 10) interpolates the values across the dif-
fuse interface [39]. A simple analysis across the liquid–gas interface and along the substrate
surface shows that the applied wetting boundary condition fulfills Young’s law [39]. The
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time- and space-dependent evolution of the interface results from the minimization of the
free energy functional in Equation (3), using variational calculus methods. The resulting
partial differential equations are known as the Allen-Cahn equations and can be written
as follows:

τε
∂φ

∂t
= 2εγlg∆φ− 1

ε

∂w
∂φ

(φ)−
∂ fg

∂φ
(φ), in Ω, (5)

where the wetting boundary condition reads as

− 2εγlg∇φ · n + (γgs − γls)
∂I
∂φ

= 0 on ∂sΩ. (6)

Here, the normal vector to the substrate surface ∂sΩ is denoted as n.

2.1.2. Macroscopic Flow Model for Wicking Processes

The main motivation for using macroscopic flow models is to supply simple analytical
equations for a rather complex flow problem. As a second important point, macroscopic
flow models allow bridging different length scales.

Three main approaches are used to model the flow, which are all based on the descrip-
tion of the transport process by including the dominant effects, such as friction, gravity,
and capillarity in the momentum balance equation. Since porous membranes are assumed
to be fully wetted, and their complex structure cannot be approached by a bundle of aligned
capillaries, a model based on Darcy’s law is applied [7]. Here, the force balance is expressed
as follows:

ρ
d(hḣ)

dt
+

ϕ

K
ηhḣ + ρgh =

2γlg cos (θe)

reff
. (7)

Inertial, viscous, and gravitational forces (the first, second, and third terms in
Equation (7)) balance the capillary force (fourth term in Equation (7)), where the dynamic
viscosity η, the surface tension γlg, and the contact angle θe, respectively, represent the
properties of the fluid and the fluid/substrate interaction. The effective parameters of
the microstructure are expressed with the permeability K, the porosity ϕ, and an effective
pore radius reff. The effective pore radius is the focus of this work. The propagation
distance h and the propagation velocity ḣ of the fluid are compared with experimental
results as characteristic parameters. Depending on the ratio of the involved forces, some
terms in Equation (7) can be neglected. A common way of characterizing the dominant
forces is by estimating the Bond number [43]

Bo =
Body force

Surface tension force
=

ρghmaxL
2γlg

(8)

and the Weber number [44] with

We =
Inertial force

Surface tension force
=

ρḣ2L
γlg

, (9)

where L is the characteristic length scale of the system and hmax describes the maximum
vertical height of a rising water column. In the case of the PPMs of interest, the geometric
pore size (from 1 µm to 10 µm) is taken as the characteristic length scale L. Moreover, in the
wicking experiment performed in this study (see Section 2.3), the maximum vertical height
of a membrane sample is hmax = 4 cm and the liquid used has a relatively high density
and low surface energy, compared to water (see Table 1). These assumptions lead to a
low Weber number that is much smaller than 1 (We� 1) but result in a Bond number of
Bo = 0.22, which is not clear evidence for the dominance of surface tension forces.



Membranes 2022, 12, 638 6 of 17

This means that inertial forces can be neglected, while gravitational body forces should
be included. The resulting expression is a force balance between viscous, gravitational,
and capillary forces:

ϕ

K
ηhḣ + ρgh =

2γlg cos (θe)

reff
. (10)

For the applied force balance, a fully analytical solution is given in [7] as follows:

h(t) =
1
c

[
1 + W(−e−1− c2t

b )

]
. (11)

Here, W(x) is the Lambert W function and the variables b and c represent two coeffi-
cients for the gravity and viscosity terms, respectively, [8]. They can be defined as

b =
reff

2γlg cos (θe)

ϕη

K
(12)

and
c =

reff
2γlg cos (θe)

ρg. (13)

Equations (11)–(13) are used as a macroscopic model to predict wicking, while the
effective properties are extracted from 3D digital twins of the porous polymeric membranes.

2.2. Digital Twins of Porous Polymeric Membranes

The investigated PPM is a commercially available, unsupported and impregnated
nitrocellulose membrane for lateral flow assays (UniSart® CN140, Sartorius Stedim Biotech
GmbH, Göttingen, Germany). As specified by the manufacturer, it has a nominal pore
size of 8 µm and a thickness of ∼135 µm, while the impregnation of the intrinsic surface
provokes the hydrophilic wetting behavior. For this work, two different lots (sample 1 and
sample 2) of the membrane are used for both the simulation-based and the experimental
analysis. For the pore-scale simulations, 3D data of the microstructures are extracted from
CT measurements.

2.2.1. High-Resolution Computer Tomography (Nano CT)

3D data of the PPMs are obtained by high-resolution X-ray computer tomogra-
phy (nano CT) measurements. For the experiments, the beamline ID16B-NA at the Eu-
ropean Synchrotron Radiation Facility (ESRF) in Grenoble has been used [45]. The re-
constructed 3D representation of the data consists of 900 equally spaced 2D images with
a spatial resolution of 150 nm pixel−1. The stack of 8-bit (256 intensity levels) grayscale
images is filtered by a Gaussian 3D filter with a sigma of three voxels. Following this,
a binarization algorithm is applied, in which the threshold is adjusted to obtain the exper-
imentally measured porosity as described in [27]. For both processing steps, the image
processing software ImageJ v1.51J8 [46] is used. As a result, two digital twins of the porous
microstructures with (500× 900× 500) voxels are obtained, giving (75× 135× 75) µm
in physical units and reflecting the total membrane thickness with ∼135 µm. The digital
representations for sample 1 and sample 2 are shown in Figure 2. As the SEM image in
Figure 1b) and the nano-CT scans show, the complex microstructures do not have circular
and closed pores.
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sample 1 sample 2
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Figure 2. Reconstructed porous microstructures of the two different PPM test samples (sample 1 and
sample 2), in which the gray parts show the solid membrane. Each of the presented samples exhibits
a volume of (75× 135× 75) µm. Sample 1 corresponds to the SEM image in Figure 1.

2.2.2. Effective Properties

The four main effective properties for describing the fluid flow in porous wicks are
the porosity ϕ, the mean pore radius rc, the mean ligament radius rl, and the permeability
K. While the porosity is determined experimentally, all other properties are extracted from
the introduced 3D microstructures on the pore scale, by using the simulation framework
PACE3D [41]. In order to extract representative effective properties, the entire section of
500× 900× 500 voxels was used to determine the parameters for each sample.

The experimental measurements of the porosities were performed by weighing the
dry and water-wetted membranes as described in [27]. These porosities are used to adjust
the filter algorithms accordingly. Subsequently, the obtained porosities in the reconstructed
3D structure are verified by calculating the volume of the pore space and dividing the result
by the total volume. Both are measured on the basis of voxels.

As a measurement of the conductivity of Newtonian fluids, the permeability describes
the resistance of porous materials to fluid flow forces. In general, the permeability K is
a symmetric tensor of second rank [47]. Since the wicking possess a main flow direction,
which is for the following description assumed to be in the x-direction, only mean values
are considered, while corresponding indices in the equation are neglected. To determine
the permeability, fluid flow simulations are performed in the pore space by defining a
pressure difference ∆p across the considered PPM layer with a thickness s and solving the
Stokes equations for the steady-state velocity distribution v = (ux, uy, uz)T , as shown in
Figure 3a. By applying Darcy’s law, the permeability is then calculated as follows:

K =
ηUs
∆p

, (14)

where η describes the dynamic viscosity and U denotes the Darcy velocity in the main flow
direction (e.g., U = ϕūx).

The geometric mean pore radius rc and the mean ligament radius rl of the porous
membrane are referred to as structure parameters. They are estimated by an image analyz-
ing method developed and implemented in PACE3D and applied in both the pore and the
structural space of the 3D microstructure. Due to the combination of a Euclidean distance
map and a thinning algorithm, the method is able to estimate the local distributions of the
pore sizes and the local ligament radius (see Figure 3b,c). Based on the local distributions
shown for the ligaments and the pore sizes in Figure 3d,e), the mean values for the structure
parameters are calculated.

The methods for obtaining the effective properties are described in more detail in [27].
The determined effective properties for both samples are summarized in Table 1.
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Figure 3. Exemplary extraction of effective properties in a 30× 30× 30 µm section of membrane
sample 1: (a) the resulting velocity distribution of the fluid flow simulation; (b,c) visualization of
the local ligament and pore radius detection, realized by combining a Euclidean distance map and a
thinning algorithm as described in [27]; and (d,e) the resulting ligament and pore radius distributions
for sample 1 (shown for the complete reconstructed sample).

Table 1. Effective properties of the two porous nitrocellulose membranes (porosity ϕ, permeability K,
structure parameter rc and rl, and the properties of the wicking liquid Porefil® (surface tension γlg,
contact angle θe, dynamic viscosity η)). The geometric properties are extracted from the reconstructed
membrane structures (see Figure 2) by applying the methods described in Section 2.2.2.

Effective Properties Porefil® Properties [48]

Sample ϕ (-) K
(10−13 m2) rc (µm) rl (µm)

γlg
(mN m−1)

θe (◦) η (mPa s)

1 0.89 16.83 2.16 0.64 16.0 0.0 2.22 0.82 7.78 1.73 0.72

2.3. Wicking Experiment

Wicking experiments are commonly used to check the quality during the industrial
production process and to divide the membranes into different wicking speed categories.
A standardized experiment setup was used to determine the wicking behavior. For this
purpose, membrane samples with a size of 25 × 75 mm are clamped in a suspension device.
With their shorter edge, the samples are then inserted into a thin film of the test liquid, and
the porous microstructures are wetted by capillary forces (see Figure 4 (left)). The height h
of the propagating liquid front is detected by imaging (Figure 4 (right)) and plotted over
time t.

The time it takes to wet the distance of 40 mm is the so-called wicking time tw, while
the course of the curve reveals the characteristic wicking behavior. Porefil® is used as the
test liquid, which is commonly applied as the wetting fluid for capillary flow porometry
measurements [48,49]. It belongs to the perfluoroethers that have a low surface tension and
a contact angle of zero, thereby, resulting in a slow wicking behavior, which is advantageous
for the detection of the liquid front. As a major advantage of Porefil®, it can be assumed
that the impregnation does not have a strong influence on the wicking behavior, which
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would occur during wicking processes with water [50]. Thus, the dynamic influence on the
contact angle or the surface tension can be neglected.

h

liquid front

porous membrane

g

test liquid film

wicking experiment

h
ei

g
h
t

time

wicking experiment

h
ei

g
h
t

time

wicking experiment

h
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g
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h
ei

g
h
t

time

wicking experiment

h
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wicking experiment
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time

wicking experiment

h
ei

g
h
t

time

Figure 4. Schematic description of the wicking experiment (left) and a real image of the detection of
the liquid front, taking place during the experiment (right).

Furthermore, it is assumed that, when using Porefil® during the wicking experiment,
neither evaporation nor swelling effects occur, and only the structural and fluid properties
influence the wicking effect. Consequently, Porefil® provides controlled conditions that
allow the validation of the effective pore radius. In Table 1, the most important properties
of the liquid are listed.

3. Results
3.1. Simulation of Surface Curvature Formation in Two-Phase Equilibrium Conditions

The validation of the model for two-phase equilibrium conditions is achieved by
simulating the rise of a liquid column in capillaries with different cross-sectional shapes.
The analytical equilibrium heights are obtained by following Jurin’s law [20]:

he =
2γlg cos (θe)

ρlgrc
, (15)

where the capillary driving force is balanced with the gravitational force. Here, ρl is the
density of the liquid and g represents the gravitational acceleration.

For the numerical experiments, water with a density of ρl = 1000 kg m−3 is assumed
to make the capillary rise, and a free surface is shared with the air, where the interface has a
surface tension of γlg = 72 mN m−1. According to the conditions on the ground, the gravi-
tational acceleration corresponds to g = 9.81 m s−2. Furthermore, different capillaries with
a circular, a rectangular, and an open-pored cross section are shown in Figure 5a–c.

The capillary radius rc is defined as half of a measurable minimum distance between
two boundaries within the cross section. Finally, the size of the capillary radius rc is varied
in the range of 0.25 mm to 1.5 mm, while the equilibrium contact angle is kept constant at
θe = 60°.

Since we are interested in the equilibrium height, the numerical experiments are
conducted by solving only the phase-field equations numerically (Equations (5) and (6)),
without any coupling to fluid flow models, such as the Navier–Stokes equations. For this
purpose, an explicit Euler scheme is solved for the temporal derivatives, and the finite
difference method on an equidistant mesh is used for the spatial derivatives. As the
capillaries are assumed to be symmetrical, the simulation domain can be reduced to a
quarter of the cross section (see Figure 5a).

A Neumann boundary condition with the normal derivatives of the order parameter
∂φ/∂n = 0 is defined on the symmetry planes. For the differently shaped capillary cross
sections, Figure 5 shows the resulting equilibrium heights h over the capillary radius rc in
log–log scale. The symbols indicate the simulations, whereas the solid lines correspond to
the analytical prediction. According to Equation (15), h decreases with increasing rc as also
shown by the simulations.
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By drifting away from the ideal circular cross section, the equilibrium height changes,
even though the geometric capillary radius is equivalent. For the open cross section,
the equilibrium height is the lowest, which is due to the deviation of the curvature of the
free surface.

a)

b) c)

meniscus

Figure 5. Equilibrium height he, over capillary radius rc, for three different cross-sectional shapes in
log–log scale: (a) circle, (b) rectangle, and (c) open cross section (adapted from [6]). The simulation
results are presented by symbols, while the solid line follows Equation (15) for the circular cross
section. The capillary radius rc is defined as half of a minimum measurable distance between
two boundaries within the cross section. The red line defines the zero level and the Neumann
boundary condition.

First, it should be mentioned that these numerical experiments confirm that the applied
phase-field approach is able to predict equilibrium conditions for capillary wetting. Second,
the numerical experiments emphasize the importance of taking surface curvatures into
account, to thus determine the effective pore radii.

3.2. Methodological Determination of the Effective Pore Radius

In order to determine the effective pore radius reff for the highly porous membranes,
a correction factor F is introduced. This factor accounts for the deviation of the surface
curvature within open-pored porous structures, compared to the surface curvature in a
cylindrical capillary. It is derived by performing a simulation-based parameter study in
simplified geometries, for which the presented phase-field approach is applied.

As shown in Figure 2, the investigated polymer membranes reveal a highly porous
pore system. Since the capillary pressure is the driving force for the wetting dynamics and
is governed by the surface curvature, the correction function F is derived by correlating the
geometric properties with the resulting surface curvature. Therefore, a simplified open-
pored pore system was generated by means of substitute parameters, which is formed
from parallel ligament structures oriented in the direction of wetting. The ligament radius
rl and the distance between the ligaments rc are introduced as substitute parameters for
the mean ligament radius and the mean pore radius. Figure 6a shows a small section
(30× 30× 30) µm of the complex membrane structure as an example and links this to the
simplified model with the defined equivalent geometry parameters.
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a) b)

Figure 6. (a) Section of a complex membrane of the computer tomography data and the simplified
model for the derivation of a correction function. (b) Schematic representation of the derivation of
the equivalent radius reqv, based on the simulated mean curvature Hsim (adapted from [6]).

Based on the substitute parameters, a simulation study was conducted, in which
a wetting scenario was simulated for each geometry. For this purpose, a total of four
simplified geometries with a domain size of (500× 500× 50) cells were generated, whereby
the distance of rc = 80 cells was kept constant and the diameter of the ligaments rl varied
between 10 cells and 40 cells. Thus, the ratio of the geometry parameter rl/rc varies between
0.125 and 0.5, which covers the real structural conditions of the CT data, as presented
in Table 2.

For each combination of the structure parameter, a two-phase simulation based on
Equation (5) was performed. By defining a wetting (water) and a dewetting (air) phase
with an initial saturation of 0.5, a meniscus develops between the phases, when equilibrium
conditions are reached. Since the capillary length λc = (γlg/ρg)0.5 for Porefil® is 0.95 mm
and therefore consequently larger than the mean pore radii for diagnostic membranes
(1 µm to 10 µm), it is assumed that gravity has no influence on the shape of the equilibrium
meniscus.

Therefore, the gravitational term in Equation (5) is neglected for the parameter study
and a term that ensures the volume preservation of each phase is used instead, as described
in [39]. Furthermore, a periodicity of the investigated geometries is assumed. Since the
effective pore radius is a geometric measure, it is assumed to be independent of the contact
angle. Therefore, and for validation reasons (see Section 2.1.1), the equilibrium contact
angle θe = 60 ◦ is defined. After reaching the state of equilibrium, the mean curvature of
the surface Hsim is determined numerically.

Using the predefined θe and the estimated mean surface curvature Hsim for each
combination of the structure parameter, an equivalent capillary radius reqv is estimated
as follows:

reqv =
cos (θe)

Hsim
. (16)

This equivalent radius reqv can be considered as the radius of a corresponding cap-
illary with a circular cross section and a closed perimeter, as seen in Figure 6b. Hence,
reqv fulfills the Young–Laplace assumptions. In order to obtain a general correction fac-
tor F, the equivalent radius is divided by the measured minimum distance between the
ligaments rc

F =
reqv

rc
. (17)
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As a result, this correction factor can be directly linked to the ratio of the two structure
parameters, as shown in the left diagram in Figure 7. For an analytical correlation, the results
from the simulations of the simplified geometries are fitted to the following expression:

F(rl, rc) =
a

rl/rc
+ b, (18)

by using a nonlinear least-squares Marquardt–Levenberg algorithm, which is implemented
in the scientific graphing utility Gnuplot 5.2 [51]. The respective best-fit coefficients for the
simplified geometries are a = 1.980 and b = 3.012. The left diagram in Figure 7 shows an
inversely proportional behavior of the correction factor F, with an increasing ratio rl/rc of
the structure parameters. By decreasing the ratio, the correction factor strongly increases,
which is caused by a progressing deviation between the equivalent capillary radius reqv
and the measurable distance between the ligaments rc.
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Figure 7. Derivation of an analytical correlation of the correction factor F, based on the simulation
results (left, adapted from [6]) and equilibrium height he, over ligament radius rc, for the open
cross-sectional shape of Figure 6b. The right diagram shows the Jurin equation combined with the
correction factor F and the simulations from Figure 5c. The simulation results are represented by star
symbols, and the solid line follows Equation (20).

The correction factor for the two investigated membranes is estimated by applying
the structure parameter from Table 1 and Equation (18). The resulting factors for sample 1
and sample 2 are 9.60 and 7.75, respectively. By multiplying the factors with the measured
mean pore radius rc of the porous structure (as described in Section 2.2.2)

reff = F(rl, rc)rc, (19)

the effective pore radii of 20.7 µm and 13.4 µm are obtained. An experimentally determined
correction factor of ∼7, which lies between the geometric and effective pore radius for the
porous structure under investigation, is also reported in the literature [24].

3.3. Validation in an Ordered and Open Cross Section

As a first proof of concept, the equilibrium height he for the open cross section in
Figure 5c is calculated by including the correction factor F in Equation (15) as follows:

he =
2γlg cos (θe)

ρlgrcF
. (20)

In this case, the ligaments are arranged in an ordered manner and the ratio of the
structure parameter rl/rc = 1 is constant. This results in a correction factor of F = 4.3,
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which means that the equilibrium height for the open cross section is lowered by a factor of
4.3, compared to the circular cross section.

For different minimum ligament distances rc, Figure 7 (right) shows the comparison
between the simulation results and Equation (20). The simulations and the prediction with
Equation (20) show a good agreement, with a maximum deviation of 6.01 %.

3.4. Prediction of Wicking in the PPMs

For the two investigated porous membrane samples, the measured wicking times tw
are depicted in Figure 8. The experiments for both samples are performed with Porefil®.
For each sample, three wicking curves were determined. Since the corresponding mea-
surement curves lie on top of each other and there is a small relative standard deviation
for both samples, it is clear that the measurements are reproducible. Therefore, the results
are used to validate the presented approach to predict an effective pore radius, since the
wetting conditions for Porefil® are well defined.

To verify the developed correlation between the geometric structure properties and
the resulting effective pore radius, the predicted wicking behavior is examined by compar-
ing the experimentally measured curves with the results of the analytical wicking model.
Furthermore, to emphasize the accuracy of the correlation, common approaches to de-
termine the effective pore radius are estimated as follows and also used to represent the
wicking behavior: The first approach [30] describes the effective capillary pressure without
additional corrections, using the geometric pore radius rc from Table 1.

In contrast, the second approach [12,19] describes the capillary pressure using the
hydraulic radius rh, where the corresponding pore radius re is determined via re = 2 · rh.
Here, the hydraulic radius is defined with rh = 2 · ϕ/SV, where ϕ represents the porosity
and SV is the specific surface area. Both properties are determined as described in [27] in
the voxel-based representation of the 3D microstructures.

The other relevant effective properties of the membrane structure, such as the mean
pore radius, the mean ligament radius, and the permeability, are extracted on the basis of
the CT data as described in Section 2.2.2 and presented in Table 1. Furthermore, the cor-
rection factors F for samples 1 and 2 are shown in Table 2 with the help of Equation (19).
The resulting radii for both samples are summarized in Table 2.

Table 2. Effective pore radii, depending on the respective approaches [30] describes the effective
capillary pressure without an additional correction, using the geometric radius rc. [19], and [12]
describes the capillary pressure with the effective radius re, using re = 2 · rh. The value reff is based
on the correction factor F, presented in Equation (19).

rc (µm) re (µm) rl/rc (-) F (-) reff (µm)

Sample 1 2.16 13.85 0.296 9.6 20.7

Sample 2 1.73 9.26 0.416 7.75 13.4

For the considered membrane samples, the comparison between the analytical predic-
tion and the experimental measurements is shown in Figure 8, where the wicking model is
taken from Equation (11). The symbols represent different experimental results, while the
curves represent the predictions with different pore radii.

For both samples, significant differences are evident, regarding the three different
approaches. When using the geometric pore radius rc, the capillary pressure is strongly
overestimated in all cases, resulting in a wicking time that is significantly lower than the
experimental value. The prediction using the equivalent pore radius re, based on the
hydraulic pore radius rh, also overestimates the wicking behavior for both samples. In
contrast, by using the corrected effective pore radius reff from pore-scale simulations and
the correction function in Equation (19), an excellent agreement between the experiments
and the modeled prediction can be observed.
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With a deviation of 7 % for sample 1 and 4.8 % for sample 2, the wicking time at a
wicking length of 4 cm is matched, and the wicking course is well approximated. Further-
more, the coefficient of determination R2 was calculated for the statistical validation of all
experiments and the respective analytical function. For sample 1 and sample 2, R2 ≥ 0.9
was fulfilled in all cases. This indicates that the wicking course is well approximated,
without performing any fit adjustments.

rc
re
reff
exp. 1
exp. 2
exp. 3

h
ei

gh
t

h
(m

m
)

0

10

20

30

40

50

time t (s)

0 250 500 750 1000

rc
re
reff
exp. 1
exp. 2
exp. 3

h
ei

gh
t

h
(m

m
)

0

10

20

30

40

50

time t (s)

0 250 500 750 1000

Figure 8. Analytical wicking prediction of three different approaches shown with dashed and solid
line and wicking experiments for sample 1 (right) and sample 2 (left). The typical wicking behavior is
presented in a plot in which the height h is plotted over the time t. The experiments were conducted
with Porefil®. The analytical expression is taken from Equation (11), while the properties are taken
from Tables 1 and 2.

4. Conclusions

In this work, a correlation for the determination of effective capillary pore radii in
open-pored porous microstructures was derived. For this purpose, the wetting behavior
was first simulated in simplified representative structures, using a two-phase phase-field
approach. Thus, depending on the structural properties, the different resulting mean surface
curvatures of the menisci were evaluated. Based on this simulation study, on the pore-
scale, a function for a correction factor F was derived, which adjusts the deviation in the
effective pore radii between wetting in cylindrical capillaries and porous microstructures.
To validate the correlation, the macroscopic wicking behavior in two real PPM samples
was calculated and compared to experiments, while the correction factor F was calculated
based on the mean ligament and the mean pore radius in the respective CT scan.

We demonstrated that the effective radii for the observed samples were about
∼8 times (sample 2) and ∼10 times (sample 1) larger than the geometric mean radius,
which was calculated based on the pore size distributions (e.g., see Figure 3e). From a
physical point of view, the deviation between the geometrical mean pore radius and the
presented effective pore radius originates from the mean surface curvature of the free sur-
face. It is smaller in open-pored porous microstructures than in ideal cylindrical capillaries
where the geometrical pore radius and the capillary radius are assumed to be the same. As a
result, in porous microstructures, the capillary pressure is smaller, and hence the wicking
is slower. In other words, it is evident that this adjustment of the geometrical pore radius
is necessary to accurately predict the wicking behavior. With the derived correlation for
effective pore radii, no experimental fitting procedures are required to establish further
structure–property linkages.

For future work, not only digital twins of a given porous membrane structure but
time-dependent physical simulations of the underlying phase separation [52] could be
used as well. This would provide a time series of 3D microstructures as database, which
brings in combination with the presented computer-aided membrane characterization a
tool for direct linking between process parameters for the material production and the
resulting wicking behavior. Moreover, by entering the data-driven research in membrane
science using research data infrastructures, such as Kadi4Mat [53], far-reaching possibilities
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for further structure–property linkages and ultimately for the digital design of porous
membranes are opened up.
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