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Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of small 
mature-looking CD19+ CD23+ CD5+ B-cells that accumulate in the blood, bone mar-
row, and lymphoid organs. To date, no consensus has been reached concerning the 
normal cellular counterpart of CLL B-cells and several B-cell types have been proposed. 
CLL B-cells have remarkable phenotypic and gene expression profile homogeneity. In 
recent years, the molecular and cellular biology of CLL has been enriched by seminal 
insights that are leading to a better understanding of the natural history of the disease. 
Immunophenotypic and molecular approaches (including immunoglobulin heavy-chain 
variable gene mutational status, transcriptional and epigenetic profiling) comparing the 
normal B-cell subset and CLL B-cells provide some new insights into the normal cellular 
counterpart. Functional characteristics (including activation requirements and propensity 
for plasma cell differentiation) of CLL B-cells have now been investigated for 50 years. 
B-cell subsets differ substantially in terms of their functional features. Analysis of shared 
functional characteristics may reveal similarities between normal B-cell subsets and CLL 
B-cells, allowing speculative assignment of a normal cellular counterpart for CLL B-cells. 
In this review, we summarize current data regarding peripheral B-cell differentiation and 
human B-cell subsets and suggest possibilities for a normal cellular counterpart based 
on the functional characteristics of CLL B-cells. However, a definitive normal cellular 
counterpart cannot be attributed on the basis of the available data. We discuss the 
functional characteristics required for a cell to be logically considered to be the normal 
counterpart of CLL B-cells.

Keywords: chronic lymphocytic leukemia B-cell, chronic lymphocytic leukemia, B-cell subsets, B-cell 
differentiation, normal cellular counterpart, transitional B cell, memory B-cell, antibody-secreting plasma cell

iNTRODUCTiON

B-cell chronic lymphocytic leukemia (CLL) is characterized by clonal proliferation and accumula-
tion of mature CD5+ B lymphocytes in bone marrow, peripheral blood, and lymphoid tissues (1, 2). 
Despite the homogeneous morphology, transcriptional profile, and immunophenotype, CLL is clini-
cally a heterogeneous disease where some patients never require therapy and some patients display 
an aggressive course with poor response to therapy. CLL can be divided into two groups based on 
the immunoglobulin heavy-chain variable gene (IGHV) mutational status that have significantly 
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disparate clinical outcomes with mutated IGHV cases have 
significantly superior outcomes compared to unmutated ones. 
Cytogenetic aberrations including 17p deletion, 11q deletion, 
trisomy 12, and 13q deletion have been associated with prognosis 
in CLL (1, 3). The genetic landscape of CLL showed a marked 
inter-patient genetic heterogeneity together with complex clonal 
organization and epigenetic status (2, 3). The vast majority of CLL 
patients exhibit a precursor state, known as monoclonal B-cell 
lymphocytosis (MBL). The current advances on CLL molecular 
pathogenesis, genetic and epigenetic features, clinical presenta-
tion, and treatment are excellently reviewed in Ref. (1–3).

In hematologic malignancies, determination of the cell-of-
origin (the cell in which the first oncogenic event occurred) 
and the normal counterpart of malignant cells (the cell in which 
the final transformation occurred) is important to elucidate the 
pathogenesis, mechanisms, and natural history of the disease 
with implications for treatment. Malignant lymphocytes are 
considered to maintain the key features (e.g., phenotype or dif-
ferentiation program) of the differentiation stage of their normal 
cellular counterpart (4, 5). The normal counterpart of malignant 
B-cells in CLL remains controversial despite investigation by 
various approaches. Studies based on immunophenotypic, IGHV 
mutational status analysis, gene expression profiling [reviewed in 
Ref. (6–8)], microRNAome (9), lncRNA expression (10), and, 
very recently, epigenetics (11–13) have tried to demonstrate 
similarities between CLL B-cells and normal B-cells isolated ex 
vivo. However, few studies have taken functional characteristics 
into account to address the issue of the normal counterpart of 
CLL B-cells (14, 15). B-cell subsets differ substantially in terms of 
their activation requirements, functional capacities, and require-
ments and propensity for plasma cell (PC) differentiation. In vitro 
B-cell activation by T-dependent or T-independent stimuli can 
be used to measure the proliferation and differentiation potential 
of the B-cell subsets (16). Activation and differentiation require-
ments may reveal intrinsic differences or similarities between 
normal B-cell subsets and malignant B-cells. Several studies have 
assessed the activation and differentiation capacity of CLL B-cells 
in vitro and in vivo and have shown that these cells are able to 
differentiate into antibody-secreting plasma cells (ASPCs) with 
specific requirements (14, 17–24). This review discusses the nor-
mal counterpart of CLL B-cells from a functional perspective. The 
first section of this review summarizes the current data regarding 
peripheral B-cell differentiation and human B-cell subsets. The 
following section will try to define the subset(s) of human B-cells 
with similar activation and terminal differentiation requirements 
to those of CLL B-cells.

B-CeLL SUBSeTS AND TeRMiNAL 
DiFFeReNTiATiON

Peripheral B-Cell Development
B-cell subsets have been identified and subdivided on the basis 
of their development, phenotype, location, and functional differ-
ences that reflect their different phenotypes. The vast majority of 
studies characterizing B lymphocyte development and function 
have been performed on mice, but recent data have highlighted 

significant differences between murine and human B-cell devel-
opment [reviewed in Ref. (25, 26)]. In human and in mice, mature 
B-cell development takes place first in the bone marrow from 
hematopoietic stem cells (HSCs) to immature B-cells, then in the 
periphery from transitional to fully mature B-cells. During early 
B-cell differentiation in the bone marrow, functional recombina-
tion of V, D, and J segments in pro- and pre-B-cells allows the cells 
to develop into immature B-cell that express surface IgM. Bone 
marrow immature B-cells start to express surface IgD to complete 
their maturation into fully mature naive B-cells. Surface IgD pro-
motes B-cell survival and attenuates anergic B-cell responses to 
self-antigen (27). B-cells between the stages of immature B-cells 
and fully mature naive B-cells are called transitional B-cells. 
Transitional B-cells emigrate to peripheral lymphoid organs 
[spleen, lymph node, and mucosa-associated lymphoid tissues 
(MALT)] via peripheral blood, where they account for 5–10% of 
all B-cells (28). Once in peripheral lymphoid organ tissue, tran-
sitional B-cells rapidly pass through transitional phases before 
committing to either naive follicular (Fo)B-cells or marginal 
zone (MZ)B-cells (29). The fate of cells to develop into either 
FoB-cells or MZB-cells depends on several signaling pathways, 
including the B-cell receptor (BCR), NOTCH2, B-cell-activating 
factor (BAFF) receptor, and the canonical nuclear factor-kappaB 
pathway, as well as signals involved in the migration and anatomi-
cal retention of MZB-cells (29). Naive B-cells recirculate between 
peripheral blood (where they represent about 65% of all B-cells) 
and lymphoid tissues and, if they encounter antigens (Ags), they 
differentiate into Ag-experienced memory B-cells (MBCs) or 
PCs (Figure 1). Naive B-cells die after several days if they do not 
encounter any Ags.

B-Cell Subsets and Function
Transitional B-cells are thought to be functionally immature and 
have a characteristic phenotype, which includes expression of 
surface membrane IgM and IgD, CD21, CD22, CD5, and high 
expression levels of CD24 and CD38 (29). The transitional stage 
consists of cells at different stages of maturation between the 
immature and naive mature B-cell compartments. They, therefore, 
typically display heterogeneous features; these cells have unmu-
tated IGHV genes and present different capacities to proliferate 
and differentiate into ASPC after in vitro stimulation compared 
to other B-cell subsets (9, 28, 30–32). In human, maturation 
into CD5+ pre-naive B-cells is accompanied by downregulation 
of CD38 and CD24, making them partially responsive to BCR 
stimulation and CD40 ligation (CD40L) (30). Pre-naive B-cells 
downregulate CD5 expression and become naive B-cells, which 
are fully responsive to antigen (30).

Naive follicular B-cells mainly reside in B-cell follicles in the 
white pulp of the spleen and in the cortex of lymph nodes and are 
found in other organized lymphoid tissues such as Peyer’s patches 
and tonsils (29). Naive FoB-cells recirculate between peripheral 
lymphoid tissues until they encounter their specific Ag. These 
B-cells are typically involved in the response to T-dependent 
(TD) Ags via the formation of germinal centers (GCs) leading to 
the production of ASPCs, but also MBCs. However, they are also 
capable of responding to T-independent (TI) Ags (33, 34).
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FigURe 1 | B cell differentiation in germinal center (GC)-dependent and extrafollicular pathways. After antigen encounter, activated marginal zone B cell (MZB) and 
activated follicular B cell (FoB) may follow two pathways: (i) extrafollicular differentiation into plasma cells (PCs) but also memory B-cells (MBCs) formation 
independently of the GC reaction or (ii) GC formation in which the B cells can undergo somatic hypermutation (SHM) and/or class switch recombination (CSR) and 
become a high-affinity MBC or a PC secreting high-affinity antibodies. In mice, B1 cells respond to T cell-independent antigens and generate predominantly 
low-affinity IgM or isotype-switched PCs. The contribution of B1 cells to the MBC compartment is recently identified. Th, T helper cell; FDC, follicular dendritic cell; 
TFH, T follicular helper cell; APC, antigen-presenting cell.
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Marginal zone B-cells are generated as naive B-cells. However, 
they have a pre-activated phenotype and the ability to self-renew, 
resembling those of memory cells (29). In mice, MZB-cells are 
restricted to the MZ of the spleen. In humans, MZB-cells are also 
found in the inner wall of the subcapsular sinus of lymph nodes, 
the epithelium of tonsillar crypts, and the subepithelial area of 
MALT, including the subepithelial dome of intestinal Peyer’s 
patches (29). Splenic MZB-cells in humans play an important role 
in TI immune responses to blood-borne Ags and are responsible 
for systemic immune responses to bacterial polysaccharide Ags 
(29, 35). Humans without a functional spleen are vulnerable to 
infections by encapsulated bacteria due to their inability to form 
protective MZB-cell-derived antibody responses against TI Ags 

(36). MZB-cells also participate in TD immune responses. MZB-
cells capture, process and present Ags, and deliver costimulatory 
signals to T-cells more rapidly and more efficiently than FoB-cells 
both in vitro and in vivo (29). MZB-cells have been ascribed other 
functions, including production of “natural” IgM in the absence 
of an immune response (29, 35). Although they share some 
functional and phenotypic characteristics with their murine 
counterpart, human MZB-cells possess distinct characteristics, 
including the ability to recirculate through lymphoid organs and 
the presence of somatic mutations of IGHV genes (37, 38). These 
differences with murine MZB are the reason why human MZB are 
considered to be MBCs, as a link between human blood CD27+ 
IgM+ IgD+ cells [hereafter called IgM memory B-cells (IgM 
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MBC)] and MZB-cells in the spleen has been proposed on the 
basis of the marked similarly between the two cell types (39–41). 
The existence of an MZ cell lineage in humans remains a subject 
of debate.

In mice, B-cells are mainly subdivided into B2 cells, including 
MZB-cells and FoB-cells, and B1 cells. B1 cells can be further 
subdivided into CD5+ B1a and CD5− B1b subsets. Murine B1 
cells are mostly found in the peritoneal cavity, but a few B1 cells 
also reside in the spleen and lymph nodes (42). In non-human 
primates, a B1-like B-cell population has been identified in 
serosal cavities that exhibit phenotypic and functional similarities 
to murine B1 cells (43). In humans, CD5 is expressed on up to 
60–75% of B  cells of umbilical cord blood. A decrease is seen 
in the peripheral blood of adults where human CD5+ B  cells 
represent about 3% (1–8%) of peripheral blood lymphocytes and 
5–30% of the circulating B cells (44, 45). In addition to transi-
tional T1 B-cells, CD5 is also expressed in a subset of regulatory 
B-cells (Bregs) and in a minor subset of pre-naïve, naïve mature, 
and MBCs (28, 32, 46–48). In humans, the presence of B1 B-cell 
subsets remains controversial. However, Rothstein’s team has 
identified a subset of B-cells in umbilical cord and adult periph-
eral blood that express CD20, CD27, and CD43 as human B1 cells 
(47, 49). The authors found that these cells also express CD5 (75% 
are CD5+), although they represented only a minority (34%) of 
CD20+ CD5+ B-cells in adult peripheral blood. These B1-like 
cells display functional characteristics associated with murine B1 
cells, including efficient T-cell stimulation and efficient antigen 
presentation, tonic intracellular signaling, spontaneous secretion 
of IgM, and expression of unmutated antibody genes. However, 
the identification and role of these cells have been questioned by 
several groups (50, 51). Remarkably, the phenotype and tran-
scriptional profile (49) of the human B1-like cells subset partly 
overlaps with that of circulating human CD27+ IgM+ IgD+ 
B-cells (IgM MBCs). Due to their predominance during fetal 
ontogeny and neonatal life, B1 B-cells are thought to act as a first 
line of defense against invading pathogens that can be neutralized 
by the polyreactive IgM secreted by these cells (43, 52). B1 cells 
respond to TI Ags and rapidly form plasmablasts that proliferate 
in extrafollicular foci in the spleen and can give rise to PCs in the 
spleen, omentum, and lamina propria of the gut (53). In addition 
to generating natural antibodies (Abs), B1 B-cells also actively 
contribute to antigen-induced immune responses (e.g., Ags from 
Francisella spp., Borrelia hermsii, Salmonella typhi, Streptococcus 
pneumoniae, and influenza virus) and can generate TI- and 
GC-independent antigen-specific memory/ASPC, ensuring a 
long-lasting immune response (54–56).

A minor fraction of normal B-cells exerts regulatory 
functions and produces immunosuppressive factors, such as 
interleukin 10 (IL-10), and are called Bregs—found within the 
CD19+ CD24hiCD38hi immature B-cell subpopulation—or 
IL-10-producing B-cells (B10)—found within the CD19+ 
CD24hiCD27+ B-cell subpopulation (48). These Bregs play 
an important role in regulating innate and adaptive immune 
responses during inflammation, autoimmunity, and cancer (48). 
B10 cell development and function appear to be predominantly 
driven by antigen-receptor signals (both innate and adaptive 
immune signals). CD40 activation is the best characterized 

signal known to induce differentiation of CD24hiCD38hi Bregs. 
A CD5+ CD24hiCD27+ B10 progenitor for human B10 cells 
was identified and can differentiate into functional B10 cells 
following costimulation with toll-like receptor (TLR) ligand 
(LPS and CpG) (48). A functional link between B10 and anergic 
B-cells has been established, as both populations arise following 
chronic exposure to antigen and express low levels of surface 
immunoglobulin M (sIgM) (48). A small fraction of B10 can 
differentiate into polyreactive and/or Ag-specific Ab-secreting 
PCs after terminating IL-10 production in vivo and in vitro (57). 
However, the possible regulatory role played by these Abs has yet 
to be investigated.

Memory B-cell Subsets
Memory B-cells mediate the secondary humoral immune 
responses. During these responses, B-cell activation, prolifera-
tion, and differentiation are faster with the secretion of higher 
affinity Abs compared to primary responses (33, 58). These 
qualitative and quantitative differences between primary and 
secondary antibody responses are due to the increased frequency 
and affinity of Ag-specific B-cells and the intrinsic differences 
between memory and naive B-cells. MBCs can survive for several 
months in the absence of antigenic stimulation and provide an 
early antibody response against recurrent infections (59). In 
humans, up to 40% of B-cells in peripheral blood are MBCs and 
can be subdivided into separate pools based on IgM, IgD, and 
CD27 expression. MBCs exist in two main types: (i) immuno-
globulin (Ig)-switched MBCs (CD27−/CD27+ IgD− IgG/A/E+) 
and (ii) unswitched MBCs expressing IgM, which include IgM-
only MBCs (CD27+ IgM+ IgD−) and IgM MBCs (CD27+ IgM+ 
IgD+, IgM MBC), each of which accounts for about 15–20% of 
total B-cells (37, 39, 41). IgM MBC share several functions and 
phenotypic characteristics with human B1-like cells, MZB-cells, 
and mouse B1a cells (49, 60–62); they are thought to be the 
major source of “natural” Abs in the body, can express Igs with 
low-frequency somatic hypermutation (SHM) and produce IgM 
(but also some IgG and IgA, after in vitro differentiation) (60, 61). 
High-throughput Ig VHDJH sequencing of human B-cell subsets 
showed that IgM-only subsets are related to CD27+-switched 
MBCs and are GC-derived MBCs (41). Transcriptional expres-
sion profiling showed that human IgM+ MBCs are more similar 
to IgG+ MBCs than to naive B-cells, but with distinct functional 
capacities (38). Indeed, following secondary challenge with anti-
gen, unswitched MBCs have been shown to preferentially enter 
GCs and therefore play an active role in sustaining memory, while 
switched MBCs preferentially form plasmablasts (38, 63, 64).

With aging, certain viral infections and autoimmune diseases, 
B-cell subsets with distinctive phenotypic and functional features 
were identified. In mice, an age-associated B-cell (ABC) popula-
tion presenting a characteristic transcriptional profile and features 
of Ag-experienced cells was described (65). Phenotypically, these 
CD19+ B-cells are negative for CD21 and CD23, express CD11c 
and intermediate level of CD5 and are IgM+. An ABC-like (repre-
senting between 0.8 and 4% of circulating B-cells) was identified 
in human blood of elderly healthy subjects. These cells express 
low levels of CD23 and high levels of CD27 and CD5 but unlike 
in mice, human ABC-like are isotype switched (65). However, 
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in both mice and humans, they express and are characterized by 
a T-bet driven transcriptional program and appear to arise and 
expand in the context of autoimmune disease, parasite infections, 
and viral infections. Following TLR9 or TLR7 stimulation, murine 
ABCs robustly proliferate, rapidly differentiate into ASPC that 
secret switched Abs (IgG2a/c) and produce regulatory cytokines 
such as IL-10 and interferon (IFN)-γ, however, they respond 
poorly to BCR or CD40 stimulation (65). Given their functional 
attributes, Ag-experienced profile and atypical activation state, 
age-associated B cell were proposed to represent an MBC subset 
generated during response to nucleic acid-containing Ags in the 
presence of inflammatory cytokines (65). It is important to high-
light here that a subset of human T-bet+ CD11c+ CD21− MBC 
called atypical MBCs (or exhausted MBCs) was also described to 
expand in viral (ex. HIV and HCV) and parasitical infections (up 
to 50% of circulating B cells) and to be enriched among IgG1+ 
and IgG3+ B-cells (66, 67). These atypical MBCs present distinct 
functional features with mice ABCs (as they do not proliferate 
or differentiate or produce IL-10 and IFN-γ in response to TLR 
agonists) questioning the possible relationship between these 
subsets (67).

Memory B-cells Can Also Be generated  
by a gC-independent Pathway
Memory B-cell subsets present different frequencies of somatic 
mutation and various replication histories that are considered 
to reflect their generation in primary or secondary GCs. 
Nevertheless, MBCs and memory-like B-cells can be generated 
in responses not necessarily involving GC formation and IGHV 
SHM (e.g., extrafollicullar and TI responses) (Figure 1) (60, 62, 
68, 69). Moreover, in mice, recent data distinctly show that B1 
cells (B1a and B1b) can also generate MBCs during TI immune 
responses (54–56, 62).

While the GC origin of switched MBCs and IgM-only MBCs 
is generally accepted, the origin of IgM+ IgD+ CD27+ MBCs 
remains disputed (37, 41, 70, 71). A GC-independent origin of 
these cells is supported by the presence of IGHV somatic muta-
tions in patients with hyper-IgM syndrome type I (characterized 
by CD40L gene mutations) and in IgM+ IgD+ CD27+ cells from 
cord blood. It has recently been proposed that the majority of 
CD27+ IgM+ IgD+ B-cells are generated by a GC reaction [the 
pros and cons of GC origin of these cells are discussed in Ref. 
(37, 71)]. A very recent study designed to characterize MBC 
development in children of different ages (the study involved 
asplenic children) showed that three types of IgM MBCs can be 
distinguished with different developmental histories: (i) innate 
IgM MBCs, the largest pool in infants, are generated in the 
spleen by a GC-independent mechanism; (ii) remodeled innate 
IgM MBCs that participate in the GC reaction and accumulate 
somatic mutations; and (iii) IgM MBC newly produced by the GC 
reaction (72). The authors concluded that most IgM MBCs have a 
GC-independent origin, but with age they become remodeled in 
the GC. These data are in line with a previous work that identified 
a subset of B-cells in human infants that undergoes repertoire 
diversification via antigen-independent VH gene SHM (73). 
The generation and features of MBCs in humans are elegantly 

reviewed by Seifert and Kuppers et al. (37) and in humans and 
mice by Weisel and Shlomchik (25).

B-Cell Subsets and BCR Reactivity
As B-cells develop and differentiate, they go through different 
stages of random gene rearrangement and SHM, inevitably lead-
ing to the production of B-cells expressing autoreactive BCR. To 
prevent the potential development of autoimmunity, autoreactive 
B-cells are eliminated at early stages of B  cell development in 
the bone marrow (central tolerance) and at later stages in the 
peripheral lymphoid organs (peripheral tolerance). Tolerance 
mechanisms include clonal deletion, receptor editing, or anergy. 
However, about 50% of immature and transitional B-cells present 
an autoreactive BCR and 7% of these B-cells express a polyreac-
tive BCR (74, 75). The percentage of clones with autoreactive 
BCRs decreases to 20%, while clones with polyreactive BCR 
decrease to 4% through maturation into naive B-cells (74, 75). 
The percentage of autoreactive BCR among IgM+ MBCs drops to 
2%, suggesting a selection checkpoint against autoreactivity dur-
ing IgM+ MBC development in humans and that naive B-cells 
expressing autoreactive Abs do not contribute to the IgM+ MBC 
compartment (75, 76). By contrast, BCR auto- and polyreactivity 
is increased in IgG-memory cells to 30 and 23%, respectively 
(76, 77), and this is linked to SHM activity or to a failure of GC 
exclusion of self-reactive B  cells (76). However, in terminally 
differentiated bone marrow IgG-positive PCs, the frequency of 
autoreactive BCR range from 2 to 27% and that of polyreactive 
BCR decreases to 10%, suggesting selection against secreted auto- 
and polyreactive Abs in switched-PC compartment (78). It has 
been suggested that multiple rounds of GC selection leading to 
the formation of bone marrow PCs lead to higher loads of SHM, 
and high specificity may be the end product of iterative affinity 
maturation processes.

Terminal Human B-Cell Differentiation into 
Antibody-Secreting Plasma Cell
Plasmablasts and PCs are terminally differentiated cells of the 
B-cell lineage that secrete high levels of Abs. However, B-cell sub-
sets differ in terms of their location, ability to migrate, response to 
TI- or TD-Ag, and the stimulation requirements and propensity 
for ASPC differentiation (79).

B-cells can respond to TI-Ags that either activates them via BCR 
and innate receptors such as TLR (TI type 1 Ag) or via extensive 
crosslinking of BCR due to the repetitive nature of the Ag (TI type 
2 Ag) (80, 81). TI responses are usually directed against blood-
borne pathogens in the splenic MZ and in mucosal tissues, where 
B-cells proliferate and rapidly differentiate into plasmablasts and 
PCs in extrafollicular areas (40). In the context of TI responses, 
isotype switching and affinity maturation are limited and result 
in the formation of short-lived PCs that predominantly produce 
low-affinity, polyreactive IgM (33, 79).

The production of ASPCs in response to TD-Ags occurs in two 
sequential overlapping responses, with the first response called 
“extrafollicular response” leading to immediate protection, while 
the second response provides persistent protection known as the 
“follicular response” (79). The segregation of B-cells between 
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these two responses is mediated by the G protein-coupled recep-
tors, Epstein–Barr virus induced molecule-2 (also known as 
GPR183) (82) and signaling lipid sphingosine-1-phosphate (83).

In the extrafollicular response, B-cells migrate to the splenic 
bridging channels or junction zones at the border between T zones 
and red pulp or lymph node extramedullary cords, and then rap-
idly proliferate and differentiate into early short-lived (3–5 days) 
plasmablasts that are a major source of germline polyreactive 
IgM Abs (33, 34), although class switch recombinations (CSRs) 
and small SHMs can occur (34, 58, 84–86). Recent data suggest 
an important role for Bcl6+ PD1low pre-GC T follicular helper 
(TFH) in the priming of this response (87, 88). This pathway is 
important for early protection against microbial infections and 
is observed in responses to many pathogens, including Ehrlichia 
muris, Borrelia burgdorferi, and Salmonella typhimurium (84). 
Although long-lived PCs are thought to be generated by GC 
reaction, recent data show that long-lived IgM-secreting PCs can 
be generated in a GC-independent extrafollicular manner (85, 
89, 90). These long-lived IgM-secreting PCs accumulate somatic 
mutations in their IgV locus in an activation-induced cytidine 
deaminase (AID)-induced manner (85).

In the follicular pathway, activated B-cells form the GC, where 
they proliferate and clonally expand under the influence of TFH 
cells and follicular dendritic cells (33, 34). In the GC, B-cells 
continue to rapidly proliferate and they undergo CSR to anti-
body classes other than IgM, acquire SHMs of V regions and are 
selected on the basis of antigen affinity (33). B-cells leave the GC 
as plasmablasts and long-lived PCs that are capable of sustaining 
a high level of high affinity antibody secretion or as memory cells 
(33). It has been proposed that the early phases of GC reactions 
can give rise to IgM+ IgD+ and a few IgM-only or class-switched 
MBCs. However, most MBCs generated during late stages of GC 
reactions are class-switched (37). For example, this pathway is 
observed in responses to influenza (91).

Human ASPCs are heterogeneous (79, 92). This heterogeneity 
is determined by the type of stimuli (Antigen T-independent/T-
dependent antigen, cytokines, and partner cells), the exact ana-
tomical site (lymph nodes, spleen, gut, tonsil, and bone marrow) 
and, most importantly, the B-cell type (naive, classical memory, 
IgM memory, MZ, or B1-like B-cells) (71, 92–95). The propensity 
of a B-cell to differentiate into a PC is also the result of the extent 
to which it has been developmentally pre-programmed to differ-
entiate. An example of the impact of anatomical site is the higher 
frequency of IGHV gene mutation and CSR to IgA in MBCs from 
MALT compared to memory cells in other lymphoid tissues, such 
as lymph nodes, in which IgG is typically predominant (71).

IN VITRO MODeLiNg OF HUMAN 
TeRMiNAL B-CeLL DiFFeReNTiATiON

In vitro studies of human terminal B-cell differentiation have 
contributed to the discovery that B-cell subsets have distinct 
activation requirements and differ in terms of their responsive-
ness to stimulating agents, the intensity of the response and the 
propensity to undergo PC differentiation, SHM, and isotype 
switching (79).

Much of the cellular and molecular findings concerning termi-
nal B-cell differentiation into ASPCs in humans are derived from 
in vitro models. Several aspects of ASPC differentiation can be 
effectively reproduced in vitro. Progress in our knowledge about 
the biology of human B-cell and ASPC differentiation has led to 
the development of new in vitro differentiation models taking into 
account the B-cell type as well as the nature of the antigen and 
the costimulatory signals and cytokines that determine the broad 
features of the resulting PCs (96–98). In humans, the majority 
of these studies are performed by using peripheral blood B-cells 
(16, 31, 38, 59, 99–121) as a source of naive circulating FoB-cells, 
switched and IgM MBCs, transitional B-cells, and mature CD5+ 
B-cells. However, various studies have been performed using 
tonsillar (71, 95, 122–124), splenic B-cells (125–127), or cord 
blood B-cells (as a richer source of transitional B-cells) (31, 111, 
121, 124).

Different B-Cell Types: Different Activation 
and Differentiation Requirements
B-cell subsets present distinct potentials for differentiation 
into ASPCs. Earlier studies highlighted differences in response 
between human B-cell subsets using density fractioning or fluo-
rescent activated cell sorting (FACS). For example, Suzuki and 
Sakane found that normal peripheral blood B-cells sedimenting 
in a high density fraction on a Percoll density gradient consist 
of small resting B-cells, while Percoll-separated low-density 
B-cells correspond to activated large B-cells (128). Stimulation 
of small resting B-cells (showing high density on Percoll) by 
Staphylococcus aureus Cowan I (SAC) (which cross-links the 
BCR) induces vigorous proliferation with no subsequent differ-
entiation into ASPCs, while activated large B-cells (showing low 
density on Percoll) differentiate directly into ASPCs without the 
need for extensive proliferation (128). Subsequent studies using 
FACS-sorted surface lgD+ (naive) and lgD− (memory) B-cells 
activated by SAC revealed that these populations exhibit differ-
ences in their differentiation outcome (129), as naive and MBCs 
differ in terms of their in  vitro responsiveness to stimulation, 
mimicking primary and secondary responses in vivo. It is now 
well known that MBCs respond more rapidly and more vigor-
ously to antigenic stimulation than naive cells (38, 59, 100, 125, 
127, 130).

Naive and MBCs present differences in gene expression that 
could explain their differences in response to stimulation and 
subset-specific cell-intrinsic features play an important role in 
their terminal differentiation (38, 131, 132). Gene expression pro-
files (GEPs) of CD27+ MBCs (IgG+ CD27+ and IgM+ CD27+ 
B-cells) differ from those of naive B-cells and are enriched in 
gene signatures that are associated with enhanced antigen 
responsiveness and plasmablast differentiation (38, 132). MBCs 
present higher expression of cell surface receptors and costimu-
latory molecules including TLRs (TLR7/9/10), CD21, CD27, 
CD80, CD86, CD122, and TACI (105, 114, 132, 133). Moreover, 
MBCs appear to be more metabolically active than naive B-cells 
(62). MBCs compared to naive B-cells, express lower levels of 
transcription factors that are important in maintaining cellular 
quiescence, such as promyelocytic leukemia zinc finger factor and 
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Krüppel-like factors (KLF)4 and KLF9 (131, 132). Furthermore, 
ASPC differentiation from MBCs requires less STAT3 func-
tion than generation of ASPC from naive B-cells (131). Recent 
data show that, following multivalent BCR crosslinking, the 
magnitude of activation of downstream components of the BCR 
signaling pathway (e.g., phosphorylation of S6 ribosomal protein 
and IKBalpha degradation) was greater in MBCs than in naive 
B-cells (127). These phenotypic and molecular characteristic of 
naive and MBCs reflect the functional properties of these B-cell 
populations.

Behavior of Naive and MBCs in the 
Presence of Cpg Oligodeoxynucleotide 
(ODN) and CD40L
Human naive and MBCs can both be induced to become termi-
nally differentiated ASPC in response to CD40L and cytokines 
(called the CD40 system) or to bystander help, but with substan-
tial differences in terms of proliferation, differentiation capacity, 
and isotype switch (16, 99, 101, 102, 122, 125, 126, 134–136). The 
CD40 system induces a few number of naive B-cells to differentiate 
into IgM-secreting PCs (few of which go on to produce IgG and 
IgA) (16, 99, 102–104, 123, 125, 135). Under the same stimulation 
conditions, most CD27+ MBCs predominantly differentiate into 
IgG-secreting ASPCs (38, 59, 99, 102, 104–107, 123, 125, 135).

In humans, naive B-cells are minimally responsive to CpG 
ODNs, which are a TLR9 ligand, but MBCs proliferate and differ-
entiate into ASPCs (16, 108–114). Human naive CD27− B-cells 
express very low levels of TLRs and need to be stimulated via their 
BCR or by IFN-α (116) to express TLR9 and become responsive 
to CpG stimulation (105, 114, 115). Some studies have shown that 
a specific culture system using CpG together with a combination 
of BCR engagement and T-cell help via CD40 signaling can also 
induce plasma-cell differentiation of naive human B-cells that 
predominantly produce IgG, but also some IgM and IgA (115, 
117, 118). However, one group has described human naive B-cell 
activation and differentiation into IgM-secreting PCs by the use 
of TLR9-activating ODN alone, but with only low-level IgM 
secretion (119). In addition to TLR9, human naive and MBCs 
respond to TLR7 agonist by proliferating and differentiating into 
IgM- and IgG-producing cells in the absence of BCR stimulation 
and CD40–CD40L interaction (120).

Transitional B-cells are thought to be functionally immature 
naive B-cells; they coexpress IgM and IgD and have unmutated 
Ig variable regions. CD24bright CD38+ transitional human 
B-cells (isolated from peripheral blood or cord blood) have 
been characterized as the main non-MBC subset responsive to 
TLR9 activation (111, 124). In response to TLR9 stimulation, 
these cells upregulate the expression of AID and BLIMP-1, 
differentiate into ASPCs primarily producing polyreactive 
“natural” and anti-polysaccharide IgM, but also some IgG 
(31, 111, 121, 124, 137, 138). AID expression by human and 
murine transitional B-cells has been shown to be essential for 
central B-cell tolerance and to remove autoreactive clones via 
its recombination-activating gene (RAG)-coupled genotoxic 
activity (137, 138). In response to CpG, human transitional 
B-cells have also been shown to generate somatically mutated 

IgM+ IgD+ CD27+ MBCs (139). These findings are further 
supported by studies indicating that engagement of TLR4 or 
TLR9 in murine transitional 1 B-cells promotes CSR and the 
development of ASPCs (140, 141).

Because of their distinct phenotypes, it has been suggested 
that human CD5+ and CD5− B-cells may have different activa-
tion requirements (142, 143). The earliest studies were unable to 
show different responses to stimuli between CD5+ and CD5− 
B-cells because of the purity of isolated CD5+ B-cells (50–90%) 
(143–145). However, different responses following activation by 
surface Ig ligands and cytokines have been observed by using 
highly purified peripheral blood CD5+ and CD5− B-cells by 
FACS sorting (142). SAC induced the proliferation of both B-cell 
populations, while only CD5− B-cells were sensitive to signals 
delivered by anti-IgM. Following preactivation with SAC, IL-2 
induced CD5− B-cells to secrete IgM, IgG, and IgA, while IgM 
was the predominant Ig isotype secreted by CD5+ B-cells (142). 
It has also been shown that stimulation of human fetal splenic 
CD5+ B-cells by anti-CD40 mAbs and IL-4 in the presence 
or absence of a T-cell clone resulted in the secretion of several 
Ig isotypes, but predominantly IgM (146). Moreover, a small 
subpopulation of peripheral blood CD5+ B-cells (between 0.5 
and 2% of all peripheral blood CD5+ B-cells) appears to be class-
switched to IgG or IgA (32). This finding indicates that isotype 
switching in CD5+ B-cells can occur in vitro and in vivo. Several 
studies in mice have provided evidence that CD5+ B-cells can 
undergo isotype switching (147, 148).

Memory B-cell Subsets Are Not 
Homogeneous in Terms of Their In Vitro 
Differentiation into Antibody-Secreting 
Plasma Cell
Human MBCs can be activated by CpG and cytokines without 
the need for BCR triggering or cognate interaction with T-cells 
(40, 149). In vitro studies have highlighted differences in the dif-
ferentiation propensity between MBC subsets (16, 38, 149).

Bernasconi et al. (59) reported that switched and unswitched 
MBCs responded differently to CpG and bystander T-cell help 
(including CD40L–CD40 interaction). These authors showed 
that, in comparison to switched CD27+ MBCs, IgM+ CD27+ 
MBCs proliferated more efficiently in response to CpG ODN, 
but less efficiently in response to bystander T-cell help (59). They 
also showed that, in response to BCR and CD40L, unswitched 
MBCs (CD27+ IgD+) rapidly produced large amounts of pre-
dominantly IgM, while switched MBCs more rapidly initiated 
IgG and IgA synthesis (101). However, Marasco et  al. recently 
reported contradictory results showing that, in response to CpG, 
switched MBCs proliferated more intensely than IgM MBCs 
and that stimulation with CD40L and anti-Ig did not induce any 
terminal differentiation or Ig secretion in either population (16). 
This study also showed that switched MBCs generated twice as 
many plasmablasts than IgM MBCs and that IgM MBCs only 
provided a minimal contribution to the pool of switched plasma-
blasts (16). However, overall, these studies agreed that IgM and 
switched MBCs show different functional capacities in response 
to CpG stimulation.
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The IgM+ IgD+ CD27+ subset isolated from patients with 
hyper-IgM syndrome type I (characterized by CD40L gene muta-
tions) has been shown to produce low levels of IgM in response 
to CD40L stimulation in the presence of IL-4 or IL-10 (150, 
151). IgM+ IgD+ CD27+ B-cells differentiate into ASPCs—after 
CpG stimulation and secrete IgM and small amounts of IgG (38, 
105, 110, 111); by contrast, naive B-cells do not differentiate 
into ASPCs (16, 111, 114). TLR9 stimulation has been shown 
to selectively expand IgM MBCs and promote differentiation of 
these cells into IgM-secreting PCs (106, 109). However, in the 
presence of IL-21, CD40L had no selective effect on MBCs and 
drove IgM as well as IgG secretion by these cells (109). Another 
study by Seifert et al. showed that IgM+ MBCs differentiated into 
PCs in response to anti-Ig stimulation (considered to be a T-cell-
independent type of stimulation), as they adopted PC morphology 
and downregulated their expression of BTB and CNC homolog 
2 (BACH2). However, following T-cell-independent stimulation 
(anti-Ig + CD40L), IgM+ MBCs show a preferential tendency to 
adopt a pre-GC B-cell phenotype, as indicated by upregulation of 
BCL6 transcripts (38). By contrast, human IgG+ MBCs primar-
ily differentiated into PCs in response to either T-cell-dependent 
or T-cell-independent stimulation guided by rapid PRDM1 
(BLIMP1) induction and downregulation of BACH2 (38). These 
findings may be related to the ASPC differentiation-enhancing 
role of IgG BCR (152, 153). Furthermore, in contrast to human 
IgG+ MBCs and naive B-cells, co-culture of IgM+ MBCs with 
GM-CSF-activated neutrophils induces their differentiation into 
PCs (38).

Altogether, these observations indicate that the sensitivity of 
human B-cells to stimulation may reflect distinctive phenotypic, 
genetic, and functional B-cell subsets. A normal counterpart for 
malignant B-cells could be defined on the basis of shared pheno-
typic and/or genomic features. However, the phenotypic, tran-
scriptomic, and genomic profile of CLL B-cells is different from 
that of any normal B-cell subsets that have been identified and 
studied, preventing the identification of a normal counterpart. 
Identification of the similar functional characteristics shared 
by normal B-cell subsets and CLL B-cells may contribute to the 
assignment of a normal cellular counterpart for CLL B-cells. In 
the next section of this review, we discuss the functional capaci-
ties of CLL B-cells and will try to define a normal counterpart 
based on functional perspectives.

NORMAL COUNTeRPART OF CLL 
B-CeLLS: CURReNT APPROACHeS  
AND HYPOTHeSeS

No consensus has yet been reached concerning the normal coun-
terpart of CLL B-cells (Figure 2). It is also unclear whether CLL 
cells are derived from a single or multiple normal B-cell types 
(7). The earliest and current approaches in the search for the 
normal counterpart of CLL B-cells include morphologic assess-
ment, immunophenotypic analysis, and molecular and epigenetic 
profiling.

Typical CLL B-cells exhibit a small cell body, with a normal-
shaped nucleus with clumped chromatin surrounded by a thin 

ring of cytoplasm. These morphologic features are very similar 
to those of transitional/naive mature resting B-cells, as naive and 
MBC subsets differ in terms of their morphology (71, 101, 131, 
154). Naive B-cells are small cells with scanty cytoplasm, while 
MBCs are predominantly larger cells with abundant cytoplasm on 
microscopy (101, 131) and flow cytometry (154). However, cases 
of atypical CLL cytology have been reported, corresponding to 
larger cells with more abundant cytoplasm, nuclear irregularities, 
and lymphoplasmacytoid or prolymphocyte features (155, 156).

Phenotypically, CLL B-cells almost always express IgM and 
IgD, CD5 and CD23 and can be CD38+ and CD10−. Prior to 
analysis of the IGHV gene mutational status and based on immu-
nophenotypic analysis, CLL B-cells were thought to be derived 
from malignant transformation of follicular mantle-zone B-cells, 
which normally expresses CD5, CD23, coexpress membrane 
IgM and IgD, are negative for CD38 and use unmutated Ig V 
region genes (157). Demonstration of the increased expression 
of activation and costimulatory molecules (e.g., CD38, CD69, 
CD40, HLA-DR CD71, CD62L, and CD39) led to the hypothesis 
that CLL B-cells are derived from activated and Ag-experienced 
B lymphocytes (158). This concept is consistent with the uniform 
expression of CD27 on CLL B-cells, a marker of Ag-experienced 
MBCs (158, 159). By contrast, GC B-cells and MZB-cells were 
excluded; GC B-cells because they express CD10, CD38, lose IgD 
expression, frequently exhibit isotype switch and display somatic 
mutations in Ig genes (160) and MZB-cells because they are 
CD5-negative.

CD5 expression is an important feature of CLL B-cells and 
has been shown to inhibit BCR signaling and maintain tolerance 
in anergic B-cells after chronic (auto)antigenic stimulation (42) 
to limit autoantibody production. Furthermore, human CD5 has 
been shown to promote B-cell survival via autocrine IL-10 secre-
tion by B-cells (161, 162) and is associated with RAG expression 
and receptor editing/revision outside GCs (163). CD5 expression 
could be transiently induced after activation of normal CD5− 
B-cells in  vitro (42, 161, 163). Human CD19+ CD5+ B-cells 
include transitional T1 B-cell subset (28), a CD27+ transitional 
B-cell subset (46), a pre-naïve B-cell subset (30), a fraction of B1 
B-cell subset (47), a mature naïve B-cells subset, and a CD27+ 
MBC subset (32). Recent analysis of human transitional B-cell 
subsets has led to the identification of a distinct population 
of CD27+ CD10low IgMlow CD5+ transitional B-cells (46). 
Several studies have identified a subset of CD5+ B-cells in the 
blood that co-express the memory-associated molecule CD27 
(28, 32). These human CD5+ B-cells can undergo SHM, antigen 
selection, and possibly affinity maturation (164–168). CLL cells 
have an aberrant phenotype that includes IgM downregulation, 
reduced responsiveness to BCR ligands, reduced expression 
levels of CD21, above-baseline intracellular Ca2+, and activation 
of BCR pathway kinases, as well as negative feedback regulation, 
including SHP-1 activation similar to the phenotype of anergic 
autoreactive B-cells (169, 170).

Analysis of IGHV mutational status raised the possibility that 
CLL B-cells may be derived from two different cellular origins, 
unmutated CLL B-cells derived from pre-GC naive B-cells and 
mutated CLL B-cells derived from antigen-experienced, post-
GC MBCs (7, 171). However, the earliest transcriptome analyses 
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of CLL and normal B-cell subsets suggested that mutated and 
unmutated CLL B-cells display a homogeneous GEP that is largely 
independent of their VH mutation status and is more strongly 
related to MBCs than of cells derived from naive B-cells, cord 
blood CD5+ B-cells, or GC B-cells (centroblasts/centrocytes) 
(172). This finding was disputed recently by Seifert et  al. who 
revealed that unmutated CLL clones were derived from mature, 
unmutated CD5+ CD27− B-cells and mutated CLL clones were 
derived from a distinct CD5+ CD27+ post-GC MBC subset (32). 
CD5+ CD27+ and CD5+ CD27− B-cells display a similar GEP, 
which may indicate that CD5+ CD27+ B-cells are derived from 

CD5+ CD27− B-cells that have undergone GC reactions (32). 
Normal CD5+ CD27+ B-cells and mutated IGHV CLL B-cells 
both harbor BCL6 mutations, a genetic trait of GC passage or 
AID expression and activity, supporting the hypothesis that 
IGHV-mutated CLL is derived from post-GC CD5+ MBCs. In 
the context of IGHV mutational status, pre- or post-GC B-cells 
have been proposed as the possible normal counterpart of CLL 
B-cells. Nevertheless, although SHM and MBCs are generally 
considered to be always generated in a GC-dependent manner, 
growing evidence in favor of the generation of AID-mediated 
SHM and MBCs in an GC-independent manner is emerging in 
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humans (39, 62, 68, 69, 72, 73, 173–175) and in mice (54–56, 85, 
89). In the light of these studies, the normal cellular counterpart 
of CLL B-cells should not though to only involve the pre- or post-
GC B-cell subsets.

Comparison of miRNA expression profiles with those 
obtained for various normal B-cell subpopulations showed that 
the CLL miRNA expression signature most closely resembles that 
of normal antigen-experienced cells, including IgM memory and 
switched MBCs from peripheral blood and switched MBCs from 
tonsils (9).

Considerable research has been devoted to characterization of 
the CLL epigenome and has provided an overview of methylation 
changes in CLL B-cells compared to normal B-cells. Epigenetic 
programming of selective transcription factor binding sites was 
found to be correlated with the degree of B-cell maturation. A 
large-scale study of the epigenome of CLL and physiological 
B-cell population, based on similarities in methylation imprint, 
proposed naive B-cells as the putative normal counterpart of 
unmutated CLL and MBCs for mutated CLL (11). In another 
recent study conducted according to a similar experimental 
design, comparing the sequence and chromatin features of 
genomic regions that are programmed in normal B-cell matura-
tion versus CLL B-cells, Oakes et al. proposed a less categorical 
view (not restricted to discrete maturation stages) and proposed 
the hypothesis that the heterogeneity of the disease is related to a 
continuum of maturation states of the normal counterpart, corre-
sponding to the normal developmental stages of B-cells (between 
early unswitched MBCs and switched MBCs) (12).

A major limitation to studies investigating the normal counter-
part of CLL B-cells is the clear distinction between characteristics 
that are CLL-specific and those that are derived from the cell-
of-origin. As malignant lymphocytes are considered to maintain 
their key programmed features of the stage of differentiation of 
their normal cellular counterpart, a functional approach could be 
a good way to eliminate disease-specific features and access a new 
state that is independent of disease characteristics.

wHAT CAN THe FUNCTiONAL FeATUReS 
OF CLL B-CeLLS TeLL US ABOUT THeiR 
NORMAL COUNTeRPART?

Anergy
One functional feature attributed to CLL B-cells is (revers-
ible) anergy (169). The molecular signature of anergy has been 
detected in both unmutated and mutated CLL B-cells (176). 
Anergic B-cells are also characterized by constitutive activation 
of MEK, ERK, and nuclear factor of activated T cells (NF-AT) 
in the absence of Akt phosphorylation and low membrane BCR 
expression, features observed in CLL B-cells lacking an induced 
BCR signaling capacity (176). The lower levels of sIgM expression 
by CLL B-cells (essentially the mutated subset) are associated 
with failure to respond to in vitro sIgM engagement (177). The 
encounter of CLL B-cells with stimulating agents in the tissue 
microenvironment reverses anergy and may initiate proliferation 
(169). In vitro culture or stimulation of CLL B-cells {for example, 
by TLR-ligand or cytokines [IL-4 (178)], or encounter with 

T  cells} may reverse the anergic status and upregulate cellular 
expression of surface IgM (177, 178). Anergy is a mechanism of 
immunological tolerance that censors autoreactive B-cells and 
reminiscent of B-cells that have undergone receptor desensitiza-
tion following chronic antigenic stimulation. These data suggest 
that CLL cells may derive from poly-/autoreactive B-cells.

isotype Switching in CLL B-Cells
Despite the SHM-based subcategorization of CLL cases and the 
expression of surface IgM and IgD in the majority of cases, some 
clones exhibit ongoing IGHV diversification and CSR in  vivo 
[CSR (179–184), SHM (185–188)] and some cases present an 
antigen-driven pattern (189). Freshly isolated sIgM+ sIgG− 
sIgA− CLL B-cells express IgG and IgA transcripts that have 
identical VDJ segments (179, 181). Earlier studies have described 
isotype switching in CLL B-cells following in  vitro stimulation 
(190–192). SAC and conditioned T-cell culture supernatant were 
shown to induce the production of IgG by the cells of CLL patients 
(190, 191). Culturing leukemic B-cells in the CD40 system in the 
presence of IL-10, but not IL-4 or transforming growth factor-β 
(192), induced CLL B-cells to switch to IgG and IgA (181). 
Isotype switching of CLL B-cells following differentiation into 
PCs has been observed in several in vitro studies, but CLL B-cells 
predominantly differentiated into IgM-secreting PCs (14, 18–21, 
193–196). Cases of CLL in which the major clone expresses Ig iso-
types other than IgM and IgD, for example, IgG or IgA (197, 198) 
are relatively rare (5%) (199). These Ig-switch CLL are observed 
in both mutated and unmutated CLL, challenging the scenario 
of a post-GC origin (200). Studies in CD5+ IgG+ CLL B-cells 
found a skewed Ig gene repertoire with overuse of the IGHV4-34 
and IGHV4-39 genes and a higher SHM load (197, 200, 201). Of 
interest, a small subpopulation of normal human CD5+ B-cells 
(between 0.5 and 2% of all CD5+ PB B-cells) that use these VH 
genes appears to be class-switched to IgG or IgA (32). These data 
indicate that CLL B-cells may be derived from a B-cell subset that 
can undergo SHM and CSR.

igHv Mutational Status and Stereotypy
Immunogenetic analysis revealed that both mutated and unmu-
tated CLL present a highly restricted and biased repertoire of Ig 
genes indicating a role of antigen selection in pathogenesis of 
the disease (202, 203). This phenomenon is observed in 30% of 
CLL patients (203) and is known as BCR stereotypy, based on 
the structural similarities of their complementarity-determining 
regions. More than 200 different CLL stereotyped subsets have 
been identified to date, with 19 major subsets accounting for 40% 
of all stereotyped cases and 10% of all CLLs (203). Stereotypy 
seems to be a random process in healthy individuals, however, 
a biased toward a restricted number of Ig genes is observed in 
CLL, including IGHV1-69, IGHV3-7, IGHV3-21, and IGHV4-
34 (171, 202).

Immunoglobulin heavy-chain variable gene family usage dif-
fers between human B-cell subsets and can be modified by age 
(204), as the relative use of IGHV1 and IGHV3 genes seems to be 
a marker that can be used to distinguish between a number of dif-
ferent B-cell types (204). IGHV1 family gene usage increases and 
IGHV3 family gene usage decreases between naive and switched 
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MBC repertoires. MBC subsets have distinct repertoire charac-
teristics with an increase in the IGHV3 family at the expense 
of the IGHV1 family in IgM memory cells (205). Conversely, 
class-switched B-cells are characterized by increased IGHV1 and 
decreased IGHV3 (205). Transitional B-cells showed an increase 
in the IGHV3 family at the expense of IGHV1 compared to naive 
B-cells (26). The distinctive pattern of IGHV gene use by B-cell 
subpopulations may be indicative of different selection pressures 
in an immune response. However, the existence of BCR stereo-
typy in the normal repertoire was evidenced by the identification 
of stereotypic IGHV1-69/IGHJ6 rearrangements (that constitute 
13% of all CLL and 25–30% of unmutated-CLL) in circulating 
naive B-cells of healthy elderly individuals (206).

Multiple Clones and Multiple Mutational 
Statuses in CLL
Next-generation sequencing has allowed more detailed analysis of 
IGHV status and the presence of multiple IGHV rearrangements 
has been demonstrated in the same patient in up to 5–24% of all 
cases of CLL (187, 188, 207–209), possibly as a result of the lack 
of allelic exclusion and the presence of two productive rearrange-
ments or it may be correspond to the presence of multiple leuke-
mic subclones. Furthermore, in line with these observations, the 
identification of multiple clones with different mutational status 
in CLL (187) may suggest that SHM is an ongoing event in CLL 
that can occur in an Ag-independent or -dependent manner. The 
monoclonal B-cell lymphocytosis precursor state, which precedes 
the clinically relevant leukemic phase in virtually all CLL patients, 
therefore often involves multiple B-cell clones that sometimes 
show ongoing VH gene mutations (209).

Antibody Reactivity
The idea of a common antigen driving the disease is supported by 
the sharing of stereotyped BCR. Consistent with this idea, studies 
of structural data and modeling of light and heavy chain variable 
region pairs from over 300 CLL patients revealed a restricted 
series of predicted antigen-binding sites, suggesting that a 
restricted number of antigenic structures may be implicated in 
the pathogenesis of CLL (210).

The Ag reactivity profile of CLL B-cells BCR appears to overlap 
with that of natural Abs produced in the absence of exogenous 
Ag stimulation and that play a crucial role in immediate host 
defense against a wide range of pathogens (211–213). Since the 
1980s, it is known that CLL B-cells produce polyreactive and 
autoreactive Abs, capable of binding human Ig, or single- or 
double-stranded DNA (214, 215). Recent studies of the Abs 
expressed by CLL B-cells from both mutational subgroups, with 
or without stereotyped BCRs, have identified common antibody 
reactivity to a number of self-Ags, predominantly cytoskeletal 
proteins (non-muscle myosin heavy chain IIA, vimentin, filamin 
B, and colifin-1), cardiolipin, and oxidized low-density lipopro-
tein (212, 216). Recently, defined epitopes within the BCR third 
complementarity-determining region of the heavy chain have 
been reported as targets of BCR self-recognition in CLL, repre-
senting an alternative form of self-antigen (170, 217). In addition 
to self-Ags, a number of CLL Abs have also been demonstrated 

to exhibit specificity for bacterial antigen capsules and toxins 
(including S. pneumoniae polysaccharides, S. aureus protein A 
superantigen) as well as viral coats and fungi (211, 212, 218–220). 
In a recent study, Hatzi et al. (221) found that unmutated CLL 
BCR were much more broadly bacterial reactive than mutated 
CLL BCR.

Although polyreactivity has been previously described in 
about 80% of unmutated CLL cases and only 15% of mutated CLL 
(211), Herve et  al., in an in  vitro study, reverted mutated CLL 
B-cell Abs to their original germline sequences (non-mutated) 
and showed that they encode poly- and autoreactivity Abs (211). 
These data have led to the hypothesis that both mutated and 
unmutated CLL may arise from a common population of B-cells, 
which produce low-avidity, polyreactive, “natural antibodies” 
that may participate in a maintenance function by eliminating 
apoptotic cells, and contribute to the initial stages of the immune 
response to foreign pathogens (211, 212). Among the various 
human B-cell subsets, these types of Abs may be secreted by naive 
mature B-cells, MZBs, and IgM MBCs (60, 61) (when resulting 
from extrafollicular differentiation, see above), but also human 
B1-like cells (49) and immature/transitional B-cells.

AiD expression
Activation-induced cytidine deaminase drive antibody affinity 
maturation by incorporating point mutations over the rearranged 
variable region of the antibody in antigen-activated B-cells via 
the mechanism of SHM and initiates the DNA breaks that trigger 
CSR (174). Both SHM and CSR are by no means restricted to 
GC sites. Extrafollicular differentiation in response to TD and 
TI Ag can generate IgM MBCs and ASPC with low-frequency 
SHM (39, 60, 61, 69–71). Furthermore, AID can be expressed by 
transitional B-cells and has been shown to be essential for central 
B-cell tolerance and to remove autoreactive clones (137, 138). 
AID-deficient and AID-mutated patients present an abnormal 
peripheral B-cell tolerance checkpoint and a high frequency of 
autoreactive mature naive B-cells (222). In humans, IgM MBCs 
and MZB-cells also undergo SHM in the absence of immunization 
via incompletely understood mechanism that becomes active at a 
very early developmental phase (39, 73, 173, 175). Consistent with 
the moderate mutational load in their expressed IGHV genes, 
MZB-cells contain molecular footprints of past proliferation in 
an extrafollicular environment (39, 71, 73). Furthermore, in vitro 
transitional B-cells can differentiate into ASPC, can express AID, 
and can acquire somatic mutations (137).

The presence of AID transcripts and protein has been 
described in both mutated and unmutated CLL (182, 223). AID 
protein has been detected in proliferating CLL B-cells residing in 
lymph nodes or in response to in vitro stimulation of peripheral 
blood CLL B-cells (223). In vitro stimulation of CLL B-cells 
by CD40L in the presence of IL-4 induced AID expression 
and showed AID-dependent diversification of their IgV genes 
and triggered CSR (182, 223). AID protein and its functional 
consequences (CSR and SHM) have also been observed in CLL 
xenografts in mice (17).

Aberrant AID activity can lead to mutations, deletions, 
or translocations outside of the Ig locus. AID promiscuously 
targets a subset of transcriptionally active genes, including the 
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proto-oncogenes BCL6. The BCL6 proto-oncogene has often 
been found to be mutated at proximal promoter sequences in 
GC-derived B-cell lymphoma. The presence of BCL6 mutations 
in CLL B-cells has been used as an argument for GC passage. 
In fact, BCL6 mutations may be a marker of AID activity, but 
not necessarily GC passage. Furthermore, CLL B-cells lack the 
chromosomal translocations observed in most GC malignancies 
[e.g., t(14;18) in follicular lymphoma] and that are linked to AID 
activity (174). CLL B-cells may also arise from early GC B-cells 
or post-GC B-cells, in which Ig class switching and SHM are no 
longer active.

CLL B-Cells and Terminal Differentiation 
into Antibody-Secreting Plasma Cell
The functional features of terminally differentiated B-cells (e.g., 
ASPC) are in some way programmed into and inherited from the 
first cell (Figure 3). Human B-cell subsets display an intrinsically 
altered propensity to proliferate and differentiate into ASPC after 
exposure to the same stimuli. There is accumulating evidence 
in support of the stimulation requirements and differentiation 
potential of normal B-cell subsets. Defining and comparing these 
capacities, requirements, and propensities between CLL B-cells 

and normal B-cell subsets may help to guide assignment of the 
normal counterpart of CLL B-cells. For example, some very early 
data showed that crosslinking of BCR on the cell surface using 
anti-μ or SAC induces terminal differentiation of CLL B-cells, 
but not that of normal B-cells from peripheral blood (191, 224). 
However, when stimulated with the polyclonal activator, poke-
weed mitogen (PWM), normal B-cells differentiate into IgM- and 
IgG-secreting cells and CLL B-cells essentially differentiate into 
IgM-secreting PCs (193). These studies highlight intrinsic differ-
ences in the requirements for terminal differentiation between 
CLL B-cells and normal B-cells.

earliest work
In vitro activation and differentiation of leukemic CD5+ B-cells 
have now been investigated for about 50 years and have been used 
as a model for normal B-cell development and to study the role of 
different growth factors in the pathogenesis of B-cell malignan-
cies (22, 225–228). In the 60s, the inability of CLL cells to switch 
to a hyperbasophilic cell morphology after mitogen stimulation 
(such as PHA, considered, at the time, to be a ubiquitous antigen, 
a growth factor, and a stimulator of gamma globulin secretion) 
was interpreted as evidence of their “immunoincompetence” and 
responsible for their accumulation (225, 229). Furthermore, the 
“immunoincompetence” of CLL cells was underlined by the low 
production of Abs in CLL patients vaccinated against typhoid, 
influenza, and diphtheria (225). In 1973, an electron microscopy 
study showed transformation of CLL cells into a plasmacytoid 
morphology after stimulation with PWM (230). In a study pub-
lished in 1974, the authors demonstrated that the Ig expressed 
at the surface of isolated leukemic cells from a CLL patient was 
idiotypically identical to serum monoclonal Ig (an IgM) from the 
same patient. The authors hypothesized that serum Ig is produced 
by PCs differentiated from leukemic cells (23). Concomitant PC 
malignancies and CLL have been reported in several studies (231, 
232). Several studies showed that differentiation of CLL cells 
into ASPCs can occur spontaneously in  vivo (23, 24). In some 
cases, the authors showed a clonal relationship between the two 
malignant cells resulting from differentiation of CLL B-cells into 
PCs (23, 24, 233–235).

Chronic lymphocytic leukemia cells were thereafter used as 
model to study B-cell differentiation (226–228). Thus, in the 1980s 
and 1990s, many in vitro studies were devoted to the differentia-
tion of CLL cells into ASPCs in response to stimulation by dif-
ferent mitogens (22, 194, 236–242). However, remarkable results 
were obtained with a phorbol diester, phorbol myristate acetate 
(PMA). This molecule has been shown to induce differentiation 
and activation of CLL cells into ASPCs (22, 194, 236–238, 241) 
[reviewed in Ref. (242)], suggesting a critical role for the protein 
kinase C (PKC) pathway in the activation and differentiation of 
CLL B-cells (see below).

CLL B-Cells Resemble Subpopulations of 
Normal B-Cells That Are Responsive to 
Phorbol ester
Phorbol myristate acetate [also known as 12-O-tetradeca-
noylphorbol 13-acetate (TPA)] activates the PKC pathway by 
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mimicking diacylglycerol (DAG), a natural ligand and activa-
tor of PKCs (242). PMA mimics DAG, the direct physiologic 
activator of PKC. PKC pathway is importantly implicated in 
B-cell development and function (242). PKC is expressed in CLL 
and has been shown to be involved in the pathogenesis of CLL 
(243). PMA induces differentiation of CLL B-cells in a T-cell-
independent manner (22, 194, 196). PMA show a specific effect 
on CLL B-cells, with no effect on other B-cell malignancies, and 
this effect is enhanced in the presence of IL-4 and T-cell-derived 
cytokines (21, 22, 195, 196, 239–242, 244, 245). Following PMA 
activation, CLL B-cells undergo “plasmacytoid” transformation, 
with an increase in cell size, cellular RNA content, cytoplasmic 
Ig and IgM secretion, enhanced allostimulatory activity, and 
cell cycle entry (242, 244–246). These results using PMA were 
reproduced by recent studies (21, 196). Ghamlouch et al. (196) 
used PMA in combination with cytokines IL-2, IL-4, IL-10, 
and IL-12 in the presence or absence of CD40L to induce CLL 
B-cell differentiation into ASPCs. Generated ASPCs presented (i) 
high levels of cytoplasmic IgM expression, (ii) induction of the 
unfolded protein response (UPR), reflected by upregulation of 
UPR targets and the protein folding machinery of the endoplas-
mic reticulum (ER): GRP78/Bip and GRP94 and calnexin, and 
(iii) enhanced secretion of IgM. Furthermore, PMA-induced CLL 
B-cell differentiation into ASPC occurs in the absence or in the 
presence of very low levels of DNA synthesis and cell proliferation 
(21, 247). Ghamlouch et al. (21) showed that cell cycle entry dur-
ing CLL B-cell differentiation into ASPC in PMA- or TLR9-based 
systems is very low (<5% in S-phase) compared to that observed 
for differentiating cells in a normal naive and memory human 
B-cell differentiation system (between 15 and 35% in S-phase) 
(99, 106, 108, 115).

Phorbol myristate acetate alone or in combination with calcium 
ionophore and cytokines has been shown to induce proliferation 
and activation, but little or no terminal differentiation of human 
normal B-cells from peripheral blood and tonsil (248–251). 
The early response gene regulatory pathways have been shown 
to differ between normal and CLL B-cells in response to PMA 
activation (236). However, some studies have indicated that only 
a small fraction of normal B-cells undergo terminal differentia-
tion into ASPC in response to PMA (236, 248, 252, 253). To our 
knowledge, no study has investigated the type of normal B-cells 
that differentiate in response to PMA. These studies suggested 
that CLL B-cells may resemble these minor subpopulations of 
normal B-cells that are activated and differentiate in vitro directly 
via the PKC pathway (236, 252, 253). Furthermore, after PMA 
treatment, a fraction of human B-cells has been shown to express 
CD5 molecules on their cell surface (254). In contrast with nor-
mal B-cells (from peripheral blood and tonsil), PMA is able to 
activate CLL B-cells, as evidenced by the expression of cell surface 
activation markers, and to induce their terminal differentiation 
into IgM-secreting PCs together with low DNA synthesis and 
proliferation (247, 249).

TLR-induced Antibody-Secreting Plasma 
Cell Differentiation of CLL B-Cells
Researchers have recently studied the role of TLR stimulation on 
CLL B-cell activation and differentiation. Several studies have 

reported that TLR7 and TLR9 stimulation (mainly focused onto 
TLR9) shape an immunogenic phenotype in CLL B-cells (255). 
CLL B-cells express high levels of TLR9 (255, 256). Similar to 
PMA, treating CLL B-cells with the TLR9 agonist CpG ODNs 
induces significant morphologic changes and phenotypic activa-
tion, as shown by increased cell surface expression of CD54, 
CD86, and HLA-DR and intense proliferation of allogeneic 
T-cells in mixed lymphocyte reaction (256). The proliferative 
response to CpG stimulation alone has been shown to be reduced 
compared to normal peripheral B-cells. The combination of CpG 
with cytokines such as IL-2 or IL-15 has been shown to promote 
in vitro proliferation of CLL B-cells and prevent apoptosis (257, 
258). Activation and proliferation following stimulation with 
TLR9 ligand differs between B-CLL cells and normal B-cells in 
terms of IL-6 production, CD40 expression, and regulation of 
early cell cycle progression (e.g., regulation of cyclin D3 and p27 
expression) (257, 258). TLR9 activation induced CD5 expres-
sion on the cell surface of normal B-cells and upregulated the 
Syk family tyrosine kinase ZAP-70 predominantly in the IgM+ 
MBC subset (110). ZAP-70 has been shown to be expressed in a 
subpopulation of normal tonsillar and splenic B-cells that express 
CD5, CD27, and CD38 (259).

Toll-like receptor 9 signaling has been shown to induce differ-
entiation of CLL B-cells and antibody secretion when costimulated 
with cytokines (14, 18–20). Gutierrez et al. showed that CpG, in 
combination with cytokines IL-2 and IL-15, induces differentia-
tion of CLL B-cells into IgM-secreting PCs (18). Duckworth et al. 
showed CpG and IL-21 to be useful differentiation-promoting 
agents in CLL B-cells (20). In a two-step, 7-day culture system, 
Ghamlouch et al. showed that CLL B-cells can differentiate into 
CD20+ plasmablasts/ASPCs when stimulated with a combina-
tion of CpG, CD40 ligand, and cytokines (14). In a 28-day culture 
system, Hoogeboom et al. observed that CLL B-cells can differ-
entiate into IgM-secreting PCs when stimulated with CpG alone 
or in combination with CD40L (19). Similar to PMA-induced 
differentiation (21, 196), differentiation via TLR9 signaling 
induced CLL B-cells to express the PC transcriptional program 
(e.g., STAT3, IRF4, XBP1s, and BLIMP1) and downregulated 
expression of B-cell transcriptional programs, including c-MYC, 
PAX5, BCL6, IRF8, and BACH2 (14, 20, 21).

Varying degrees of differentiation were observed in different 
patients, and this effect was associated with functional anergy of 
leukemic cells and epigenetic aberrations (transcriptional repres-
sion of PRDM1 gene) (19, 20). Researchers have also observed 
reversal of CLL cell anergy by appropriate in vitro culture associ-
ated with the capacity to induce PRDM1 (coding BLIMP1) expres-
sion in response to appropriate stimulation. The heterogeneity 
of responses could be due to the origin and preparation of CLL 
B-cells. Heterogeneity of responses has been observed in studies 
not using isolated CLL B-cells [whole peripheral blood mono-
nuclear cells (PBMC)] or not using freshly isolated CLL B-cells 
(cryopreserved CLL cells). It has been shown that the presence 
of non-B-cells in culture influences the differentiation responses 
of memory and naive B-cells (16). The frequencies of viable CLL 
B-cells (when using cryopreserved CLL cells) or the activation of 
myeloid cells and T-cells by the stimulating agents (when using 
PBMCs) can affect the differentiation and Ig secretion of CLL 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


14

Darwiche et al. CLL B-Cell Normal Counterpart(s)

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 683

B-cells. However, this heterogeneity could also be linked to the 
CLL B-cell of origins (the B-cell type). Nevertheless, donor-to-
donor variability is also observed for normal B-cell differentiation 
responses.

High TLR9 expression is a feature of CLL B-cells. TLR9 is also 
highly expressed by transitional B-cells and MBCs (particularly 
IgM MBCs) (105). In a TLR9 pathway-based differentiation 
system, CLL B-cells showed efficient differentiation into IgM-
secreting PCs and were shown to undergo isotype switching 
similar to that observed for MBCs (including IgM MBCs), 
transitional B-cells but not naive peripheral blood B-cells. 
Furthermore, TLR9 activation induced IgM+ CD27+ B-cells 
to express CD5, CD23, CD25, HSP90, and ZAP70 similar to 
CLL B-cells, features not observed in response to CD40L (110). 
Overall, these observations could reflect differences in functional 
capacity (signal transduction pathways, activation requirement, 
and propensity for terminal differentiation) between major B-cell 
subpopulations and CLL B-cells and suggest that only a minor 
subpopulation of normal B-cells are functionally similar to CLL 
B-cells and could represent a potential normal counterpart of 
these cells.

Role of T-Cells in Activation and 
Differentiation of CLL B-Cells
There is evidence that T helper 1 (Th1) cells can support CLL 
activation and proliferation (17, 260–263). In CLL, lymph nodes 
and bone marrow contain large numbers of CD4+ T  lympho-
cytes (263), many of which express the costimulatory molecule 
CD154 (CD40L) (263). CD40-activated CLL B-cells exhibit an 
activated B-cell phenotype and morphology (192, 196, 264, 265), 
with upregulated IRF4 expression, decreased expression of CD20 
and CD184, and enhanced expression of CD18, CD40, CD54, 
CD80, CD86, and HLA-DR, and secrete moderate levels of IgM 
(196, 265, 266). CD40L treatment or co-culture of CLL B-cells 
with CD4+ T  lymphocytes has been demonstrated to increase 
CLL B-cell survival, at least partly mediated via IL-4 signaling 
(267, 268).

Soluble CD40L/anti-CD40 and T-cell-derived cytokines were 
used to mimic T-cell help in vitro (CD40 system) and study B-cell 
subset differentiation in response to T-cell help. In this system, 
CLL B-cells poorly differentiated into ASPC and showed an 
activated phenotype and morphology and low levels of Ig secre-
tion (196, 265, 266). However, the combination of TLR9 ligand 
or PMA with CD40L potentiated the ASPC differentiation of 
CLL B-cells (14, 19, 21, 196). Switched and IgM MBCs showed 
efficient differentiation into IgM-, IgG-, and IgA-secreting cells 
(38, 59, 99, 102, 104–107, 123, 125, 135). Nevertheless, periph-
eral blood transitional B-cells [including CD5+ CD27+ CD23+ 
B-cell subsets and CD5+ CD27− pre-naive B-cells (30)] and 
mature follicular naive B-cells are low responders in terms of 
CD40L-induced differentiation similar to CLL B-cells. These data 
indicate that CLL B-cells do not share the same activation and 
differentiation requirements of “classical” MBCs (99, 104, 123). 
By contrast, CLL B-cells behave like transitional or mature naive 
B-cells in a CD40 system, in which a small proportion of these 
B-cell subsets are induced to differentiate into IgM-secreting PCs 
(99, 104, 123).

Xenograft studies have recently highlighted the role of T-cell 
in activation, proliferation, and differentiation of CLL B-cells 
(17, 261). In a xenograft mouse model, Os et  al. (261) showed 
that CLL B-cells are induced to proliferate by autologous Th 
cells and this activation was CD40L dependent. Conversely, 
autologous Th cells can be efficiently activated by CLL B-cells in 
a endogenous CLL antigen-specific manner, as CLL B-cells act as 
efficient antigen-presenting cells of endogenous Ags both in vitro 
and in  vivo (261). Exogenous antigen-driven Th cell–CLL cell 
interaction has been shown to drive CLL B-cell activation and 
differentiation into IgM-secreting PCs that did not downregulate 
HLA and costimulatory molecules or express the PC marker 
CD138. Interestingly, these features were observed in the in vitro 
TLR9 and PMA differentiation system of CLL B-cells (in the pres-
ence and absence of CD40L) (14, 18, 20, 21, 196, 265).

Chronic lymphocytic leukemia-specific Th cells have been 
shown to be IFN-γ secreting Th1-like cells that express the 
IFN-γ-associated transcription factor T-bet (261, 269). The 
T-bet transcription factor is also expressed by CLL cells (261, 
270). Recent studies have shown that T-bet can directly bind to 
Bcl6 and repress Bcl6 target gene expression in T-cells (87, 88). 
Furthermore, a recent study in mice showed that Th1 cells are 
capable of providing sufficient help to B-cell in a GC-independent 
response to generate a protective antibody response to influenza 
infection (86). Very recently, in a xenograft mouse model, Patten 
et al. showed that human malignant B-cells from CLL patients 
differentiated into ASPCs in the presence of patient-derived 
T-cells (17). Terminal differentiation was induced in mutated and 
unmutated CLL B-cell clones by Th1-polarized T-bet+ T-cells, 
but not classical TFH cells. In this study, CLL B-cell differentiation 
was associated with upregulation of IRF4 and BLIMP1 with no 
measurable levels of BCL6, features also observed in the in vitro 
TLR9, PMA, and CD40 differentiation systems of CLL B-cells 
(14, 18, 20, 21, 196). Furthermore, differentiation was associated 
with isotype class switching and development of new IGHV-D-J 
mutations that involve AID in both unmutated and mutated CLL 
B-cells (17). In these models, data indicate that differentiation 
of CLL B-cells occurs in an extrafollicular/GC-independent 
manner, in which SHM and CSR can occur (34, 58, 84–86) and 
T-cells can play a cytokine-mediated role. These findings suggest 
that mutated and unmutated CLL B-cells are both derived from 
a B-cell subset that is able to differentiate in an extrafollicular 
manner essentially into IgM-antibody secreting cells.

CLL B-CeLL NORMAL COUNTeRPART: 
iMPLiCATiONS OF MONOCLONAL  
B-CeLL LYMPHOCYTOSiS (MBL) AND 
HSC

Monoclonal B-cell lymphocytosis (MBL) is defined as the pres-
ence of a circulating monoclonal B-cell population with B-cell 
count below than 5 × 109/L and no other signs of a lymphopro-
liferative disorder (271). The majority of cases of MBL present 
a CLL immunophenotype and may present the chromosomal 
abnormalities observed in CLL. Landgren et  al. showed that 
44/45 patients with CLL had a precursor MBL state that had 
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been identified between 6  months and 7  years prior to the 
diagnosis of CLL (272). The risk of progression of high-count 
MBL (clonal B-cell count between 0.5 and 5 × 109/L) to CLL or 
small lymphocytic leukemia requiring therapy is between 1 and 
2% per year (271). Of note, MBL is more frequently composed 
of two or more coexisting B-cell clones (20–70% of total cases) 
than CLL (209, 273). Progression from MBL to CLL could be a 
stepwise process, in which a single dominant clone progressively 
expands following positive selection by an antigen or somatic 
mutations. Recent evidence suggests that, in this model, the first 
oncogenic event could be traced back at least to the progenitor 
with no IGHV gene rearrangements or HSC (3, 274). In line with 
this hypothesis, Damm et al. demonstrated that some CLL driver 
mutations (e.g., SF3B1 or NOTCH1) are shared between the 
mature CLL clone and HSCs and hematopoietic progenitor popu-
lations, demonstrating that these mutations occur in a progenitor 
able to undergo lymphoid and myeloid differentiation (3, 275). 
Identification of multiple clones with different IGHV rearrange-
ments in CLL also suggests that leukemia-initiating events might 
occur prior to IGHV rearrangement in an un-rearranged early 
B-cell progenitor (187, 188, 208). Moreover, in a xenograft model, 
HSPCs from CLL patients presented increased susceptibility to 
generate expansions of (oligo-mono) clonal B-cells carrying 
V(D)J gene rearrangements, which were always unrelated to 
those of the original CLL cells, indicating that HSPCs from CLL 
may exhibit abnormal B-cell differentiation and suggesting that 
self-renewing HSPC may constitute the CLL cell-of-origin (274). 
Mature B-cells resulting from this hematopoiesis could then be 
selected via the interaction with Ags (autoantigen, classical Ags, 
and/or superantigens), resulting in the expansion of mono- and/
or oligoclonal B-cell populations. With age (276–278), additional 
genomic abnormalities would occur (disrupting the control of 
cell growth and survival), autoantigen availability would increase 
due to increased cell death and clearance deficiency, and suscepti-
bility to infections would increase due to age-associated immune 
dysfunction. These changes could participate in the development 
of clonal MBL and/or CLL disorders. How can a B-cell normal 
counterpart of CLL B-cells be defined in such a complex model 
of pathogenesis combined with the complexity of human B-cell 
differentiation into the various mature B-cell subsets?

CONCLUSiON

In all studies investigating differentiation of CLL B-cells into 
ASPC, CLL B-cells show a high propensity for differentiation 
into PCs that predominantly secrete IgM (Figure 3). These data 
indicate that CLL B-cells originate from a B-cell compartment that 
rapidly differentiates into predominantly IgM-producing ASPCs 
with little isotype switching. These features have been observed for 
naive mature follicular B-cells (when differentiate in an extrafolli-
cular manner), transitional B-cells (including a fraction of human 
CD27+/– CD5+ B-cells), MZB-cells, human B1-like cells, and 
IgM MBCs. As mentioned above, all B-cell subsets do not present 
the same responses to TLR9 ligation in terms of PC differentia-
tion. CLL B-cell differentiation is sensitive to TLR9 stimulation. 
Among the various B-cell subsets, naive mature B-cells are unre-
sponsive to the TLR9 differentiation pathway, while transitional 

B-cells, IgM MBCs, and MZB-cells respond to TLR9 stimulation 
and differentiate into ASPC predominantly secreting IgM but also 
some IgG and IgA, similar to CLL B-cells. CLL B-cells produce 
low-avidity, polyreactive, “natural” Abs (211, 212). The secretion 
of these kinds of Abs is usually attributed to MZB-cells (60, 61), 
but also human B1-like cells and immature/transitional B-cells.

In vivo (17) differentiation of CLL B-cells has been shown to 
be induced by Th1-polarized T-bet+ T-cells and not classical 
TFH cells, i.e., in the absence of GC. These data suggest that 
CLL B-cells originate from a B-cell subset that differentiates in a 
GC-independent manner (15). Interestingly, this differentiation 
pathway is that described for IgM MBCs, MZB-cells, and B1 cells 
(54–56, 62), but could also be that of transitional B-cells, as sug-
gested by in vitro and murine studies (46, 111, 121, 124, 140, 141).

In depth, characterization of human transitional B-cells has 
led to the identification of distinct populations, anergic type 3 
B-cells, and CD27+ transitional B-cells (46). Anergic transi-
tional B-cells were CD10low IgMlow CD5+, unresponsive to 
IgM ligation and did not differentiate into ASPC after TLR9 
engagement. CD27+ transitional B-cells were shown to exhibit 
an activated phenotype and express CD5, CD23, and TLR9 (46). 
These CD27+ transitional B-cells produce IL-10 and show a 
high capacity to differentiate into IgM-secreting PCs and MBCs 
upon TLR9 stimulation and can regulate T-cell proliferation (46). 
These features (including IL-10 secretion) are also described for 
CLL B-cells (14, 162, 261, 279). Moreover, human transitional 
B-cells have been shown to express T-bet, AID (137, 140), and 
high levels of lymphoid enhancer-binding factor 1 (31) similar to 
CLL B-cells. As transitional B-cells were excluded from molecular 
studies addressing the CLL B-cell normal counterpart (11–13, 
32), it would be interesting to compare the gene expression, 
miRNA, and epigenetic profile of transitional B-cell subsets (at 
least the CD5+ subset) with that of CLL B-cells.

Over recent years, several studies have presented evidence sug-
gesting that the earliest genetic and epigenetic events in the patho-
genesis of CLL might occur in HSCs. However, it is now widely 
accepted that B-cell development progresses linearly through 
HSC  →  Pro-B  →  pre-B  →  immature  →  transitional  →  naive 
mature B-cell subsets, including follicular and MZBs and after 
Ag encounter →  the various PC and MBC subsets. Despite the 
heterogeneous landscape of somatic mutations in CLL, CLL 
B-cells have a similar phenotype and GEP. By taking this into 
account, in a stepwise leukemogenesis model from the HSC or 
B-cell progenitor to the transformed CLL B-cell, leukemic trans-
formation more likely occurs at a B-cell stage of development 
with homogeneous phenotype and GEP. The stage most likely 
to present these parameters is a B-cell stage located before the 
bifurcation into the various mature B-cell populations (a subset 
of transitional B-cells?) or a B-cell population that develops from 
separate lineages or an unidentified or poorly characterized B-cell 
subset (human B1 cells?).

In other words, the transition from transitional B-cells into 
the various B-cell subsets (follicular, MZ, and after antigen 
encounter to MBCs) is a complicated process, in which many 
factors are confounded, not corresponding to the ideal conditions 
to generate a malignant B-cell population with a homogeneous 
phenotype and GEP. Recent data show that the transitional 
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B-cells present a unique heavy chain Ig repertoire different from 
that of pre-B cells, immature B-cells but also naïve B-cells and 
that is outside the trajectory of gene loss/gain between pre-B and 
naive stages (26). Transitional B cells are thought to contain cells 
other than those that are part of the pre-B → immature → tran-
sitional  →  naive development pathway (26). Furthermore, as 
discussed above, a subset of transitional B-cells can also present 
the functional capacity of CLL B-cells, making them an ideal 
candidate. Transformation could also occur during TLR9 activa-
tion of transitional B-cells. As CpG activation of these cells has 
been shown to lead to their differentiation into three different 
subsets: ASPCs that produce IgM and switched Ig isotypes, naive 
B-cells but also somatically mutated IgM+ IgD+ CD27+ MBCs 
(111). In this configuration, unmutated CLL B-cells could derive 
from early activated transitional B-cells and mutated CLL B-cells 
could derive from IgM+ IgD+ CD27+ MBCs. Based on all of 
the above, CD27+ transitional B-cells could be proposed as a 
potential normal counterpart of CLL B-cells (Figure 2).

IgM MBCs can also be considered as potential normal counter-
part, as they present similar functional characteristics. An alterna-
tive possibility would be that CLL B-cells originate from virtually 
all B-cell subsets ranging between transitional and MBCs. In both 
cases, transformation occurs while the cells are responding to a 
particular (auto)-Ag in a T-dependent or -independent manner. 
As discussed above, TI Ag or T-dependent responses are able to 
induce SHM (and CSR) in the various B-cell subsets. When SHM 
occurs, the polyreactivity of the BCR of the transformed cells will 
be modified or lost (giving rise to mutated CLL) and when SHM 
does not occur the polyreactivity of the BCR is preserved (giving 
rise to unmutated CLL). This factor determines the susceptibility 
of leukemic cells to in vivo stimulation by Ags (exogenous, self-
Ags, and environmental Ags that periodically restimulate CLL 
B-cells). Cells that have undergone SHM would therefore expand 
less rapidly and would exhibit a more benign clinical course than 
unmutated CLL B-cells. This view is in line with the epigenetic 
hypothesis of the CLL B-cell counterpart along the continuum of 
B-cell development and differentiation (12).

In the light of all of the above data, events occurring dur-
ing terminal B-cell differentiation could be relevant to the 
understanding of CLL biology. Terminal differentiation induces 
molecular, phenotypic changes, thereby minimizing the hetero-
geneity of CLL B-cells and causing them to converge toward one 
end of the development stage, reflecting precursor B-cell features. 
Analysis of molecular events (including SHM, CSR, repertoire 
use, antibody reactivity, and differential expression of a variety of 
surface molecules, receptor, and transcription factors) between 
CLL B-cells and normal human B-cell subsets as the B-cell 
progresses to mature PCs in response to defined stimuli could 
help to define a cellular normal counterpart of malignant cells. 
The normal counterpart of CLL B-cells could therefore be studied 
via a functional approach. However, this type of approach will 
require further research and functional characterization of B-cell 
subsets.
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