

⁸⁹Zr-pembrolizumab biodistribution is influenced by PD-1-mediated uptake in lymphoid organs

Elly L van der Veen ^(D), ¹ Danique Giesen, ¹ Linda Pot-de Jong, ¹ Annelies Jorritsma-Smit, ² Elisabeth G E De Vries, ¹ Marjolijn N Lub-de Hooge ^(D) ^{2,3}

ABSTRACT

To cite: van der Veen EL, Giesen D, Pot-de Jong L, *et al.* ⁸⁹Zr-pembrolizumab biodistribution is influenced by PD-1-mediated uptake in lymphoid organs. *Journal for ImmunoTherapy of Cancer* 2020;**8**:e000938. doi:10.1136/ jitc-2020-000938

► Additional material is published online only. To view please visit the journal online (http://dx.doi.org/10.1136/jitc-2020-000938).

Accepted 11 August 2020

Check for updates

© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

¹Department of Medical Oncology, UMCG, Groningen, Groningen, Netherlands ²Department of Clinical Pharmacy and Pharmacology, UMCG, Groningen, Groningen, Netherlands ³Department of Nuclear Medicine and Molecular Imaging, UMCG, Groningen, Groningen, Netherlands

Correspondence to

Dr Marjolijn N Lub-de Hooge; m.n.de.hooge@umcg.nl Background To better predict response to immune checkpoint therapy and toxicity in healthy tissues, insight in the in vivo behavior of immune checkpoint targeting monoclonal antibodies is essential. Therefore, we aimed to study in vivo pharmacokinetics and whole-body distribution of zirconium-89 (⁸⁹Zr) labeled programmed cell death protein-1 (PD-1) targeting pembrolizumab with positron-emission tomography (PET) in humanized mice. Methods Humanized (huNOG) and non-humanized NOG mice were xenografted with human A375M melanoma cells. PET imaging was performed on day 7 post 89Zrpembrolizumab (10 µg, 2.5 MBq) administration, followed by ex vivo biodistribution studies. Other huNOG mice bearing A375M tumors received a co-injection of excess (90 µg) unlabeled pembrolizumab or ⁸⁹Zr-IgG₄ control (10 µg, 2.5 MBq). Tumor and spleen tissue were studied with autoradiography and immunohistochemically including PD-1.

Results PET imaging and biodistribution studies showed high ⁸⁹Zr-pembrolizumab uptake in tissues containing human immune cells, including spleen, lymph nodes and bone marrow. Tumor uptake of ⁸⁹Zr-pembrolizumab was lower than uptake in lymphoid tissues, but higher than uptake in other organs. High uptake in lymphoid tissues could be reduced by excess unlabeled pembrolizumab. Tracer activity in blood pool was increased by addition of unlabeled pembrolizumab, but tumor uptake was not affected. Autoradiography supported PET findings and immunohistochemical staining on spleen and lymph node tissue showed PD-1 positive cells, whereas tumor tissue was PD-1 negative.

Conclusion ⁸⁹Zr-pembrolizumab whole-body biodistribution showed high PD-1-mediated uptake in lymphoid tissues, such as spleen, lymph nodes and bone marrow, and modest tumor uptake. Our data may enable evaluation of ⁸⁹Zr-pembrolizumab whole-body distribution in patients.

BACKGROUND

Immune checkpoint inhibitors targeting the programmed cell death protein-1 (PD-1/ programmed death ligand-1 (PD-L1) pathway are showing impressive antitumor effects. However, not all patients respond and serious immune-related toxicity has been reported.¹ This has raised interest in

better understanding the behavior of these drugs in the human body. PD-L1 and PD-1 are expressed by a broad range of immune cells, including T-cells, B-cells, natural killer (NK) cells, monocytes and dendritic cells. PD-L1 can be highly expressed by tumor cells, whereas PD-1 expression is most prominent in T-cells and lower in other immune cells.² Biodistribution of PD-1 and PD-L1 targeting drugs will likely be influenced by the dynamic expression patterns of these targets.

Molecular imaging has proven to be an useful tool for studying drug biodistribution.³⁴ In table 1, we summarized preclinical imaging studies that investigated biodistribution of radiolabeled molecules targeting PD-1 and PD-L1.5-28 Most studies that we reviewed focused on tracer distribution in the tumor and its microenvironment, without considering PD-1 and PD-L1 expression in healthy immune tissues. Studies that do report on tracer uptake in lymphoid tissues are scarce and results are often limited to the spleen. Furthermore, most tracers targeting human PD-1/PD-L1 are not cross-reactive with murine proteins and relevant mouse models reconstituted with (parts of) a human immune system are rarely used. A limited number of studies used NOD scid gamma (NSG) mice engrafted with human peripheral blood mononuclear cells (hNSG model).^{23–25 27} The hNSG model has a high level of functional T-cells, however, it is also characterized by aberrant distribution of immune cells to murine immune tissues and other cell lineages remain underdeveloped.²⁹ Humanized mice that are engrafted with human CD34 + hematopoietic stem cells (HSCs) establish an immune-competent model with a broader set of developed human immune cells present and might therefore be a better surrogate for the human immune environment.

To gain more insight in the in vivo behavior of a human PD-1 targeting monoclonal

Table 1	Preclinical ima	iging studies	targeting PI	D-L1 and PD-1, u	sing radiolabe	aled monoclonalar	ntibody or small pro	oteins		
Type of Imaging	Tracer	Origin and reactivity	Cross reactivity	Animal model	Tumor model	Tracer dose	Imaging / biodistribution time point	Tumor uptake	Uptake lymphoid tissue	Ref
Anti-PD-L1 -	antibodies									
SPECT/CT	antibody antibody	Murine anti- human	oN	Balb/c nude mice 6 to 8 weeks old Immune deficient	Human breast cancer cell lines	1.5 µg (15.5 MBq) and 1.0µg (10.0 MBq)	Imaging and ex vivo biodistribution at 24, 72 and 168 hours pi	32.8 (±6.8) %ID/g and 6.2 (±1) %ID/g at 168hours pi for MDA-MB-231 and MCF-7 tumors respectively MCF-7 tumors respectively D-L1 detection at different expression levels in SK-BF-3, SUM149 and BT474 tumors	2	<u>(</u> 2)
SPECT	¹¹¹ In-DTPA-PD-L1 antibody	Hamster anti- mouse	oZ	<i>neu-</i> N transgenic mice 8 to 12 weeks old Immune competent	NT2.5 (mouse mammary tumor)	7.4 MBq for imaging and 8.4 µg (0.93 MBq) for biodistribution	Imaging on 1, 24, and 72 days pi and ex vivo biodistribution at 1, 24, 72, and 144hours pi	Turmor uptake of 21.1 (±11.2) %ID/g at 144 hours pi	Yes, spleen (63.5%±25.4 %)D/g) and thymus (16.8%±16.2 %)D/g) at 144 hours pi Spleen uptake was blocked by coinjection of unlabeled antibody	(9)
SPECT	antibody	Humanized anti- human	Cross-reactive with mouse	NSG mice 6 to 8 weeks old Immune deficient	Human cell lines	100 µg (14.8 MBq) for imaging and 8.5 µg (1.48 MBq) for biodistribution	Imaging and ex vivo biodistribution at 24, 48, 72, 96 and 120 hours pi	8.9 (±0.26) %ID/g at 72hours pi for MDA- MD-231 turnors and 7.46 (±0.12) at 14 hours pi for H2444 turnors Detection of PD-L1 at different expression levels	Yes, spleen (23.5±8.2) at 48 hours pi Spleen uptake was blocked by co-injection of unlabeled antibody	E
РЕТ	e4Cu-PD-L1 antibody	Humanized anti- human	Cross-reactive with mouse	NSG mice 6 to 8 weeks old Immune deficient	Human cell lines	16. 7 MBq (40 μg) for imaging and 1.48 MBq (10 μg) for biodistribution	Imaging on 2, 24 and 48hours pi and ex vivo biodistribution at 24 and 48hours pi	40.6 (±6.9) %ID/g, 17.2 (±2.1) %ID/g and 9.4 (±2.3) %ID/g at 48 hours (±2.3) %ID/g at 48 hours (±2.3) %ID/g at 48 hours (±10 PD-L1 positive CHO, MDA-MB-231 and SUM149 tumors respectively	High spleen uptake (~45 %ID/g) at 24 hours pi after blocking with unlabeled antibody	8)
				Balb/c mice 4 to 6 weeks old Immune competent	4T1 (mouse mammary carcinoma)			17.0 (±4.3) %ID/g at 48hours pi for 4T1 tumors	No high uptake observed in spleen (±12 %ID/g) and BAT	
SPECT	¹¹¹ In-DTPA-PD-L1 antibody	Rat anti-mouse	oN	C57BL/6 mice 6 to 8 weeks old Immune competent	B16F10 (murine melanoma)	15–16 MBq (60µg) for imaging and 0.37 MBq (0.13 mg/kg)	Imaging on 1, 24 and 72 hours pi and biodistribution at 1, 24, 72 and 96 hours pi	6.6 (±3.1) %ID/g at 24hours pi for B16F10 tumors	Yes, spleen (47%±9.5 %ID/g) at 24 hours pi and BAT Spleen uptake was blocked by coinjection of unlabeled antibody	6)
РЕТ	⁸⁷ Zr-anti-PD-L1 antibody	Rat anti-mouse	° Z	C57BL/6 mice 6 to 8 weeks old Immune competent	MEER (murine tonsil epithelium) or B16F10 (murine melanoma)	3.7 MBq (50µg)	Imaging and ex vivo biodistribution at 48 and 96hours pi	Higher uptake in irradiated non-irradiated (11.1%±1.9 %D/9) MEER turnors Higher uptake in irradiated 15.0%±4.9 %D/9) vs non-irradiated (14.4%±1.4 %D/9) B16F10 turnors	Yes, spleen (60% to 120%ID/g) and thymus (25% to 35%ID/g) Spleen uptake was blocked by pre-injection of unlabeled antibody	(10)
PET	⁸² Zr-C4 (recombinant IgG1 antibody)	Engineered anti- human	Cross-reactive mouse	Nu/nu mice 3 to 5 weeks old Immune deficient C57BL/6 mice 3 to 5 weeks old Immune deficient Not reported	H1975 and A549 (human NSCLC), PC3 (human NSCLC), PC3 (human carcinoma) B16F10 (mouse melanoma) PDX model of EGFR mutant (L858R) NSCLC	11.1 MBq for imaging and 1.85 MBq for ex vivo biodistribution	Imaging and ex vivo biodistribution at 8, 24, 48, 72, 120 hours pi	-9 %ID/g -5 %ID/g and -7 %ID/g 448 hours pi drn H1975, 4458 and PC3 tumors respectively -13% ID/g at 48 hours pi fumors -5 %ID/g tumor uptake at 48 hours pi in PDX model pharmacological-induced changes in PD-L1 expression	Yes, spleen uptake of ~7 %ID/g and ~6 %ID/g at 48 hours pi in nu/nu and C57BL/6 mice respectively. Increased uptake in the spleens of nu/nu mice treated with paclitaxel and spleens of C57BL/6 mice treated with doxorubicin	(11)
									Conti	nued

6

	Ref	(12)				(13)	(14)	(15)	(16)	inued
	Uptake lymphoid tissue	Yes, spleen varying from 13.09 %ID/g to 40.30 %ID/g. Thymus varying from 6.09 %ID/g to 10.26 %ID/g	Yes, spleen uptake -20% ID/g for non- humanize mice and -25% ID/g for humanized mice -80 %ID/g for humanized mice after LPS treatment at 72 hours pi -10 %ID/g for ¹¹¹ In-control mIgG1 (both groups	Spleen uptake ~14% to 17%ID/g for all models Higher uptake in lymph nodes of irradiated tumor models vs non-irradiated tumor models		No	No	Yes, spleen 11.4 (\pm 1.4) %ID/g for WT and 1.6 \pm 0.2%ID/g for KO at 80 min pi Lymph node uptake 3.5 (\pm 0.8) %ID/g for WT and 0.4 (\pm 0.1) %ID/g for KO at 80 min pi	Yes, spleen ~5 %ID/g at 24 hours pi	Cont
	Tumor uptake	~14.53 (±5.49) %D(g,~16.29 (±5.57) %D(g,~11.06 (±6.54) %D(g,~11.06 (±6.54) %D(g,~616 (±2.94) %D(g,~616 (±2.94) %D(g, for Renca, 471, cT26, B16F1 and LLC1 respectively	-40 %ID/g for non- humanized mice and -60 %ID/g for humanized mice -35 %ID/g for humanized mice after LPS treatment at 72 hours pi at 72 hours pi migG1 in both non- humanized and humanized mice at 72 hours pi	Higher uptake in irradiated (26.3%±2.0%ID/g) vs non-irradiated (17.1%±3.1 %ID/g) CT26 tumors Higher uptake in irradiated (15.7%±1.8 %ID/g) vs non-irradiated (12.3%±1.7%ID/g) LLC1 tumors No difference uptake in tumors ND/g) vs non-irradiated (16.7%±3.5%ID/g) for B16F1 tumors B16F1 tumors		14.9 (±0.8) at 1 hour pi in hPD-L1-expressing CHO tumors	2.56 (±0.33) %ID/g at 90min pi for LOX tumors	1.7 (±0.1) %ID/g for WT and 1.1 (±0.3) %ID/g for KO at 80 min pi	~3 %ID/g for PD-L1 (+) and ~1.8 %ID/g for PD-L1 (-) at 24hours pi	
	Imaging / biodistribution time point	Imaging and ex vivo biodistribution at 72 hours pi	Imaging and ex vivo biodistribution at 72 hours pi	Imaging and ex vivo biodistribution at 24 hours pi		Imaging and ex vivo biodistribution at 10 min, 0.5, 1 and 2hour pi	Dynamic PET scan during 90min	Imaging 1 hour pi and ex vivo biodistribution 80min pi	Imaging at 1, 2, 4, and 24 hours. Ex vivo biodistribution at 1 and 24 hours	
	Tracer dose	19.7 (±1.2) MBq (30µg)	11.9±1.6 MBq (1 µg) ¹¹¹ In-anti-hPD-L1 0.11.5±0.4 MBq (2.8µg) ¹¹¹ In-control mIgG1 LPS treatment 1 day before tracer injection	Irradiation followed on day one by injection of 23.8±1.7 MBq (30 μg)		5.6 MBq for imaging and 1.5 MBq for ex vivo biodistribution	0.2 to 0.6 MBq	45 to 155 MBq (10 µg) nanobody	8.5 MB (25µg)	
	Tumor model	Murine cell lines	MDA-MB-231 (human breast carcinoma)	Murine cell lines		High PD-L1- expressing CHO cell line	LOX-IMVI (human melanoma) and SUDHL6 (human B-cell lymphoma)	TC-1 (mouse lung epithelial), WT TC-1 PD-L1+ vs CRISPR/Cas9- modified TC-1 PD-L1 KO	CT26 (mouse colon cancer) hPD-L1 (+) or hPD-L1(-)	
	Animal model	Balb/c and C57BL/6 6 to 8 weeks old Immune competent	Non-humanized and humanized NSG mice	Balb/c and C57BL/6 6 to 8 weeks old Immune competent		NSG mice 6 to 8 weeks old Immune deficient	SCID beige mice 6 to 8 weeks old Immune deficient	C57BL/6 mice (WT) vs CD8 depleted PD-L1 KO mice 6 weeks old Immune competent	NSG mice Immune deficient	
	Cross reactivity	° Z	°z	Ŷ		No	oN	Cross-reactive human	Not specified	
	Origin and reactivity	Rat anti-murine	Murine anti- human	Rat anti-murine		Engineered anti- human	Engineered anti- human affibody	Engineered anti-mouse nanobodies	Engineered anti- human	
Continued	Tracer	¹¹¹ In-anti-mPD-L1	11 In-anti-hPD-L1	¹¹¹ In-anti-mPD-L1	· small molecules	⁶⁴ Cu-WL12 (PD-L1 binding peptide)	¹⁸ F-AIF-NOTA- Z _{PD-L1} (anti PD-L1 small molecule, affibody)	^{98m} TC-anti-PD-L1 nanobodies	⁶⁴ Cu-PD-1 ectodomain targeting PD-L1	
Table 1	Type of Imaging	SPECT/CT			Anti-PD-L1 -	PET	PET	SPECT	PET	

	Ref	(12)		(18)		(19)		(20)	(21)		(22)	inued
	Uptake lymphoid tissue	Yes, spleen uptake (no clear numbers)	Yes, spleen:muscle 12:1, after blocking spleen:muscle1.24:1	Yes, spleen 4.0 (±3.1) %ID/g, 5.5 (±1.4) %ID/g and 1.4 (±0.4) %ID/g for ^{ex} Cu-DOTA-HAC-PD1, and ^{ex} Cu-NOTA-HAC-PD1, and ^{ex} Cu-NOTA-HACA-PD1 respectively	Yes, spleen 3.5 (±0.5) %ID/g and 0.2 (±0.2) %ID/g for ®Ga-NOTA-HACA-PD1 and ®Ga-DOTA- HACA-PD1 respectively	92		92	Yes, spleen ~4 %ID/g, after treatment ~3.5 %ID/g		Yes, spleen 23.04 (±4.97) %ID/g for non- block vs 14.39±0.53) %ID/g for blocking 48 hours pi	Cont
	Tumor uptake	2.41 (±0.29) %ID/g for PD-L1 +and 0.88 (±0.11) %ID/g for PD-L1-, 0.79 (±0.12) %ID/g after blocking in PD-L+	1	1.8 (\pm 0.2) %ID/g for PD- L1(+) for %Cu-NOTA- HAC-PD1 at 1hour pi 4.2 (\pm 0.3) %ID/g for PD- HAC-PD1 at 1hour pi 4.2 (\pm 0.3) %ID/g for PD-L1(+) for PD-L1(+) and 3.5 (\pm 1.7) %ID/g for PD-L1(+) for \pm Cu-NOTA-HAC-PD1 at 1 hour pi 2.7 (\pm 1.1) %ID/g for PD-L1(+) for \pm Cu-NOTA-HAC-PD1 at 1 hour pi	3.8 (±1.6) %ID/g for PD- L1(+) and 1.7 (±1.3) %ID/g for PD-L1(+) for ⁶⁹ Ga-NOTA-HACA-PD1 at 1 hour pi 2.8 (±1.5) %ID/g for 2.8 (±1.5) %ID/g for 9%ID/g for PD-L1(+) for ⁶⁶ Ga-DOTA-HACA-PD1 at 1 hour pi	5.6 (±0.9) %ID/g at 24hours pi for CT26/ hPD-L1 tumors	3.6 (±0.5) %ID/g at 24hours pi for MDA- MB-231 tumors	11.56 (±3.18) %(D/g) 4.97 (±0.8) %(D/g and 1.9 (±0.1) %(D/g for 1.9 (±0.1) %(D/g for 1.9 (±0.1) %(D/g) and SUM149 tumors respectively at 60 min pi	5.5 %ID/g,8 %ID/g,-18 %ID/g,5 %ID/g,-8 %ID/g %ID/g,5 %ID/g,8 %ID/g PDL1+, CHO-PDL1- and MDAMB231 respectively at 120 min pi Treatment reduced uptake in all cell lines? Tumors models?		7.4 (±0.71) %ID/g for non-block vs 4.51 (±0.26) %ID/g for blocking 48hours pi	
	Imaging / biodistribution time point	Dynamic PET scan during 120 min	Dynamic PET scan during 150 min	Imaging and ex vivo biodistribution at 1 hour pi	Imaging and ex vivo biodistribution at 1 hour pi	Imaging at 0.5, 1, 4, 18, and 24 hours pi followed by ex vivo biodistribution		Imaging and ex vivo biodistribution at 15, 60, and 120 min pi	Imaging and ex vivo biodistribution at 120 min Treatment with atezolizumab 24 hours prior to tracer injection (20 mg/kg)		Imaging and ex vivo biodistribution at 1 hour, 24 hours, and 48 hours pi	
	Tracer dose	5.6 MBq, block to 3mg/kg	55.5 MBq	0.7-а.7 МВq (10 to 15µg)	0.7 to 3.7 MBq (10 to 15 µg)	3.7 (±0.4) MBq (8 to 10µg)		±7.4MBq for imaging and ±0.9MBq for ex vivo biodistribution	±7.4 MBq for imaging and ±0.74 MBq for ex vivo biodistribution		7.4 (±0.4) MBq (10– 12µg) Blocking with fivefold molar excess	
	Tumor model	Human L2987 (PD-L1+) and HT- 29 (PD-L1-)	I	CT26 (mouse colon cancet) hPD-L1(+) or hPD-L1(-)	CT26 (mouse colon cancer) hPD-L1(+) or hPD-L1(-)	CT26/hPD-L1	MDA-MB-231 (human breast cancer)	Human cell lines	Human cell lines: H226, HCC827, CHO-hPD-L1+, CHO-hPDL1-, MDAMB231		B16F10 (mouse melanoma)	
	Animal model	Immune deficient mice	Cynomolgus monkeys	NSG mice 6 to 8 weeks old Immune deficient	NSG mice 6 to 8 weeks old Immune deficient			NSG mice 6 to 8 weeks old Immune deficient	NSG mice 5 to 6 weeks old Immune deficient		Treg+transgenic mice (Foxp3+.LuciDTR) Immune competent	
	Cross reactivity	Affinity for human & cynomolgus PD-L1, no binding to		Not specified	Not specified	° N		°Z	Ŷ		Q	
	Origin and reactivity	Engineered anti- human		Engineered anti- human	Engineered anti- human	Small molecule anti-human		Engineered anti- human	Engineered anti- human		Hamster anti- mouse	
Continued	Tracer	¹⁸ F-BMS-986192 (anti-PD-L1 small molecule)		ectodomains ectodomains (DOTA-/ NOTA-HAC, aglycosylated DOTA-/NOTA- HACA)	es Ga- PD-1 ectodomains (DDTA-/ NOTA-HAC, aglycosylated DOTA-/NOTA- HACA)	64Cu-FN3 _{hPD-L1}		⁶⁸ Ga-WL12 (PD-L1 binding peptide)	64Cu-WL12 (PD-L1 binding peptide)	antibodies	⁶⁴ Cu-PD-1 antibody	
Table 1	Type of Imaging	PET		PET		PET		PET	PET	Anti-PD1 -	PET	

6

able 1	Continued									
ype of naging	Tracer	Origin and reactivity	Cross reactivity	Animal model	Tumor model	Tracer dose	Imaging / biodistribution time point	Tumor uptake	Uptake lymphoid tissue	Ref
ЪЕТ	⁸⁹ Zr- pembrolizumab	Humanized anti- human	Not specified	NSG and humanized NSG mice (hNSG)	A375 (human melanoma)	3.2 (±0.4) MBq (15 to 16µg)	Imaging at 1, 4, 18, 24, 48, 72, 96, 120 and 144 hours pi, ex vivo biodistribution at 144 hours pi	1.8 (±0.4) %ID/g for NSG and 3.2 (±0.7) %ID/g for hNSG at 144 hours pi	Yes, spleen ~19 %ID/g for NSG and ~28 %ID/g for hNSG at 144 hours pi	(23)
	⁶⁴ Cu- pembrolizumab					7.4 (±0.4) MBq (20 to 25µg)	Imaging at 1, 4, 18, 24 and 48 hours pi, ex vivo biodistribution at 48 hours pi	5.7 (±0.6) %ID/g for NSG, 9.4 (±2.5) %ID/g for hNSG and 5.9 (±2.1) %ID/g for hNSG block at 48 hours pi	Yes, spleen ~6.5 %ID/g for NSG, ~10.5 for hNSG, and ~7% ID/g for hNSG block at 48 hours pi	
ET	⁸⁹ Zr- pembrolizumab	Humanized anti- human	oz	ICR (CD-1) mice and Hsd Sprague-Dawley rrats, 5 weeks old Immune competent	No tumor model	Mice: 5 to 10 MBq (7 to 14µg) Rats: 50 MBq (14µg)	Imaging at 3, 6, 12, 24, 48, 72, and 168 hours pi, ex vivo biodistribution at 168 hours pi	No tumor model	Yes, spleen ~2.5 %ID/g for mice and ~1%ID/g for rats 168 hours pi	(24)
				NSG mice and humanized NSG mice engrafted with human PBMCs (hu-PBL-SCID), 5-8 weeks old	No tumor model; PBMC engraftment			No tumor model	Yes, spleen ~8 %ID/g for NSG and -4.5 %ID/g for hu-PBL-SCID) at 168 hours pi	
ΣΞc	89 Zr-Df-nivolumab	Humanized anti- human	°Z	NSG mice and humanized NSG mice engrafted with human PBMCs (hu-PBL-SCID 3-5 weeks old	A549 (human lung cancer)	5 to 10 MBq (7 to 14µg)	Imaging at 3, 6, 12, 24, 48, 72, and 168 hours pi, and ex vivo biodistribution at 168 hours pi.	3.88 (±0.38) %lD/g for NSG and 9.85 (±2.73) %lD/g for hu-PBL-SCID at 168 hours pi hu-PBL [9G control at hu-PBL[9G control at 168 hours pi	Yes, 7.48 (±0.47) %ID/g for NSG and 4.32 (±0.40) %ID/g for hu-PBL-SCID) at 168 hours pi 3.05 (±0.79) %ID/g for hu-PBL-SCID IgG control at 168 hours pi	(25)
DET .	892r-nivolumab	Humanized anti- human	Affinity for cynomolgus monkey	Healthy non-human primates	1	54.5 (±11.0) MBq (237 µg)	Imaging at 24 hours, 96 hours, 144 hours and 192 hours	1	Yes, spleen at 122 hours SUV=17.63 Blocking 1 mg/kg at 192 hours SUV=2.5, 3 mg/kg SUV=2.62	(26)
Ξc	⁶⁴ Cu- pembrolizumab	Humanized anti- human	°Z	Humanized NSG mice	293T (human embryonic kidney cell line) expressing hPD-L1 A375 (human melanoma)	7.4 (±0.4) MBq (20 to 25µg)	Dynamic PET scans on 1, 2, and shour pi during 3min, at 18 and 24 hours pi during 5 min, at 24 hours pi during 10 min and at and 4 hours pi biodistribution at Ex vivo biodistribution at 1, 12, 24, and 48 hours pi	14.8 (±1.2) %ID/g for 293T turmors at &Bhours pi 0.44 (±0.01) %ID/g for A375 turmors at 48 hours pi	Yes, spleen (17.5%±1.6 %ID/g) at 48 hours pi	(27)
Anti-PDL1	+ anti-PD1 antibodies									
PET .	⁶⁴ Cu-PD-1 and ⁶⁴ Cu-PD-L1 antibody	Murine anti- mouse	°,	C57BL/6N mice PD-1-deficient mice PD-L1-deficient mice Immune competent	B16F10 (mouse melanoma)	1.13 (±0.31) MBq (1.5 μg) ^{ex} Cu-PD-1 and 6.38 (±2.035) MBq (20 μg) ^{ex} Cu-PD-L1	Dynamic PET scan during 45-55 and 15-20min at 24 hours pi for ⁶⁴ Cu- PD-1 and ⁶⁴ Cu-PD-L1 respectively Ex vivo biodistribution at 48 hours pi	±14 %IA/cm ³ in B16F10 for ^{ref} cu-anti-PD-1 and %Cu-anti-PD-1 and %Cu-anti-PD-11 ±12 %IA/cm ³ in B16F10 turnor at 24 hours pi ex two for ^{%I} Cu-anti-PD-L1	Yes, spleen (±20 %/A/cm ³) and lymph nodes (20%30%/A/cm ³) for ⁶⁴ Cu-10-1, spleen (15 %IA/cm ³), lymph nodes (7,5%-15%IA/cm ³) and BAT (±12 %IA/cm ³) for ⁶⁴ Cu-PD-L1 Detection of PD-1 +TILs after immunoradiothera-py the atternt visualized	(28)
WT; wild-type; ipopolysaccha tomography; pi	AIF, aluminum fluoride; BAT, b aride; NOTA, 1,4,7-triazacyclor ii, post-injection; SPECT, single	rrown adipose tissue; DC nonane-N,N',N"-triacetic 3 photon emission CT; TI	DTA, 1,4,7,10-tetraazad acid; NSCLC, non-sn "Ls, tumor-infiltrating ly	cyclododecane- N, N', N", N"-tetr. nall cell lung cancer; NSG, NOD ymphocytes.	aacetic acid ; DTPA, dieth SCID gamma; PBMC, pe	iylenetriaminepentaacetic acid; EC	3FR, epidermal growth factor recep PD-1, programmed cell death protei	tor; %ID/g, percentage of injected d n 1; PD-L1, programmed death-ligar	se per gram; IFN-y, interferon-gamma; KO, knock-out; LI d 1; PDX, patient-derived xenograft; PET, positron emissi	s, no

.

antibody (mAb), not cross-reactive with murine PD-1, we aimed to study the biodistribution of zirconium-89 (⁸⁹Zr) radiolabeled pembrolizumab in melanoma-bearing humanized NOG mice (huNOG) engrafted with HSCs using positron-emission tomography (PET) imaging. To enable consecutive clinical translation of this approach, we developed and validated a good manufacturing practices (GMP) compliant production process for ⁸⁹Zr-pembrolizumab. Finally, we put our data in perspective by summarizing results from current in vivo preclinical studies with PD-1 and PD-L1 targeting radiolabeled molecules.

METHODS

Cell lines

The human melanoma cell line A375M was purchased from the American Type Culture Collection. Cell lines were confirmed to be negative for microbial contamination and were authenticated on August 6, 2018, by Base-Clear using short tandem repeat profiling. A375M cells were routinely cultured in Roswell Park Memorial Institute 1640 medium (Invitrogen) containing 10% fetal calf serum (Bodinco BV), under humidified conditions at 37°C with 5% CO₉. Cells were passaged 1:10, twice a week. For in vivo experiments, cells in the exponential growth phase were used.

Development of ⁸⁹Zr-pembrolizumab and ⁸⁹Zr-IgG,

First, the buffer of pembrolizumab (25 mg/mL, Merck) was exchanged for NaCl 0.9% (Braun) using a Vivaspin-2 concentrator (30 kDa) with a polyethersulfon filter (Sartorius). Next, pembrolizumab was conjugated with the tetrafluorphenol-N-succinyldesferal-Fe(III) ester (TFP-N-sucDf; ABX) as described earlier, in a 1:2 TFP-NsucDf:mAb ratio.³⁰ Conjugated product was purified from unbound chelator using Vivaspin-2 concentrators and stored at -80 °C. On the day of tracer injection, N-sucDfpembrolizumab was radiolabeled with ⁸⁹Zr, delivered as ⁸⁹Zr-oxalate dissolved in oxalic acid (PerkinElmer), as described previously.³⁰ For in vivo studies, pembrolizumab was radiolabeled at a specific activity of 250 MBq/ mg. IgG, control molecule (Sigma-Aldrich) was conjugated with TFP-N-sucDf at a 1:3 molar ratio, followed by radiolabeling with ⁸⁹Zr at similar specific activity of 250 MBq/mg.

Quality control of ⁸⁹Zr-pembrolizumab

Size exclusion high-performance liquid chromatography (SE-HPLC) was used to determine the final number of TFP-N-sucDf ligands per antibody (chelation ratio). SE-HPLC analysis was also performed to assess potential aggregation and fragmentation for both N-sucDf-pembrolizumab and ⁸⁹Zr-pembrolizumab. An HPLC system (Waters) equipped with an isocratic pump (Waters), a dual wavelength absorbance detector (Waters), in-line radioactivity detector (Berthold) and a TSK-GEL G3000SWXL column (Tosoh Biosciences) was used with phosphate buffered

saline (PBS, sodium chloride 140.0 mmol/L, sodium hydrogen phosphate 0.9 mmol/L, sodium dihydrogen phosphate 1.3 mmol/L; pH 7.4) as mobile phase (flow 0.7 mL/min). Radiochemical purity of ⁸⁹Zr-pembrolizumab was measured by trichloroacetic acid precipitation assay.³¹ Immunoreactivity of ⁸⁹Zr-pembrolizumab was analyzed by a competition binding assay with unlabeled pembrolizumab. Nunc-immuno break apart 96-wells plates (Thermo Scientific) were coated overnight at 4°C with 100 µL of 1 µg/mL PD-1 extracellular domain (R&D Systems) in PBS, set to pH 9.6 with Na_oCO_o 2M. Plates were washed with 0.1% Tween 80 in PBS and blocked for 1 hour at room temperature (RT) with 150 µL 1% human serum albumin (Albuman, Sanquin) in PBS. Multiple 1:1 mixtures of ⁸⁹Zr-pembrolizumab with unlabeled pembrolizumab were prepared, using a fixed concentration of ⁸⁹Zr-pembrolizumab (7000 ng/mL) and varying concentrations of unlabeled pembrolizumab (from 3.75 ng/mL to 12.5×10^6 ng/mL). Of each mixture, 100 µL was added to the 96-wells plate and incubated for 2 hours at RT. After washing twice with washing buffer, radioactivity in each well was counted using a gamma counter (Wizard² 2480– 0019, SW 2.1, PerkinElmer). Counts were plotted against the concentration of competing unlabeled pembrolizumab. The half maximal inhibitory concentration (IC_{zo}) was calculated using GraphPad Prism 7 (GraphPad software). Immunoreactivity was expressed as the IC₅₀ value divided by the ⁸⁹Zr-pembrolizumab concentration to calculate the immune reactive fraction (IRF).

Animal studies

All animal studies were approved by the Institutional Animal Care and Use Committee of the University of Groningen. Studies were performed in humanized NOG mice (NOD.Cg-Prkdc^{scid} Il2rg^{tm1Sug}/JicTac, Taconic) and non-humanized NOG mice (Taconic) were used for control experiments. HuNOG mice are sublethally irradiated 3 weeks after birth and subsequently reconstituted with human CD34⁺ hematopoietic stem cells derived from fetal cord blood to express a functional human immune system including B-cells, T-cells, NK-cells, dendritic cells and monocytes. HuNOG and NOG mice were subcutaneously xenografted with 5×10⁶ A375M human melanoma cells in 300 µL of a 1:1 mixture of PBS and Matrigel (BD Biosciences) on the right flank. Tumor growth was assessed by caliper measurements. When tumor volumes reached 100 to 200 mm³ (after 2 weeks), 2.5 MBq ⁸⁹Zr-pembrolizumab (10µg) was administered via retro-orbital injection. Mice were anesthetized using isoflurane/medical air inhalation (5% induction, 2.5% maintenance).

The first group of huNOG mice received 10µg ⁸⁹Zr-pembrolizumab (n=5). In addition, a second group of huNOG mice xenografted with the same tumor model received a co-injection of 10µg 89Zr-pembrolizumab and $90\,\mu\text{g}$ unlabeled pembrolizumab (n=4). To a third group of huNOG mice, 2.5 MBq ⁸⁹Zr-IgG₄ control (10µg) was administered (n=4). Control NOG mice received 10µg ⁸⁹Zr-pembrolizumab (n=4).

PET imaging and ex vivo biodistribution

On day 7 post tracer injection (pi), PET scanning was performed. We selected this day based on optimal tumorto-blood ratio and technical aspects, including feasible tracer specific activity and animal welfare. Mice were placed in a Focus 220 rodent scanner (CTI Siemens) on heating matrasses. Acquisition time was 60 min. A transmission scan of 515s was performed using a ⁵⁷Co point source to correct for tissue attenuation. After scanning, mice were sacrificed for ex vivo biodistribution. Bone marrow was collected from the femur bone by centrifugalbased separation. All other organs were dissected and counted in a gamma-counter (Wizard² 2480-0019, SW 2.1, PerkinElmer). Tracer uptake in each organ was expressed as percentage of the injected dose per gram tissue weight, calculated by the following formula: %ID/g = (activity in tissue (MBq)/total injected activity (MBq))/tissue weight (g)×100. To compare ex vivo and in vivo uptake, ex vivo uptake was also calculated as mean radioactivity per gram tissue, adjusted for total body weight $(SUV_{mean ex})$ $_{vino}$), calculated with the following formula: SUV_{mean ex vivo} = (activity in tissue (MBq)/total injected activity (MBq))×mouse weight (g). Calculations are corrected for decay and background.

PET data was reconstructed and in vivo quantification was performed using PMOD software (V.4.0, PMOD technologies LCC). Three-dimensional regions of interest were drawn around the tumor. For other organs and tissues, a size-fixed sphere was drawn in representative tissue parts. PET data was presented as mean standardized uptake value (SUV_{mean in vivo}), calculated by the following formula: SUV_{mean} (g/mL) = (activity concentration (Bq/mL)/applied dose (Bq))×weight (kg)×1000.

Autoradiography

Tumor and spleen from ex vivo biodistribution studies were formalin-fixed and paraffin embedded (FFPE). FFPE tissue blocks where cut into slices of $4\,\mu$ M. These slices were exposed to a phosphor imaging screen (PerkinElmer) for 72 hours and then scanned using a Cyclone phosphor imager (PerkinElmer).

Immunohistochemistry

Subsequent slices of the same tumor, spleen and mesenteric lymph node tissue were stained for H&E, CD3, CD8 and PD-1. FFPE tumor, spleen and lymph node tissue were cut into 4 µm slices using a microtome (Microm Hm 355 s, Thermo Scientific) and mounted on glass slides. Tissue sections were deparaffinized and rehydrated using xylene and ethanol. Heat-induced antigen retrieval was performed in citrate buffer (pH=6) at 100°C for 15min. Endogenous peroxidase was blocked by 30min incubation with 0.3% H_2O_2 in PBS. For CD3 staining, slides were incubated with rabbit anti-human CD3-antibody (Spring bioscience; clone SP162) in a 1:100 dilution in PBS/1% bovine serum albumin (BSA) at RT for 15min. For CD8 staining, slides were incubated with rabbit anti-human CD8-antibody (Abcam; clone SP16) in a 1:50 dilution in PBS/1% BSA at 4°C overnight. For PD-1 staining, slides were incubated with rabbit anti-human PD-1-antibody (Abcam, clone EPR4877(2)) in a 1:500 dilution in PBS/1% BSA at RT for 30 min. Human tonsil or lymph nodes tissues sections served ad positive control and were incubated with either CD3, CD8 or PD-1 antibody. As a negative control human tonsil or lymph nodes sections were incubated with rabbit IgG monoclonal antibody (Abcam, clone EPR25A) or PBS/1% BSA.

For CD3, CD8 and PD-1 staining, incubation with secondary antibody (anti-rabbit EnVision⁺, Dako) was performed for 30 min, followed by application of diaminobenzidine chromogen for 10 min. Hematoxylin counterstaining was applied and tissue sections were dehydrated using ethanol and imbedded using mounting medium (Eukitt). H&E staining served to analyze tissue viability and morphology. Digital scans were acquired by a Nanozoomer 2.0-HT multi slide scanner (Hamamatsu).

⁸⁹Zr-pembrolizumab manufacturing according to GMP

To enable clinical application, GMP-compliant ⁸⁹Zr-pembrolizumab was developed. First, N-sucDf-pembrolizumab intermediate product was produced on a larger scale (60 mg batch, divided in 2.5 mg aliquots) and subsequently radiolabeled with ⁸⁹Zr, followed by purification, dilution and sterile filtration (online supplemental figure S1). Release specifications were defined, as shown in online supplemental table S1. All analytical methods for quality control (QC) were validated. According to protocol validation of both N-sucDf-pembrolizumab and ⁸⁹Zr-pembrolizumab, manufacturing consisted of three independent validation runs, including complete release QC. Stability of N-sucDf-pembrolizumab stored at -80 °C was studied up to 6 months and stability of ⁸⁹Zr-pembrolizumab was determined up to 168 hours at 2°C to 8°C stored in a sterile, type 1 glass injection vial. In addition, in use stability was demonstrated at RT in a polypropylene syringe for up to 4 hours (online supplemental table S2).

Statistical analysis

Data are presented as median±IQR. A Mann-Whitney U test, followed by a Bonferroni correction was performed to compare groups (GraphPad, Prism 7). P values ≤ 0.05 were considered significant. If not indicated otherwise, results were not statistically significant.

RESULTS

⁸⁹Zr-pembrolizumab development for in vivo studies

We optimized the conjugation processes of pembrolizumab with the TFP-N-sucDf chelator and its subsequent radiolabeling with ⁸⁹Zr. For in vivo studies, N-sucDfpembrolizumab was produced with >60% yield and average 1.7 chelators per antibody (online supplemental figure S2, table S1). N-sucDf-pembrolizumab was subsequently radiolabeled with ⁸⁹Zr at a specific activity of 250 MBq/ mg, with radiochemical purity of >95% after purification. Both N-sucDf-pembrolizumab and ⁸⁹Zr-pembrolizumab

Figure 1 In vivo PET imaging and ex vivo biodistribution of ⁸⁹Zr-pembrolizumab in immunocompetent humanized NOG mice. Mice were xenografted with A375M tumor cells and received tracer injection at day 0. For blocking studies huNOG mice received a 10-fold excess of unlabeled pembrolizumab (huNOG excess). As a control for non-specific uptake huNOG mice were injected with ⁸⁹Zr-IgG₄. PET imaging performed on day 7 post injection (pi). (A) In vivo PET examples (maximum intensity projections) at day 7 pi showing uptake in tumor (T), axillary lymph nodes (LN), liver (L) and spleen (S). (B) In vivo uptake of ⁸⁹Zr-pembrolizumab in spleen, lymph nodes (axillary), liver and tumor, at day 7 pi. Uptake is expressed as SUV_{mean}. (C) Ex vivo biodistribution of ⁸⁹Zr-pembrolizumab in humanized NOG mice. Uptake is expressed as mean radioactivity per gram tissue, adjusted for total body weight (SUV_{mean ex vivo}). Data expressed as median±IQR *p≤0.05. BAT, brown adipose tissue; huNOG, humanized NOG mice; MLN, mesenteric lymph nodes; PET, positron emission tomography.

were stable, as shown in online supplemental table S1, S2 and figure S2. Immunoreactivity was not impaired by conjugation or radiolabeling.

⁸⁹Zr-pembrolizumab imaging and biodistribution in humanized mice

PET imaging revealed ⁸⁹Zr-pembrolizumab uptake in tumor, but also in healthy tissues, including liver, spleen and lymph nodes, of A375M tumor-bearing huNOG mice (figure 1A,B). Consistent with these results, ex vivo biodistribution at day 7 pi showed highest ⁸⁹Zr-pembrolizumab uptake in spleen (SUV_{mean} 30.5, IQR 15.8 to 67.7), mesenteric lymph nodes (SUV_{mean} 20.4, IQR 8.0 to 25.2), bone marrow (SUV_{mean} 14.5, IQR 6.1 to 32.8), thymus (SUV_{mean} 1.3, IQR 1.1 to 2.1), liver (SUV_{mean}, IQR 6.0, IQR 3.4 to 9.9) and tumor (SUV_{mean} 5.1, IQR 3.3 to 8.9) (figure 1C, online supplemental table S3).

Tumor uptake of ⁸⁹Zr-pembrolizumab was variable and slightly higher than tumor uptake observed for ⁸⁹Zr-IgG₄ control, however not significant due to small groups of mice (SUV_{mean} 5.1, IQR 3.3 to 8.9 vs SUV_{mean} 3.5, IQR 2.7 to 4.4) (figure 1C). This may be explained by low PD-1 expression found in all tumors by immunohistochemical (IHC) analysis (figure 2). ⁸⁹Zr-pembrolizumab tumorto-blood ratio also did not differ from ⁸⁹Zr-IgG₄ control (figure 1D).

⁸⁹Zr-pembrolizumab in huNOG mice showed higher uptake in lymphoid tissues compared with ⁸⁹Zr-IgG₄ control: spleen (SUV_{mean} 13.9, IQR 7.1 to 21.4, NS, p=0.254), mesenteric lymph nodes (SUV_{mean} 2.3, IQR 1.4 to 4.4, NS, p=0.114), salivary gland (SUV_{mean} 2.1, IQR 1.2 to 2.9, NS, p=0.635), bone marrow (SUV_{mean} 8.8, IQR 7.6 to 10.0, NS, p=1.714) and thymus (SUV_{mean} 0.5, IQR 0.4 to 1.1, p=0.1714), indicating that ⁸⁹Zr-pembrolizumab uptake in these tissues is, at least partly, PD-1-mediated. ⁸⁹Zr-pembrolizumab tissue-to-blood (T:B) and tissue-tomuscle (T:M) ratios in lymphoid organs confirmed high uptake in these tissues (figure 1D,E). Additionally, relatively high ⁸⁹Zr-IgG₄ uptake was found in spleen, bone marrow and liver compared with other organs, suggesting ⁸⁹Zr-pembrolizumab uptake in these tissues is also due to Fcy receptor (FcyR)-binding of the antibody's Fc-tail. High ⁸⁹Zr-IgG₄ uptake was less evident in lymph nodes and thymus.

Figure 2 IHC analysis of spleen, mesenteric lymph node and tumor tissue humanized NOG mice. Formalin-fixed and paraffin embedded tissue blocks where cut into slices of 4 μ M and stained for PD-1, CD3 and CD8 (40x). H&E staining served to analyze tissue viability and morphology (40x). Scalebar: 50 μ m. IHC, immunohistochemical; PD-1, programmed cell death protein-1.

⁸⁹Zr-pembrolizumab spleen uptake in huNOG mice was blocked by the addition of a 10-fold excess unlabeled pembrolizumab (SUV_{mean} 30.5, IQR 15.8 to 67.7 versus SUV_{mean} 5.1, IQR 4.3 to 7.0, p=0.032) (figure 1B,C). Uptake in other lymphoid organs and liver was also reduced by addition of unlabeled mAb dose, whereas uptake in non-lymphoid tissues was unaffected (online supplemental table S3). Tracer activity in blood pool was increased by addition of unlabeled mAb (SUV_{mean} 0.1, IQR 0.0 to 1.8 to SUV_{mean} 2.2, IQR 1.4 to 7.4), but uptake in tumor did not change.

Autoradiography confirmed PET imaging results on a macroscopic level, showing high uptake in spleens of huNOG mice compared with spleens of mice that received an additional unlabeled pembrolizumab dose (figure 3). Furthermore, comparable tumor uptake was found for different dose groups. IHC analysis on spleen and lymph node tissue of huNOG mice revealed that PD-1, CD3 and CD8 positive cells were present. CD3 and CD8 cells were also present in tumor tissue of huNOG mice (figure 2), however, PD-1 staining of these tumors was negative.

 89 Zr-pembrolizumab biodistribution in NOG control mice clearly showed a different pattern than in huNOG mice, with high uptake in liver (SUV_{mean} 16.9, IQR 5.1 to 26.2) and spleen (SUV_{mean} 49.6, IQR 16.6 to 135.6),

whereas ⁸⁹Zr-pembrolizumab tumor uptake in NOG mice was similar to huNOG mice (SUV_{mean} 9.3, IQR 4.5 to 15.7 vs SUV_{mean} 5.1, IQR 3.3 to 8.9) (online supplemental figure S3). High ⁸⁹Zr-pembrolizumab spleen uptake in this model may be unexpected, since limited T-cells are present in NOG mice (online supplemental figure

Figure 3 Autoradiography of spleen and tumor tissue humanized NOG mice (huNOG). Formalin-fixed and paraffin embedded tissue blocks where cut into slices of 4 μ M. These slices were exposed to a phosphor imaging screen for 72 hours and were then scanned using a Cyclone phosphor imager.

S3). However, high spleen uptake in severely immunocompromised mice has been described previously and is potentially Fc γ receptor-mediated.²³ ²⁴ ³² Moreover, spleen weights in NOG mice were lower than in huNOG mice (NOG: 0.017 g±0.015 g; huNOG: 0.037 g±0.016 g, p=0.036), which resulted in higher tracer uptake expressed as %ID per gram spleen tissue for NOG mice. A low spleen weight may result from high radiosensitivity of NOG splenocytes, which can lead to toxicity.³³

Critical steps in ⁸⁹Zr-pembrolizumab manufacturing

The production processes for N-sucDf-pembrolizumab intermediate product and ⁸⁹Zr-pembrolizumab for in vivo studies were modified to comply with GMP requirements. In the conjugation reaction, pH is increased from 4.5 to 8.5, performed in small titration steps, as described earlier by Verel et al.³⁰ During this pH transition, precipitation occurred at 6.5 to 7.0, which was re-dissolved at pH > 7.5. No precipitation was observed when pH was changed abruptly, for example, by buffer exchange, to pH 8.5 during conjugation and to pH 4.5 for removal of Fe(III). This indicates potential instability of pembrolizumab at pH 6.5 to 7.0. Formation of aggregates may be explained by the fact that pembrolizumab is an IgG₄ type mAb, which forms non-classical disulfide bonds. In contrast, IgG, type antibodies can only form classical disulfide bonds. There are many other determinants of antibody stability besides disulfide bond formation, however, this phenomenon was not seen previously with the radiolabeling of IgG, type antibodies.^{31 33 34}

Immunoreactivity was not affected when pembrolizumab showed precipitation during pH transition, demonstrated by comparable IRF for precipitated N-sucDfpembrolizumab and for non-precipitated N-sucDfpembrolizumab (online supplemental figure S4). However, it is unknown whether the pembrolizumab structure is modified by the formation of precipitates. Therefore, the method for pH transition by buffer exchange was incorporated in the conjugation protocol for pembrolizumab. Production of clinical grade ⁸⁹Zr-pembrolizumab was performed as previously described by Verel *et al.*³⁰

⁸⁹Zr-pembrolizumab GMP validation

Three consecutive batches of conjugated and radiolabeled pembrolizumab were produced at clinical scale and complied with all release specifications (online supplemental tables S1 and S2), indicating that our process for manufacturing clinical grade ⁸⁹Zr-pembrolizumab is consistent and robust. ⁸⁹Zr-pembrolizumab was obtained with a specific activity of 37 MBq/mg and mean IRF of 1.35 ± 0.6 (n=3). Stability studies revealed that N-sucDf-pembrolizumab remained compliant to release specifications up to 6 months storage at -80° C, therefore N-sucDf-pembrolizumab shelf-life was set at 6 months. Stability studies are ongoing and shelf-life may be extended if future time points remain within specifications. Data obtained during process development and validation were used to compile the investigational medicinal product dossier (IMPD), which includes all information regarding quality control, production and validation of ⁸⁹Zr-pembrolizumab. Based on this IMPD, ⁸⁹Zr-pembrolizumab has been approved by competent authorities for use in clinical studies.

DISCUSSION

This study reveals ⁸⁹Zr-pembrolizumab whole-body distribution in tumor-bearing huNOG mice established with a broad set of developed immune cells. Tumor uptake of ⁸⁹Zr-pembrolizumab was markedly lower than uptake in lymphoid tissues such as spleen, lymph nodes and bone marrow, but higher than uptake in other organs. Importantly, high uptake in lymphoid tissues could be reduced with a 10-fold excess of unlabeled pembrolizumab. This contrasts with ⁸⁹Zr-pembrolizumab tumor uptake, which was not reduced by the addition of unlabeled pembrolizumab.

Our study nicely shows the in vivo behavior of ⁸⁹Zr-pembrolizumab, which, apart from IgG pharmacokinetics determined by its molecular weight and Fc tail, is predominantly driven by its affinity for PD-1 (Kd:~30 pM). The PD-1 cell surface receptor is primarily expressed on activated T-cells and pro B-lymphocytes, which are abundantly present in our huNOG mouse model. Lymphocytes are highly concentrated in organs that are key players of the immune system: lymph nodes, spleen, thymus, bone marrow as well as tonsils, adenoid and Peyer's patches. From our PET imaging and ex vivo biodistribution data, we learned that ⁸⁹Zr-pembrolizumab distributed mainly to lymphoid organs, where PD-1 expressing immune cells are present.

⁸⁹Zr-pembrolizumab showed relatively low and variable tumor uptake, however, this uptake could be visualized with PET imaging 7 days pi and was higher than in nonlymphoid tissues. We hypothesized there may be PD-1mediated ⁸⁹Zr-pembrolizumab tumor uptake, but we also found tumor uptake for ⁸⁹Zr-IgG₄, suggesting part of the ⁸⁹Zr-pembrolizumab tumor uptake is FcyR-mediated. In our mouse model, few PD-1 positive immune cells may have traveled to the tumor, thereby potentially limiting ⁸⁹Zr-pembrolizumab tumor uptake. Interestingly, the addition of unlabeled pembrolizumab did not influence tumor uptake. This is likely caused by substantial increase of ⁸⁹Zr-pembrolizumab in blood pool as a direct consequence of adding excess unlabeled pembrolizumab, warranting a continuous pembrolizumab supply to the tumor.

Ex vivo immunohistochemical analysis revealed CD3 and CD8 positive lymphocytes were present in tumor, but limited PD-1-expression was found. Immune checkpoint protein expression status in tumor-infiltrating lymphocytes is highly dynamic.^{35 36} This so-called 'immune phenotype' depends on several factors, including tumor type, location and mutational burden. Our results indicate that, whereas PD-1 expression may demonstrate large

variation, ⁸⁹Zr-pembrolizumab PET imaging is able to capture PD-1 dynamics in both tumor and healthy tissues.

Compared with earlier preclinical studies with radiolabeled pembrolizumab in the hNSG model, we found higher ⁸⁹Zr-pembrolizumab uptake in spleen and other lymphoid tissues.^{23 24} This likely reflects the presence of multiple hematopoietic cell lineages, including B-cells, T-cells, NK-cells, dendritic cells and monocytes, and thus higher PD-1 expression, in our huNOG model compared with the hNSG model. Molecular imaging studies with radiolabeled antibodies generally show distribution to the spleen. It also known that Fc/FcyR-mediated immunobiology of the experimental mouse model plays a key role in the in vivo biodistribution and tumor targeting.³ In our mouse model, we also observed ⁸⁹Zr-IgG, uptake in lymphoid tissues, indicating ⁸⁹Zr-pembrolizumab uptake in these organs may have an FcyR-mediated component. For most radiolabeled antibodies without an immune target, spleen uptake in patients is ~5 %ID/kg.³⁷ This supports the idea that, independent of their target, antibodies often show distribution to the spleen. However, spleen uptake may be higher if PD-1 or PD-L1 is present.

Pembrolizumab has an $IgG_4\kappa$ backbone with a stabilizing SER228PRO sequence alteration in the Fc-region to prevent the formation of half molecules. The IgG_4 backbone of pembrolizumab may slightly differ from the IgG_4 control molecule that we used for our experiments, however, $Fc\gamma R$ -binding affinity and kinetics of pembrolizumab appears to be very similar to IgG_4 .³⁸ We, therefore, consider the used IgG_4 control molecule to provide a useful indication of the extent of $Fc\gamma R$ -mediated uptake. In this respect, $Fc\gamma R$ -mediated uptake may be present in the spleen but potentially also in liver and tumor, since these tissues demonstrate relatively high uptake of ⁸⁹Zr-IgG₄.

PD-1 is predominantly expressed on activated T-cells while its ligand PD-L1 is expressed by a broader range of immune cells as well as tumor cells. It is therefore to be expected that biodistribution of antibody tracers targeting PD-L1 may deviate from the biodistribution results that we described here for ⁸⁹Zr-pembrolizumab. In table 1, we presented an overview of preclinical imaging and biodistribution studies using anti-PD-1 and anti-PD-L1 tracers. Data turned out to be highly variable, mostly focused on tumor and not on the immune system, and therefore not just comparable. From our results, we increasingly realize that it is extremely important for interpretation of these type of data to know the characteristics of the antibody (origin, cross-reactivity, Fc-backbone, target, targetaffinity and dose), the animal model (mouse strain, age, immune status and tumor cell line) and time points, variables we detailed in the table.

As for preclinical studies, data on the distribution of PD-1 and PD-L1 targeting antibodies to lymphoid organs in patients is still limited. A clinical imaging study in 13 patients demonstrated modest ⁸⁹Zr-nivolumab spleen uptake of SUV_{mean} 5.8±0.7, whereas uptake of this radiolabeled antibody targeting PD-1 in other lymphoid tissues

was not addressed.³⁹ ⁸⁹Zr-atezolizumab (anti-PD-L1 antibody) imaging in 22 patients revealed spleen uptake with an SUV_{mean} of 15. ⁸⁹Zr-atezolizumab also distributed to other lymphoid tissues and sites of inflammation, whereas uptake in non-lymphoid organs was low. The high spleen uptake could at least partly be explained by presence of PD-L1 in endothelial littoral cells of the spleen.⁴⁰ To perceive what can be expected for ⁸⁹Zr-pembrolizumab PET imaging in patients, how results may be interpreted and potentially translated to predicting response, knowledge on which immune cells express PD-1 and where these cells are located in the human body is of utmost importance.

With our study, we validated the use of ⁸⁹Zr-pembrolizumab PET imaging to evaluate PD-1-mediated uptake in tumor and immune tissues in a setting that allowed for comparing tracer uptake and whole tumor tissue analysis. To enable evaluation of ⁸⁹Zr-pembrolizumab biodistribution in humans, we developed clinical grade ⁸⁹Zr-pembrolizumab. Clinical ⁸⁹Zr-pembrolizumab PET imaging in patients with melanoma and NSCLC before treatment with pembrolizumab is currently performed at our center (ClinicalTrials.gov Identifier NCT02760225), and may elucidate if tracer tumor uptake correlates to response and if uptake in healthy PD-1 expressing tissues correlates to toxicity.

CONCLUSION

We demonstrated the in vivo biodistribution of ⁸⁹Zr-pembrolizumab in humanized mice, and found uptake in tumor with the highest uptake in the lymphoid system, reflecting the presence of PD-1. Insight in the in vivo behavior and biodistribution of immune checkpoint targeting monoclonal antibodies might aid in better understanding immune checkpoint inhibition therapy and could potentially help explaining variation in response as well as potential toxicity due to uptake in healthy (immune) tissues.

Twitter Elisabeth G E De Vries @VriesElisabeth

Contributors ELvdV was involved in project design and conceptualization, was involved in tracer development and GMP validation, wrote the IMPD, performed animal studies, performed ex vivo analyses, data analysis and wrote the manuscript; DG was involved in study conceptualization, data analysis, performed ex vivo analyses and wrote the manuscript; LPdJ was involved in tracer development and GMP validation, performed animal studies, performed ex vivo analyses and edited the manuscript; LPdJ was involved in tracer development and GMP validation, performed animal studies, performed ex vivo analyses and edited the manuscript; LPdJ was involved in tracer development and GMP validation, performed animal studies, performed ex vivo analyses and edited the manuscript; EGEdV was involved in GMP validation, wrote the IMPD and edited the manuscript; EGEdV was involved in project design and conceptualization, supervised the study and edited the manuscript; MNLdH was involved in project design and conceptualization, supervised the study and edited the manuscript. All authors read and approved the final manuscript.

Funding The research leading to these results received funding from the Innovative Medicines Initiatives 2 Joint Undertaking under grant agreement No 116106 (TRISTAN). This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation program and EFPIA.

Competing interests EGEdV reports grants from IMI TRISTAN (GA no.116106), during the conduct of the study; consulting and advisory role for NSABP, Daiichi Sankyo, Pfizer, Sanofi, Merck, Synthon Biopharmaceuticals; grants from Amgen, Genentech, Roche, Chugai Pharma, CytomX Therapeutics, Nordic Nanovector, G1 Therapeutics, AstraZeneca, Radius Health, Bayer, all made available to the institution, outside the submitted work.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially. and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Elly L van der Veen http://orcid.org/0000-0001-6224-8114 Marjolijn N Lub-de Hooge http://orcid.org/0000-0002-5390-2791

REFERENCES

- 1 Postow MA, Sidlow R, Hellmann MD. Immune-Related adverse events associated with immune checkpoint blockade. N Engl J Med 2018;378:158-68.
- Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3--potential 2 mechanisms of action. Nat Rev Immunol 2015;15:45-56.
- 3 van der Veen EL, Bensch F, Glaudemans AWJM, et al. Molecular imaging to enlighten cancer immunotherapies and underlying involved processes. Cancer Treat Rev 2018;70:232-44.
- Lamberts LE, Williams SP, Terwisscha van Scheltinga AGT, et al. 4 Antibody positron emission tomography imaging in anticancer drug development. J Clin Oncol 2015;33:1491-504.
- Heskamp S, Hobo W, Molkenboer-Kuenen JDM, et al. Noninvasive 5 imaging of tumor PD-L1 expression using radiolabeled anti-PD-L1 antibodies. Cancer Res 2015;75:2928-36.
- 6 Josefsson A, Nedrow JR, Park S, et al. Imaging, biodistribution, and dosimetry of radionuclide-labeled PD-L1 antibody in an immunocompetent mouse model of breast cancer. Cancer Res 2016:76:472-9
- 7 Chatterjee S, Lesniak WG, Gabrielson M, et al. A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors. Oncotarget 2016;7:10215-27.
- 8 Lesniak WG, Chatterjee S, Gabrielson M, et al. PD-L1 Detection in Tumors Using [⁶⁴)Cu]Atezolizumab with PET. *Bioconjug Chem* 2016:27:2103-10.
- 9 Nedrow JR, Josefsson A, Park S, et al. Imaging of programmed cell death ligand 1: impact of protein concentration on distribution of anti-PD-L1 SPECT agents in an immunocompetent murine model of melanoma. J Nucl Med 2017;58:1560-6.
- 10 Kikuchi M, Clump DA, Srivastava RM, et al. Preclinical immunoPET/ CT imaging using Zr-89-labeled anti-PD-L1 monoclonal antibody for assessing radiation-induced PD-L1 upregulation in head and neck cancer and melanoma. *Oncoimmunology* 2017;6:e1329071. Truillet C, Oh HLJ, Yeo SP, et al. Imaging PD-L1 expression with
- 11 ImmunoPET. Bioconjug Chem 2018;29:96-103.
- 12 Heskamp S, Wierstra PJ, Molkenboer-Kuenen JDM, et al. Pd-L1 microSPECT/CT imaging for longitudinal monitoring of PD-L1 expression in syngeneic and humanized mouse models for cancer. Cancer Immunol Res 2019;7:150-61.
- 13 Chatterjee S, Lesniak WG, Miller MS, et al. Rapid PD-L1 detection in tumors with PET using a highly specific peptide. Biochem Biophys Res Commun 2017:483:258-63.
- Gonzalez Trotter DE, Meng X, McQuade P, et al. In vivo imaging of the programmed death ligand 1 by ¹⁸F positron emission 14 tomography. J Nucl Med 2017;25:1852-7.
- Broos K, Keyaerts M, Lecocq Q, et al. Non-Invasive assessment of murine PD-L1 levels in syngeneic tumor models by nuclear imaging with nanobody tracers. Oncotarget 2017;8:41932-46.
- 16 Maute RL, Gordon SR, Mayer AT, et al. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc Natl Acad Sci U S A 2015;112:E6506-14.

- Donnelly DJ, Smith RA, Morin P, et al. Synthesis and Biologic Evaluation of a Novel ¹⁸F-Labeled Adnectin as a PET Radioligand for 17 Imaging PD-L1 Expression. J Nucl Med 2018;59:529-35.
- 18 Mayer AT, Natarajan A, Gordon SR, et al. Practical immuno-PET radiotracer design considerations for human immune checkpoint imaging. J Nucl Med 2017;58:538-46.
- 19 Natarajan A, Patel CB, Ramakrishnan S, et al. A novel engineered small protein for positron emission tomography imaging of human programmed death ligand-1: validation in mouse models and human cancer tissues. Clin Cancer Res 2019;25:1774-85.
- De Silva RA, Kumar D, Lisok A, et al. Peptide-Based ⁶⁸Ga-PET 20 Radiotracer for Imaging PD-L1 Expression in Cancer. Mol Pharm 2018;15:3946-52.
- 21 Kumar D, Lisok A, Dahmane E, et al. Peptide-Based PET quantifies target engagement of PD-L1 therapeutics. J Clin Invest 2019;129:616-30.
- Natarajan A, Mayer AT, Xu L, et al. Novel radiotracer for immunoPET 22 imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjug Chem 2015;26:2062-9.
- 23 Natarajan A, Mayer AT, Reeves RE, et al. Development of novel immunoPET tracers to image human PD-1 checkpoint expression on tumor-infiltrating lymphocytes in a humanized mouse model. Mol Imaging Biol 2017:19:903-14.
- 24 England CG, Ehlerding EB, Hernandez R, et al. Preclinical pharmacokinetics and biodistribution studies of ⁸⁹Zr-labeled pembrolizumab. *J Nucl Med* 2017;58:162–8. England CG, Jiang D, Ehlerding EB, *et al.* ⁸⁹Zr-labeled nivolumab
- for imaging of T-cell infiltration in a humanized murine model of lung cancer. Eur J Nucl Med Mol Imaging 2018;45:110-20.
- 26 Cole EL, Kim J, Donnelly DJ, et al. Radiosynthesis and preclinical PET evaluation of ⁸⁹Zr-nivolumab (BMS-936558) in healthy non-human primates. *Bioorg Med Chem* 2017;25:5407–14.
- Natarajan A, Patel CB, Habte F, *et al.* Dosimetry Prediction for Clinical Translation of ⁶⁴Cu-Pembrolizumab ImmunoPET Targeting 27 Human PD-1 Expression. Sci Rep 2018;8:633.
- 28 Hettich M, Braun F, Bartholomä MD, et al. High-Resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics 2016;6:1629-40.
- De La Rochere P, Guil-Luna S, Decaudin D, et al. Humanized mice for 29 the study of immuno-oncology. Trends Immunol 2018;39:748-63.
- 30 Verel I, Visser GWM, Boellaard R, et al. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med 2003;44:1271-81.
- Nagengast WB, de Vries EG, Hospers GA, et al. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med 2007;48:1313-9.
- Liu H, May K. Disulfide bond structures of IgG molecules: structural 32 variations, chemical modifications and possible impacts to stability and biological function. MAbs 2012;4:17-23.
- Sharma SK, Chow A, Monette S, et al. Fc-Mediated anomalous 33 biodistribution of therapeutic antibodies in immunodeficient mouse models. Cancer Res 2018;78:1820-32.
- Dijkers ECF, Kosterink JGW, Rademaker AP, et al. Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J Nucl Med 2009;50:974-81.
- Havel JJ, Chowell D, Chan TA. The evolving landscape of 35 biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 2019;19:133-50.
- 36 Simon S, Labarriere N. Pd-1 expression on tumor-specific T cells: friend or foe for immunotherapy? Oncoimmunology 2017;7:e1364828.
- Bensch F, Smeenk MM, van Es SC, et al. Comparative biodistribution 37 analysis across four different ⁸⁹Zr-monoclonal antibody tracers-The first step towards an imaging warehouse. Theranostics 2018;8:4295-304.
- 38 Zhang T, Song X, Xu L, et al. The binding of an anti-PD-1 antibody to FcyRI has a profound impact on its biological functions. Cancer Immunol Immunother 2018;67:1079-90.
- 39 Niemeijer AN, Leung D, Huisman MC, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat Commun 2018;9:4664.
- 40 Bensch F, van der Veen EL, Lub-de Hooge MN, et al. 89Zratezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 2018;24:1852–8.