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Tumor necrosis factor receptor 2 (TNFR2) has been shown to play a crucial role in CD4+ T
regulatory cells (CD4+Tregs) expansion and suppressive function. Increasing evidence has
also demonstrated its role in a variety of immune regulatory cell subtypes such as CD8+ T
regulatory cells (CD8+ Tregs), B regulatory cells (Bregs), andmyeloid-derived suppressor cells
(MDSCs). In solid organ transplantation, regulatory immune cells have been associated with
decreased ischemia-reperfusion injury (IRI), improved graft survival, and improved overall
outcomes. However, despite TNFR2 being studied in the context of autoimmune diseases,
cancer, and hematopoietic stem cell transplantation, there remains paucity of data in the
context of solid organ transplantation and islet cell transplantation. Interestingly, TNFR2
signaling has found a clinical application in islet transplantation which could guide its wider
use. This article reviews the current literature on TNFR2 expression in immune modulatory
cells as well as IRI, cell, and solid organ transplantation. Our results highlighted the positive
impact of TNFR2 signaling especially in kidney and islet transplantation. However, further
investigation of TNFR2 in all types of solid organ transplantation are required as well as
dedicated studies on its therapeutic use during induction therapy or treatment of rejection.
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INTRODUCTION

Tumor necrosis factor (TNF) signaling is central to many aspects of ischemia-reperfusion injury (IRI) in
solid organ transplantation and has a central role in regulating acute and chronic anti-donor immune
responses which can determine or limit the functional life of the transplanted organ. TNFa is mainly
produced by macrophages and neutrophils during innate immune activation after recognition of either
pathogen-associatedmolecular patterns (PAMPs) or danger-associatedmolecular patterns (DAMPs) via
pattern recognition receptors (1). It can also be produced by CD4+ effector T cells and natural killer cells
during certain conditions (2). It exerts its actions through binding with its receptors TNF receptor type 1
(TNFR1) and TNF receptor type 2 (TNFR2) as either a transmembrane protein (mTNF) or soluble
protein (sTNF) (3, 4). With pertinence to the organ transplant context, TNFR2 is expressed in
lymphocytes as well as endothelial cells (5), the latter being the primary donor-recipient interface
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from the immunological perspective. On the other hand, TNFR1 is
ubiquitously expressed on most cell types (6).

The inflammatory phenotypes instigated by TNFa have been
studied extensively in the context of innate and adaptive immune
cell activation (7–13). Indeed, TNFa signaling through both
TNFR1 and TNFR2 has been found to have a central role in
many pathological conditions such as autoimmunity, allergy, and
malignancy (14–16). Despite TNFa’s key role in mediating and
perpetuating pro-inflammatory signals during all stages of the
immune activation, increasing evidence has highlighted a strong
counterbalancing and immune regulatory role for TNFR2 when
compared to TNFR1.

While TNFR2 has been studied extensively in the context of
cancer and autoimmunity, there remains paucity of data in the
transplant field. The first and most significant immunologic
event in the transplant process is ischemia reperfusion injury
(IRI). During the ‘reperfusion’ phase of IRI, products of cell
death are released into the circulation, stimulating the innate and
adaptive immune responses (17). In view of the dichotomous
role of TNFa signaling, it is important to better illustrate the role
that TNFa-TNFR2 holds in all aspects of solid organ
transplantation, beginning with IRI and extending to chronic
alloimmune processes throughout the life of the organ.

In this review article, we will aim to summarize the evidence
regarding TNFa-TNFR2 signaling in the context of regulatory
immune cells as well as summarize the role of TNFa-TNFR2
signaling during IRI, solid organ transplantation, and rejection.
TNFΑ SIGNALING PATHWAY

TNFa is a type II transmembrane protein which has a
characteristic homotrimeric configuration and exists in two
forms, membrane-bound and soluble (4, 18, 19). mTNF can be
cleaved in its stalk region by the matrix metalloproteinase TNF-
alpha-converting enzyme to form sTNF (20). After its release,
sTNF can circulate in the body and thus can exert its effects away
from its initial site of production. mTNF and sTNF have been
involved in differential pathway signaling. mTNF and sTNF both
bind to TNFR1, however, mTNF preferentially binds TNFR2
(21). This suggests that activation of TNFR2 associated pathways
are mostly stimulated by neighboring cells in a paracrine fashion
while activation of TNFR1 via sTNF functions in an
endocrine manner.

Upon binding of TNFa to TNFR1, signaling via the TNFR1-
associated death domain is initiated which can in turn activate
one of two distinct cellular responses (22). Through its death
domain, TNFR1 signaling leads to activation of the downstream
canonical NF-kB, mitogen-activated protein kinase (MAPK),
and c-Jun N-terminal kinase (JNK) signaling pathways (23).
These three signaling pathways promote inflammation and
proliferation. On the other hand, TNFR1 can also induce cell
death through activation of the caspase cascade (24).

Upon binding of TNFa to TNFR2, the classical and
alternative NF-kB signaling pathway will be activated (25).
TNFR2 has also been shown to recruit the TNF receptor
Frontiers in Immunology | www.frontiersin.org 2
associated factor 2 (TRAF2) and the single cellular inhibitor of
apoptosis 1 or 2 molecules (cIAP1/2) complex more efficiently
than TNFR1 (25, 26). This preferential binding to TNFR2 leads
to TRAF2-cIAP1/2 complex depletion and subsequent inhibition
of downstream TNFR1 inflammatory signaling (26). On the
other hand, as TNFR2 lacks a death domain, it has been
shown to recruit and activate the AKT pathway which
promotes cell survival, migration, proliferation, CD4+Treg
function, and an overall cytoprotective phenotype (27).
TNFR2 IN IMMUNE REGULATORY CELLS

TNFR2 in CD4+ T Regulatory Cells
The dichotomous role of TNFa in pro-inflammatory versus
regulatory pathways has largely been studied in the context of
CD4+ T cells. While initial exposure to TNFa will prompt CD4+
effector functions, prolonged exposure will trigger habituation,
downregulation, and exhaustion of CD4+ effector T cell signaling
(28). CD4+ T regulatory cells (CD4+Tregs), classically defined as
CD4+CD25+CD127- and forehead box P3+ (FoxP3) cells, are a
subset of CD4+ T cells which play a crucial role in immune
suppression, homeostasis, and self-tolerance through inhibition
of CD4+ T effector cell proliferation as well as production of
inhibitory cytokines (29, 30). Their dysregulation has been
associated with a variety of autoimmune diseases, cancers, as
well as solid organ rejection (31–34). Notably, the expression of
TNFR2 has been shown to preferentially associate with FoxP3
+CD4+Tregs as well as identify a highly suppressive subset of
CD4+Tregs in mice as well as humans (35–37). This was shown
in experimental models of autoimmune encephalomyelitis,
TNFR2 signaling on Tregs has been shown to maintain Treg
suppressive activity and protect against disease progression (38).
Another functional role which has been found has been CD4
+Treg population expansion and proliferation via TNFR2 co-
stimulation (39). These in vitro findings have also been observed
in vivo murine models of graft-versus-host disease (GvHD).
Upon treatment with a TNFR2 agonist, CD4+Treg population
expansion and activation was observed (40). Other novel TNFR2
agonists are also being studied as potential therapeutic targets for
treatment of autoimmunity and other inflammatory disorders
and have been shown to expand highly suppressive CD4+Tregs
capable of CD8+ T cell repression in vitro (41). CD4+Tregs have
also been found to respond to proinflammatory cytokines.
Indeed, IL-6 and TNFa have been observed to drive human
CD4+Tregs proliferation by increasing TNFR2 expression (42).
Recent investigations have shown that binding to TNFR2 on
conventional CD4+ T cells increases their interleukin (IL)-2
production which in turn leads to signal transducer and
activator of transcription (STAT) 5 phosphorylation and
proliferation of neighboring CD4+Tregs (43–45). These
findings were confirmed in studies where blocking TNFR2
signaling was shown to increase T helper 17 cell differentiation
via STAT3 activity and retinoid acid-receptor-related orphan
receptor-gt induction (22, 46). TNFR2 has also been studied in
the context of thymic CD4+Tregs, or tTregs (formerly called
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natural Tregs versus peripheral CD4+Tregs, or pTregs (formerly
called induced Tregs. In the past, it was believed that TNFR2
signaling was required for optimal tTregs suppressive function
under inflammatory conditions alone (47). However, more
recent data has put this into question and has rather observed
a role for TNFa-TNFR2 signaling in the differentiation and
function of pTregs in autoimmunity models (48). On the other
hand, there have also been reports that anti-TNFa therapy such
as infliximab increase pTreg frequency in human models (49).
Together, these data suggest an important role for TNFR2 in
CD4+Treg function, however, the exact mechanisms remain
elusive, and the discrepancies could be explained by different
functionality of pTregs and tTregs in various pathological
conditions (Figure 1).

TNFR2 in CD8+ T Regulatory Cells
CD8+FoxP3+ T regulatory cells (CD8+Tregs) are another
important class of adaptive regulatory immune cell (50, 51). They
are often characterized as CD8+CD25+ Tregs and have similar
functions as CD4+CD25+ Tregs (52). They have also been shown to
induce tolerogenic antigen-presenting cells as well as induce T
effector cell killing in addition to T effector cell function
suppression (53). In the context of solid organ transplantation,
their capacity to induce tolerance and their role as a potential
therapeutic avenue is being increasingly studied (53, 54). In
addition, TNFR2 has been found to be a more reliable surface
marker than CD25 for characterization of functional CD8+Tregs
(51). The induction of CD8+Foxp3+TNFR2+ T cells has also been
observed after treatment with anti-CD3 monoclonal antibody
treatment in patients with Type 1 diabetes mellitus patients (55).
In this study, combined expression of CD8+ with CD25+ identified
a highly suppressive CD8+Treg subset which were able to suppress
Frontiers in Immunology | www.frontiersin.org 3
CD4+T cell activity the most. Research has also been performed in
the context of hematopoietic stem cell transplantation. In these in
vivo mice studies, it was suggested that TNFR2+CD8+Tregs can
preferentially target allogeneic T cells and thus effectively treat
GvHD and rejection (56, 57). However, as in CD4+ T cells,
TNFa-TNFR2 expression and signaling within the CD8+
population is varied. TNFR2 is expressed on CD8+ T effector
cells and has been shown to be a marker of their proliferative and
cytotoxic effects during early phases of the immune response as well
as a signal for CD8+ T effector cell apoptosis and activity
termination during the later phases of the immune response (51).
These diverse functions highlight the complexity required to
maintain homeostasis as well as the care that must be taken when
studying these cells and developing targeted therapies.
TNFR2 in B Regulatory Cells
B regulatory cells (Bregs) are a highly diverse suppressive subset of B
cells which can arise at any stage in B cell development and have
strong suppressive ability, particularly in response to inflammation
(58, 59). Bregs have a hallmark production of cytokines such as IL-
10. IL-10 release by B cells has been shown to reduce T cell
proliferation (60). Bregs have also shown to take part in tolerance
induction in solid organ transplantation (61–63). Previously, no
common surface marker for Bregs were known. However, TNFR2
expression on B cells has been recently shown to characterize Bregs
(64). In this same study, administration of TNFR2 agonist to cell
cultures enhanced both production of IL-10 and IL-6 by these B
cells. TNFR2 expression has also been related to human memory B
cells with suppressive function and increasing evidence suggests that
expression of TNFR2 on B cells is characteristic of a suppressive B
cell subset (59).
FIGURE 1 | When mTNFa binds to TNFR2, MDSCs, CD4+Tregs, CD8+Tregs, and Bregs are activated. This increases CD4+Treg and CD8+Treg stability and
expansion. It stimulates production of anti-inflammatory cytokines such as IL-10 and TGF-b. It inhibits CD4+ T effector cell function. It promotes upregulation of
immunoglobulin A (IgA) B cells.
July 2022 | Volume 13 | Article 903913
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TNFR2 in Myeloid-Derived Suppressor
Cells
Myeloid-derived suppressor cells (MDSCs) are important negative
immune regulators and are characterized by a heterogenous
population of both immature and progenitor myeloid cells (65).
In the context of lung transplantation, granulocyte derived MDSCs
have been shown to be correlated with a stable patient phenotype
while lower levels have been associated with post-transplant
complications (66). The expression of TNFR2 on MDSCs has also
been revealed (Figure 1). Monocyte-derived MDSCs (Mo-MDSC),
which are a subset of MDSC, have been shown to be highly effective
in suppressing proliferation of CD4+ T effector cells as well as
expanding CD4+Tregs. TNFR2 expression on these Mo-MDSCs
has been associated with their generation and function (67, 68). In
addition, mTNF has been shown to promote MDSC suppressive
function and this activity appears to be mediated via TNFR2
expression (68, 69). In cancer mice models, TNFR2 expression on
MDSCs has been found to crosstalk with B cells in germinal centers.
Interestingly, this interaction has been shown to mediate
immunosuppression by upregulating immunoglobulin A (IgA)
responses and promoting IL-10 production (70). TNFR2
expression on MDSCs has also been studied in the context of
tuberculosis and has been associated as a strong driver of anti-
inflammatory function (71).
TNFR2 EXPRESSION AND ISCHEMIA
REPERFUSION INJURY

Ischemia-reperfusion injury (IRI) is an inevitable component of
organ transplantation and strongly contributes to short and
long-term graft outcomes. Increasing evidence now links IRI
with activation of the innate and adaptive immune systems (72).
During the ischemia phase, adenosine triphosphate (ATP) and
glycogen depletion occur, which then leads to mitochondrial
dysfunction and ultimately cell death of both endothelial cells
and tubular epithelial cells. During reperfusion, there is release of
reactive oxygen species, chemokines, cytokines, as well as the
products of cell death into the circulation (17). This ultimately
stimulates the innate immune response which then enhances
activation of the adaptive immune responses and promotes
graft allorecognition.

TNFa has been found to be a key cytokine in inducing
apoptosis during progression of IRI in many contexts
including acute kidney injury (AKI) models (5, 73, 74). In
these studies, rat experimental models of AKI were studied and
anti-TNFa therapy was found to improve renal IRI recovery.
However, these studies lack information on the differential
contributions that TNFR1 and TNFR2 hold during IRI.

The differential role of TNFa signaling via TNFR1 and
TNFR2 has been studied in IRI in the context of arteriogenesis
and angiogenesis (75, 76). In these studies, TNFR2 expression on
vascular endothelial cells was found to induce endothelial cell
angiogenesis, proliferation, survival, and migration while TNFR1
caused endothelial cell apoptosis and inhibition of migration.
Frontiers in Immunology | www.frontiersin.org 4
Other in vivo models of the role of TNFR2 in IRI have also
been studied. In mouse hind-limb ischemia models, TNFR2
deletion has been shown to be associated with an increase in
inflammatory response as well as in a decrease in post hind limb
ischemia recovery (77). This same group has shown that TNFR2
is required in ischemia-induced neovascularization and is
protective in human adult myocardial infarctions (78, 79).
There have also been studies of IRI in cardiomyocyte-induced
ischemia (80).. In these settings, TNFR2 expression on
cardiomyocytes was associated with cardioprotection while
TNFR1 expression on cardiomyocytes was associated with
cardiac dysfunction, fibrosis, and cell death.

Etanercept is a fusion protein consisting of TNFR2 combined
with the immunoglobulin G1 fragment crystallizable region,
developed for use in autoimmune disorders (81). It is the first
therapeutic agent to specifically target TNFR2 signaling, by
simulating TNFR2 shedding. While data is limited in the
transplant context, etanercept use has been shown to be
advantageous in limiting sequelae of IRI in various contexts,
including kidney (82), heart (83, 84), brain (85, 86), and intestine
(87, 88).
THERAPEUTIC USE IN ISLET
TRANSPLANTATION

Islet transplantation is a treatment of choice in many
jurisdictions, particularly for diabetes patients with severe
hypoglycemic unawareness, thanks to improvements in insulin
independence rates among recipients. Infusion-related cytokine
release and neutrophil chemotaxis has long been appreciated as a
cause of islet graft loss, leading to a syndrome known as the
immediate, blood-mediated inflammatory response (IBMIR)
(89). Furthermore, studies of islet cell apoptosis following
isolation suggested that TNFa production by the cell
preparation was associated with higher levels of cell death (90).
In experimental models, etanercept use was associated with
improved function and lower rates of beta-cell apoptosis,
particularly when used in conjunction with an anti-IL-1b agent
(91). Early adoption in the clinical setting suggested that
etanercept use was associated with improved graft function
and a higher degree of success following a single infusion of
donor islets (92, 93). This was confirmed in larger analyses as
greater experience was gained with multiple immunosuppressive
protocols (94), with administration of etanercept being
associated with preservation of insulin independence at 5 years
post-transplant, compared to protocols using similar induction
therapy, but without etanercept (Figure 2). More robust
evidence of the utility of this approach was seen in
multivariable statistical analysis of international registry data,
in which etanercept use was associated with a significant
reduction in risk of graft failure (95). Similar conclusions were
drawn in a systematic analysis of reported clinical data (96).
These results cemented etanercept use as a mainstay in peri-
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transplant immunotherapy in this context (97). Early clinical
experience with combination therapy targeting TNFa and IL-1b
signaling has also been shown to be safe (98). As newer, stem-cell
derived products become available to treat type 1 diabetes
mellitus, their use may still be complicated by IBMIR and the
effects of IRI on the graft during pre-transplant culture and
infusion. While etanercept use may provide an advantage during
this period, some evidence suggests a narrow therapeutic window
beyond which toxicity may be seen (99).
TNFR2 IN SOLID ORGAN
TRANSPLANTATION AND ACUTE
REJECTION

Early graft function is crucial to early patient survival and to long
term outcomes in many organ transplant contexts, and is closely
related to degree of IRI. In kidney transplantation, IRI manifests as
delayed graft function (DGF) (100). DGF, which is defined as the
need for dialysis after kidney transplantation, affects between 25 and
40% of grafts from deceased donors, and has long been associated
with a higher lifetime risk of acute rejection episodes and poorer
long term allograft survival (101). In the context of liver
transplantation, IRI is linked to increased liver enzymes, higher
rates of biliary strictures, increase risk of acute and chronic rejection,
and ultimately poorer long-term graft outcomes (102–104). In the
context of pancreas transplantation, IRI is associated with
pancreatitis, graft thrombosis, as well as graft loss (105). For lung
transplantation, IRI increases chance of alveolar lung damage, lung
edema, hypoxemia, and graft failure (106). Finally, for heart
transplantation, IRI is associated with early graft dysfunction,
primary graft dysfunction, and cardiac allograft vasculopathy (107).

As described earlier, TNFa-TNFR2 interactions have been
shown to dampen IRI response in a variety of non-transplant
Frontiers in Immunology | www.frontiersin.org 5
contexts. While the role of TNFR2 expression in renal IRI after
transplantation hasn’t yet been studied, its role as a marker of
graft function has been increasingly explored. De novo TNFR2
expression on human tubular epithelial cells was first observed
during renal transplant biopsies of acutely rejecting allografts
(108). It was also discovered that amount of TNFR2 expression
correlated with severity of rejection episode. These findings were
confirmed in both human and rat studies where biopsies of renal
allografts with acute rejection were taken and showed
significantly higher staining for TNFR2 observed on podocytes
and renal tubular epithelial cells (109). However, despite TNFR2
expression on tubular epithelial cells correlating with acute
rejection episode and severity, no long-term data was available
for human patients in studying if TNFR2 was also related to
faster resolution or improved return to baseline creatinine. Also,
no mechanistic studies were performed during these models and
thus these studies could not differentiate if this increase in
TNFR2 expression was an instigator of rejection or a response
to rejection for its resolution. Finally, TNFR2 expression in
peripheral blood sample of the patients was not studied and
could have been an interesting addition to assess if any changes
in TNFR2 frequency on immune regulatory versus pro-
inflammatory cells was observed. An increase in serum TNFR2
expression in patients with acute rejection post kidney transplant
has also been observed (110, 111). However, these studies were
lacking correlation with long-term graft and patient outcomes as
well as was characterization of the cell type which had an increase
TNFR2 frequency. Together, these studies suggest a role for
TNFR2 measurement in conjunction with serum creatinine as a
diagnostic marker of acute rejection however, they lack the
mechanistic link between TNFR2 and acute rejection and lack
long-term graft and patient outcomes data to further clarify
this link.

The mechanistic links and signaling pathways involved in
TNFR2 expressing tubular epithelial cells in the context of acute
rejection have since been studied (112, 113). TNFR1 signaling
was shown to colocalize with apoptosis signal-regulating kinase-
1 (ASK1) on glomerular cells and peritubular capillary
endothelial cells while TNFR2 colocalized with endothelial/
epithelial tyrosine kinase (EKT) on tubular epithelial cells and
glomerular cells. While TNFR1-ASK1 were shown to induce
proapoptotic pathways, TNFR2-EKT signaling was shown to
induce tubular epithelial cell adhesion, migration, proliferation,
and survival during acute rejection episodes. The same group
revealed an associated upregulation as well as colocalization of
TNFa converting enzyme (TACE) with TNFR2 on tubular
epithelial cell during acute rejection episode. This suggests a
role for TACE to promote TNFR2 shedding and limit
proinflammatory TNFa effects during acute rejection episodes
(114). More recently, the study (115) reported that TNFR2
signaling induces regeneration of tubular epithelial cells during
acute cell-mediated kidney rejection. In this study, a mechanistic
link between TNFR2 signaling and induction of tubular epithelial
stem cell properties during acute rejection was observed.

While these studies observed an association between TNFR2
expression on tubular epithelial cells and acute rejection, there is
FIGURE 2 | Upon administration of Etanercept with an IL-1b antagonist,
studies have shown a decrease in immediate blood-mediated inflammatory
response (IBMIR), beta-cell apoptosis, and an improvement in graft function
(84–86).
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paucity of data looking at TNFR2 expression on immune cells
during solid organ transplantation. Our group has previously
studied the role of the frequency of recipient pretransplant
TNFR2+CD4+Tregs as a predictor of post kidney transplant DGF
and short to medium-term outcomes (116). Increase pretransplant
circulating peripheral CD4+Treg TNFR2 frequency was associated
with decreased post-transplant DGF rates and was hypothesized to
be linked to its role in inducing and maintaining higher CD4+Treg
suppressive function. Also, TNFR2 expression on Mo-MDSCs has
been associated with increased CD4+Tregs frequency in human
renal transplantation (117).

TNFR2 expression has also been briefly explored in heart
transplantation. In cardiac transplant mice models an increase in
TNFR2 expression was observed on cardiomyocytes and was
associated with an increase in cell cycle entry and proliferation of
these cardiomyocytes during acute rejection episodes (118). On
the other hand, both TNFR1 and TNFR2 have been associated
with graft arterial disease in cardiac allografts (119). Also, in rat
cardiac allograft models, treatment with TNFR2 recombinant
protein decreased TNFa expression as well as decreased cardiac
remodeling (120).

These paradoxical results can be related to differential expression
of TNF receptors on distinct cell types which can thus lead to
contradictory phenotypes (Figure 3). In addition, while some data is
available on TNFR2 expression on immune regulatory cells in the
context of solid organ transplantation, there remains many
unstudied avenues to pursue. Finally, as a link between TNFR2
signaling and stem cell property induction in tubular epithelial cells
Frontiers in Immunology | www.frontiersin.org 6
has been demonstrated, research exploring therapeutic potentials
for TNFR2 targeting in transplant rejection and modulation of
ischemia reperfusion injury can be considered.
THERAPEUTIC POTENTIAL IN SOLID
ORGAN TRANSPLANTATION

The therapeutic potential of TNFR2 agonists and antagonists has
been progressively more studied in the context of CD4+Treg
expansion or depletion in both autoimmunity, GvHD, and cancer
(121, 122). However, there remains a lack of studies in solid organ
transplantation. In this section, we will discuss potential therapeutic
avenues with regard to the emerging evidence available on TNFR2
pharmacological agents.

First, selective TNFR2 targeting has been increasingly study in
the setting of GvHD (40, 123–126). Indeed, TNFR2 agonist
treatment was shown to promote CD4+Treg expansion and
improve resolution of rejection while TNFR2 antagonists
abrogated these results. As CD4+Treg TNFR2 frequency has been
associated with improved short term kidney transplantation
outcomes, this could be an exciting avenue to follow. By doing so,
both improved graft survival in solid organ transplantation as well
as improved treatments against rejection could be possible.

Finally, as TNFR2 has been shown to induce stem cell
properties of tubular epithelial cells and their subsequent
regeneration (115). TNFR2 expression in mesenchymal stem
A B

FIGURE 3 | (A) TNFR2 expression in kidney transplantation. Increased TNFR2 expression on tubular epithelial cells during acute rejection episode has been
associated with renal tubular regeneration (108). Circulating pre-transplant TNFR2 expression on CD4+Tregs has been associated with decreased delayed graft
function (DGF) rates (109). Circulating post-transplant MDSCs has been associated with increased CD4+Treg frequency (105). (B) Increased TNFR2 expression on
cardiomyocyte post-transplantation has been associated with increased cell cycle entry and proliferation during acute rejection episodes (111).
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cells has also been shown to maintain their regenerative
functions and induce CD4+Tregs while TNFR2 inhibition has
been shown to decrease expression of the mesenchymal stem cell
characteristics (127). These novel findings could also allow for
TNFR2 targeting in transplantation to induce epithelial
regeneration. However, this will have to be done with care as
TNFR2 expression varies greatly in different cell types and its
effects can be quite dichotomous.
CONCLUSION

The expression of TNFR2 on CD4+Tregs, CD8+Tregs, MDSCs,
and Bregs has been associated with an immune regulatory
phenotype. In solid organ transplantation, TNFR2+CD4+Tregs
and TNFR2+MDSCs have been infrequently studied and have
been associated with improved short-term outcomes after renal
transplantation as well as increased CD4+Treg frequency and
suppressive function. TNFR2 has also been observed on tubular
epithelial cells as well as cardiomyocytes of renal and cardiac
allografts respectively. In the context of tubular epithelial cells,
recent evidence has shown a correlation between TNFR2
expression and stem cell phenotype induction while in the
Frontiers in Immunology | www.frontiersin.org 7
context of TNFR2 expression on cardiomyocytes, contradictory
results have been observed.

This review highlights the positive impact that TNFa-TNFR2
signaling appears to have in solid transplantation. However, the
scarcity of data requires further investigation in the role of
TNFR2 in all types of solid organ transplantation as well as
dedicated studies on the therapeutic use of TNFR2 agents during
induction, maintenance therapy, or in the treatment of rejection.
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