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The next generations of wireless networks will
work in frequency bands ranging from sub-6 GHz
up to 100GHz. Radio signal propagation differs
here in several critical aspects from the behaviour
in the microwave frequencies currently used. With
wavelengths in the millimetre range (mmWave),
both penetration loss and free-space path loss
increase, while specular reflection will dominate over
diffraction as an important propagation channel.
Thus, current channel model protocols used for the
generation of mobile networks and based on statistical
parameter distributions obtained from measurements
become insufficient due to the lack of deterministic
information about the surroundings of the base station
and the receiver-devices. These challenges call for
new modelling tools for channel modelling which
work in the short-wavelength/high-frequency limit
and incorporate site-specific details—both indoors
and outdoors. Typical high-frequency tools used in
this context—besides purely statistical approaches—
are based on ray-tracing techniques. Ray-tracing
can become challenging when multiple reflections
dominate. In this context, mesh-based energy flow
methods have become popular in recent years. In
this study, we compare the two approaches both in
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terms of accuracy and efficiency and benchmark them against traditional power balance
methods.

1. Introduction

The next generation of wireless communication systems (5G) will be based on super high
frequency (SHF) and extremely high frequency (EHF) technologies making use of the enormous
amount of bandwidth available at high-frequency bands [1]. Currently, the UK and Europe
have adopted carrier frequencies around 3.6 GHz. The Americas and Asia will operate at both
sub-6 GHz bands as well as mmWaves bands: more precisely, carrier frequencies at 24 GHz
and 28 GHz have been adopted [2,3]. The transition from 4G to 5G and beyond calls for new
methods and techniques for modelling network coverage. With a greatly increased density of
base stations and demand for massive MIMO [4], beam-steering, peer-to-peer networks and a
proliferation of communicating devices in the emerging Internet of Things, accurate modelling
of network coverage down to the metre or even centimetre scale is paramount for cost-effective
solutions towards maximizing wireless coverage where needed. For recent reviews highlighting
the challenges and opportunities for mmWave communication networks, we recommend [2,3]

Traditional, pre-5G channel modelling is largely based on extensive measurement campaigns,
collecting data in terms of probability distributions for defined scenarios such as urban, rural,
indoor or crowded environments. Important large-scale channel model parameters are free-
space path-loss distributions both for line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios,
the distribution of the Angle of Departure (AoD) and Arrival (AoA) at the transmitting (Tx)
and receiving antennas (Rx), as well as the signal delay spread due to signals taking paths
of different geometrical length. Additional parameters are the distribution of different clusters
of rays connecting Tx to Rx including multiple reflection and diffraction paths, and various
statistical quantities such as auto- and cross-correlations in the large-scale parameters. Such a
statistical approach for characterizing channel models has been chosen for the 2007 Winner II
(4G) models [5] and extensions thereof [2].

Propagation at mmWave frequencies differs in several important aspects from those at
microwave frequencies: free space path-loss is higher, demanding smaller cell sizes (1km or
less) and a higher density of base-stations (BS) together with directive transmission patterns
using multiple-input-multiple-output (MIMO) antenna set-ups and beam-forming techniques;
penetration loss increases, so shadowing due to buildings and other obstacles has a more
detrimental effect, especially in dense urban environments. Diffraction as a transfer path is less
efficient with a narrower shadow boundary, so multiple-scattering paths may dominate for NLOS
scenarios. The channel characteristics are more sensitive to smaller scales of the environment
due to the shorter wavelengths leading to significant, site-dependent diffuse scattering, see [3].
Further complications will arise when considering mobile BSs, device-to-device or vehicle-to-
vehicle communication.

A good understanding of the propagation mechanisms and available communication channels
is vital for designing and optimizing mmWave networks. There is a growing consensus that
purely statistical channel models are no-longer suited, and that one needs to move to (semi)
deterministic models containing specific information about the surrounding environment—
also referred to as spatial consistency by Rappaport et al. [3]. The METIS (Mobile and
wireless communications Enablers for the Twenty-twenty Information Society) consortium has
developed a map-based channel model protocol [6], which includes various deterministic ray-
tracing contributions (such as diffractive, specular and diffusive scattering) in a site-specific
environment. Establishing a balance between complexity and efficiency is important and is still
heavily weighted towards simple models of surrounding obstacles and only a few successive
scattering events. Similarly, the MiWEBA (Millimetre-Wave Evolution for Backhaul and Access)
approach [7] accounts only for deterministic specular reflections and treats other relevant
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quantities statistically. The METIS report [6] importantly states the limitations of ray-tracing:
the computational effort of sampling all geometrical paths from a sender to a receiver up to a
certain number of reflections n increases quickly with 7 due to an exponential increase in the
number of ray paths. Moreover, the computational demand for a ray-tracing analysis increases
with the complexity of the boundaries due to the growing number of possible cases which need
to be considered. (Flat walls are easier to handle than sub-structured surfaces, for example).
Commercial software for ray-tracing in the mmWave regime considered in [8] gives only fairly
coarse resolutions. There is thus considerable doubt that the METIS/MiWEBA approach can be
systematically extended and refined beyond the current suggestions.

A possible way to incorporate site-specific information without reverting back to full-wave
solvers—far too costly given that typical distances are orders of magnitudes larger than the
wavelength—is using full ray-tracing computations. Ray tracing is efficient as long as the number
of possible reflections taken into account is small, but may become inefficient in reverberant
environments. Recently, a mesh-based ray tracing solver called Dynamical Energy Analysis (DEA)
[9,10] has been developed. It approximates wave energy transport using energy flow equations
written in terms of so-called linear transfer operators, here formulated as a boundary integral
equation computing power fluxes through interfaces. DEA provides an efficient numerical
approximation of these operators in matrix form and can be formulated on computational meshes,
such as provided by finite-element (FE) meshes in two [11] and three dimensions [12]. Recently,
a theory has been developed to include the geometrical theory of diffraction in phase space
distributions through the Wigner function [13], which paves the way to the inclusion of diffraction
in DEA. The advantages of DEA compared to standard ray-tracing are that the complexity of the
environment (due to complex boundaries) is fully modelled as part of the mesh and multiple
reflections can be accounted for by iterations of the linear operator. The size of the DEA mesh is
independent of frequency and allows for large variations in cell size.

In this paper, we analyse the usefulness of the DEA methodology compared to standard ray
tracing methods, and simplified power balance (PWB) relations, offering an example of multiply
connected and open indoor environments. We will focus here in particular on modelling EM
energy distributions in cavities coupled through apertures and including obstacles.

Applications of the PWB method to nested reverberation chambers (RC) to emulate fading in
multiply connected wireless channels have been considered in the literature. Both two- and three-
cavity RC environments have been studied in the time [14] and frequency [15-18] domains. More
recently, hybrid deterministic-statistical models have been developed to study complex single
cavity environments [19] in an electromagnetic compatibility (EMC) context and to accelerate ray
tracing in wireless coverage planning tools [20]. However, as future wireless communications
will seek to improve coverage in the outdoor to indoor transition, there is a need to go beyond
single environment modelling, thus consider coupling across multiply connected environments.
Recently, a graph model of multi-room environment has been developed [21].

The paper is structured as follows: we overview the different methods mentioned above in a
background section, §2; we then define the problem set-up in §3, give a technical introduction of
the methods in §4, and present the results in §5. We draw conclusions in §6.

2. Background

Determining the electromagnetic (EM) field within systems of enclosures connected through
apertures is a standard problem [22] with applications ranging from EMC issues to characterizing
wireless communication in indoor scenarios. In principle, one can numerically solve the
governing Maxwell’s equations using methods such as the finite-element method (FEM) [23],
Finite difference time domain (FDTD) method [24] or the transmission-line modelling (TLM)
method [25,26]. The resolution required for these deterministic methods scales with the inverse
of the wavelength and is thus computationally expensive in the short-wavelength limit (i.e. when
wavelengths are small compared to typical scales of the enclosure). In addition, small changes of
the interior structure of a given system will drastically alter the solution of the EM field [27,28].
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Specific high-frequency and statistical methods may thus be more appropriate when studying
such systems describing mean values and fluctuations of the system’s response. In the following,
we will briefly introduce some of these approaches, namely the power balance method, ray tracing
and the so-called Dynamical Energy Analysis. A detailed numerical comparison of these three
methods for coupled enclosure scenarios is provided in subsequent sections.

(@) Power balance methods

Wave energy distributions in complex mechanical systems can often be modelled well by using
a thermodynamical approach. Lyon argued as early as 1969 [29] that the flow of wave energy
follows the gradient of the energy density just like heat energy flows along the temperature
gradient. To simplify the treatment, it is often suggested to partition the full system into
subsystems and to assume that each subsystem is internally in ‘thermal’ equilibrium. Interactions
between directly coupled subsystems can then be described in terms of coupling constants
determined by the properties of the wave dynamics at the interfaces between subsystems alone.
These ideas form the basis of Statistical Energy Analysis (SEA) [30] which has become an important
tool in mechanical engineering to describe the flow of vibrational energy in complex mechanical
structures. Detailed descriptions can be found in text books by Lyon & DeJong [30], Keane & Price
[31] and LeBot [32]. In a wider context, and in particular for applications in electromagnetism, this
approach is known under the name PoWer Balance method (PWB) [33-35]. The method computes
the mean power flow between adjacent subsystems assuming—like in SEA—that the power
is proportional to the difference in the energy density of the two subsystems. The constant
of proportionality (also referred to as the coupling loss factor) depends on the details of the
coupling such as the size of the aperture. The energy density in each subsystem is assumed
to be constant. This leads to a simple linear system of equations with dimension equal to the
number of subsystems. PWB is an energy method and does not incorporate wave effects such as
interferences or resonances and can thus not capture the fluctuations inherent in a wave dynamics.
A method similar in spirit but including wave effects is the Baum-Liu-Tesche approach [36,37]
which analyses a complex system by studying the travelling waves between its sub-volumes. A
version of the PWB method estimating the variance of the fluctuations has been presented in [38].
Alternatively, the full probability density of the fluctuations in coupled cavities can be obtained
from the Random Coupling Model (RCM), where the cavity fluctuations are produced using random
matrix ensembles [39,40]. A hybrid PWB/RCM method has recently been proposed in [41].

The PWB is based on two main assumptions: (i) the wave field is uniform in each subsystem
as mentioned earlier and (ii) input and output signals within each subsystem are uncorrelated.
Assumption (i) is often fulfilled if the coupling between cavities is weak and damping is low.
The second assumption is generally fulfilled if the cavity has irregular boundaries (often referred
to as being wave chaotic) [42] and the sources are uncorrelated [43]. Whether a given system is
well described by a PWB approach is often hard to determine a priori (due to the complexity of
the set-up and the number of cavities) and may depend crucially on how the sub-structuring is
chosen. A more accurate, but also computationally more demanding high-frequency approach is
ray tracing and DEA discussed in the next sections.

(b) Raytracing

A method similar in spirit but very different in applications is the so-called Ray Tracing technique
(RT). The wave intensity distribution at a specific point r is determined here by summing over
contributions from all ray paths starting at a source point ry and reaching the receiver point r. It
thus takes into account the full flow of ray trajectories. There are many different approaches to set-
up efficient RT algorithms; which method to choose depends on the complexity of the reflecting
boundaries and the number of reflections which need to be taken into account. We will not go into
details here and refer the readers to [44—46]. The methods have found widespread applications in
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room acoustics [45] and seismology [47] as well as in determining radio-wave field distributions
in wireless communication [48] and for computer imaging software [44].

PWB and RT are in fact complementary in many ways. Ray tracing can handle wave problems
well, in which the effective number of reflections at walls or interfaces is relatively small. It gives
estimates for the wave energy density with detailed spatial resolution and works for all types of
geometries and interfaces. PWB can deal with complex structures carrying wave energy over
many sub-elements including potentially a large number of reflections and scattering events,
albeit at the cost of reduced resolution. In addition, the quality of PWB predictions may depend
on how the subsystems are chosen as well as on the geometry of the subsystems themselves, and
error bounds are often hard to obtain.

Ray tracing algorithms, which keep information about the lengths of individual rays, can
predict interference effects and thus recreate the fluctuations in a typical wave signal unlike
PWB methods. Diffraction effects can be taken into account using Keller’s Geometrical Theory
of Diffraction [49] or extensions thereof [50].

For a ray tracing treatment in enclosed regions, the trajectories reflect from walls, and refract
if the medium is inhomogeneous. When a ray reflects from a wall, energy is deposited in the wall
depending on the wall material properties, the angle of incidence and the polarization of the ray.
The geometry of the system needs to be specified to implement RT. In cases where the supporting
medium is inhomogeneous, spatial variation must be prescribed as well. Since the field is being
represented by a discrete set of rays, the solution invariably requires solving for a large number
of trajectories to achieve a smooth distribution of the energy density. For the RT results presented
later in comparison with DEA and PWB, we use a simple forward algorithm not sampling the ray
lengths and thus not including interference. We will also neglect diffraction effects. The RT results
will be compared with results from a DEA calculation, the method is briefly described below.

(<) Dynamical energy analysis

Dynamical energy analysis (DEA) can be interpreted as an Eulerian description of RT. In DEA,
the volume is gridded much as it would be for methods to obtain a full-wave solution. However,
since resolution on wavelength scales is not required in a ray-tracing simulation, the mesh can be
much coarser than would be necessary for solving the underlying wave problem. The quantity
of interest in DEA is an energy density, computed as a phase-space flux on the faces of a mesh
cell. For example, in a three-dimensional (3D) problem and for monochromatic radiation, one
records the power per unit area and per unit solid angle on the mesh boundary of each cell.
This quantity is then propagated across the cell and re-tabulated on the facing surfaces. This
process is iterated until a steady state is achieved. The propagator itself takes the form of a linear
operator which is discretized using basis functions representing phase-space fluxes on the mesh
boundaries. Numerical solutions are obtained by solving linear matrix equations of the form

(1 —=1L)p=po, (2.1)

where p and pg are flux densities representing the equilibrium solution and the source,
respectively, and the matrix L is a finite-dimensional representation of the phase-space
propagator. In typical implementations, the dimension of L is the total number of mesh
boundaries [i.e. 3x the number of mesh cells in a triangulated two-dimensional (2D) mesh or 4x
the number of mesh cells in a tetrahedral 3D mesh] multiplied by the number of basis functions
used to resolve the momentum (or direction) variable.

The method has been introduced first in 2009 [9] and has been refined over the years, mainly
for applications in vibro-acoustics. It is now able to run on grids of several million elements
in 2D [10,11,51,52] and has been extended to 3D [12,53]. DEA interpolates between PWB and a
full RT analysis when increasing the basis size. It thus delivers a refined picture of the energy
distribution compared to PWB and by resolving the directionality of the flow, it is insensitive to
any sub-structuring condition so important in a PWB approach. By writing the flow equations in
matrix form, all reflections are taken into account, so DEA does not suffer from the problem of
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exponential proliferation of rays with the reflection number—a limiting factor of RT algorithms
in reverberant environments. By mapping the flow equations onto a mesh, the complexity of
the geometry of the enclosure is not an issue in DEA—unlike in RT, where finding the ray
intersections with boundaries becomes increasingly difficult for more complex boundaries (in
terms of shape and number). Setting up the matrix L and solving the system (2.1) can of course be
time consuming. It is thus of interest to compare the three methods introduced above and better
characterize their domain of validity and efficiency. In particular, we expect that (i) DEA and RT
agree in the limit of large basis size/large number of rays; (ii) DEA is more efficient than RT in
reverberant situations (low damping, enclosures weakly coupled to an outer environment, thus
many reflections), whereas RT will be preferable in more open scenarios; (iii) both RT and DEA
beat PWB in accuracy at the expense of a higher computational cost, but agree whenever the PWB
conditions discussed above are fulfilled.

We note that neither PWB nor DEA carry any phase information; the results obtained give
average energy densities and do not try to replicate wave fluctuations due to interference and
resonance phenomena. This treatment mirrors the diagonal approximation adopted to obtain the
DEA flow equations, where the phase difference between waves disappear under averaging.
Interference induced fluctuations between waves can be predicted separately by statistical
methods to give a probability distribution around the average energy provided by DEA/PWB
discussed in this paper (see [41] for an example involving coupled cavities). Furthermore, it has
been shown in [54] that the energy variance can be estimated via the autocorrelation of DEA
densities. RT and DEA predictions are accurate in the moderate to high loss regime, which is a
reasonable assumption in both indoor and outdoor wireless communication environments.

In the following, we will present for the first time a detailed comparison of the three methods
for a set of coupled cavities.

3. Problem set-up

We construct a problem of broad interest in coverage planning of wireless communications:
channel modelling of indoor propagation of wireless signals and characterization of the
outdoor to indoor coupling. This is inspired by multiply connected rooms with objects within
them, reminiscent, for example, of floor plans in a building. In modelling the two rooms
coupled through windows/doors, we make an analogy with EM cavities coupled by apertures.
Furthermore, object geometries are deliberately chosen to be simple. This provides a convenient
framework where all the physical mechanisms relevant to signal propagation are present and
can be controlled in our simulations: the amount of power leaking from the outdoor through
the indoor, as well as the amount of power entering one room from the other, can be scaled
by the number and size of apertures in the cavity walls; the losses experienced by the signal
reflected within the environment can be controlled by an average wall absorption factor that will
be defined later on; position and numerosity of objects can create or suppress the LOS between
pairs of aperture in the interior regions.

The geometry of the problem for which we compare results is shown in figure 1. It is a 2D,
two-cavity system, where the cavities are separated by an aperture. There are two ports, one
on the top boundary of each of the left and right cavities. These ports are treated as apertures
and allow for both the entrance and exit of power from the system. Within each cavity there are
scatterers that are shown as circles. In figure 14, the three-disc configuration of cavity 1 can easily
keep rays entering Port 1 within the cavity for a long time before bouncing off to cavity 2. In
figure 1b, the three-disc configuration of cavity 1 easily allows rays entering through Port 1 to
get inside cavity 2 by bouncing off the intermediate sphere. This will be shown explicitly in the
next section. We assume that the boundary of the cavity and the scatterers are made of some
material, whose loss is captured by a lossy reflection coefficient—related to the loss factor « of the
cavity. We further assume that scatterers and walls are made of the same material, thus leading
to the same value of the reflection coefficient throughout. However, the code can accommodate
objects and walls with unequal and inhomogeneous reflection coefficients. We have, here, treated
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Figure 1. Geometries considered for the comparison between the three high-frequency methods. In both the asymmetric (a)
and symmetric (b) configurations, two cavities of unit side-length are connected through an aperture of 0.2 unit length. Each
cavity is equipped with a port connected to an external environment which is considered as an infinite-acting reservoir. The
embedded circles are made of the same partially reflected material as the wall and can be considered as scatterers. All circles
have the same radius of 0.1 units. Both ports have an opening size of 0.1571 unit length. (Online version in colour.)

Table 1. Dimensions (in unit length) of the ports (apertures) for the geometries considered in this paper.

#port figure la figure 1b figure 2 figure 3
Py 0.157 0.157 0.157 0.0157
PA ........................................ oy Ly —— by 5
Pz ......................................... g e R i

the loss in an approximate way by making it independent of angle of incidence. However, it is
straightforward to account for polarization and include the Fresnel reflection coefficient in the
formulation, as usually done in standard RT algorithms. We inject wave energy in Port 1. Then
the waves propagate through the cavities and reflect from the walls and the scatterers. After some
cavity dwell time, the energy will leave the system either through Port 1, Port 2, or be absorbed
by a wall. Our goal is to calculate how much power is delivered either to Port 1 or 2 while we
vary the loss of wall and object boundaries. Table 1 reports the dimensions of port 1 (P1) in cavity
1, port 2 (P7) in cavity 2, and the aperture (P4) in the wall connecting the two cavities.

4. (alculation of power transfer

We will compare the predictions of RT and the DEA to those of the PWB. To quantify the energy
flow predicted by these methods, we define energy fluxes across apertures or ports connecting
the two cavities and connecting each cavity to the exterior.

(a) Power transfer in the power balance method

We begin by defining the quantities used to implement the power balance method. The widths of
Ports 1 and 2, which connect the cavities to the exterior, and of the aperture that couples the two
cavities are respectively denoted (wj, wa, wp). The perimeters of Cavities 1 and 2, including the
scatterers, are denoted (I1, [2). Then,

ol = a(l; — (w; +wp)), (4.1)

where i =1, 2 labels the cavities, defines an effective absorption cross sections of cavity i, which
captures the power absorbed by the wall and scatterer boundaries. The quantity « is the local
fraction of incident power absorbed by the boundary. In our 2D system, the absorption cross
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section in (4.1) represents an effective physical length. The power absorbed is proportional to the
product of this length and the energy per unit area in the cavity under consideration. The constant
of proportionality scales with the wave speed. In addition, the power lost by escaping through the
cavity walls is proportional to the fraction of power incident o, which in practice is determined by
the electrical characteristics of the wall material. Here, we have not focused on specific/prescribed
wall materials: We rather performed a study by varying « across the full range, from 0 (the
incident power is entirely reflected) to 1 (the incident power is entirely absorbed).
The total loss for each cavity, including radiation through apertures and ports, is then

oot =Ml 4w, 4wy, (4.2)

1

wall _t

Similarly to 0", o; °tin (4.2) represents the total length through which the power escapes the
cavity. Let

tot inj back
Pl.0 =P+ Pijac (4.3)

denote the total power entering Cavity i, which includes both the power Pi»nj directly injected into
the cavity and the power Pgad‘ passing through the aperture from the other cavity, labelled j. In
detailed calculations to follow, we inject power only into Cavity 1, so Pinj = 0. We also denote by
port the power leaving through Port i and by PWall the power absorbed by the walls of Cavity i
(mcludmg those of the scatterers).
Under power balance assumptions, the total power and the powers leaving Cavity i through
Port i, through the aperture to the other cavity, and being absorbed by its walls are related by

ptot Pport P]E-ad( pwall
_ i _ _ i

= = = 4.4
Uitot w; wa aiwall 4 ( )

where j=1if i=2 and j=2 if i =1. The weighted powers in these equalities provide a coarse-
grained analogue of the flux density p that is central to DEA. They are equal if p is a constant,
which amounts to an assumption of ergodicity and low loss. If p deviates strongly from
uniformity, the power balance assumptions fail.
In the special case P2 =0, we can show from these balance conditions that the total power
entering Cavity 1 is
Pinj
pot=— 1 (4.5)
tot _tot *
1 — w? /012 05°
We can then also easily find the fractions of power lost by each of the mechanisms of wall loss or
radiation through ports and apertures. For example, in the absence of wall loss (¢ = 0) the fraction
of injected power leaving Cavity 1 through Port 1 is
Pﬁ"’“ _ w1 (w + wp)
pilrlj wiwy + wa(wy + wy)

(4.6)

For the quoted parameters, we find PllaOrt /Pilnj =0.641. On the other hand, with maximum wall
loss (¢ =1), we find
Plloort o /GtOt

Piln] 11— wA/(o,tot tot) (4.7)

For the quoted parameters, 0,°' =5.995, and thus Pport /Plln] =0.0267. Note that in the high loss
case the fraction of power leavmg through Port 1 is a finite number. We will find in the next
section, that in the other two methods, which treat the propagation of wave energy, the power
escaping through the ports vanishes in the high loss case. This is because the propagating wave
energy invariably encounters a wall and is absorbed before arriving at a Port. However, at low
and intermediate loss levels the PWB formulae will be found to be quite accurate.
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(b) Power transfer in the RT method

We briefly discuss the RT algorithm used to calculate power delivery in this section. We basically
follow one of the approaches discussed in [55]. Specifically, we use the ‘Reflected and Transmitted
Rays’ approach as discussed in [55, Section III. B] and the power calculation is done using the
‘Shooting and Bouncing Ray (SBR) Method” as discussed in ([55], Section IV. C). At a port we
launch rays normal to the boundary and uniformly distributed over the port. Each ray contains
initially the same amount of power. The rays follow straight trajectories until they encounter
a wall or scatterer at which point they are specularly reflected and their power is reduced
according to

Pypi1 =R Py, (4.8)

where 1 refers to the bounce number, P, is the power contained in the ray after the n-th bounce
and R is the power reflectivity (discussed further in the next section). So, after each bounce the
ray loses (P, — P;41) amount of power. The R in this paper is independent of incident angle of the
rays and we can fix a value of R for a particular run. Rays that encounter the aperture are allowed
to pass straight through, and rays that encounter a port are allowed to leave. We add up all the
ray powers when the rays escape through a port and that gives us the total power delivered to a
port. To monitor the energy in each cavity, we sum the contributions from each ray segment in a
cavity, taking the product of the power and the time of flight of the segment. Numerical details are
as follows. We typically launch 8002 rays from port and we let the rays bounce until they escape
through either port 1 or port 2 (as shown in figure 4b). We have found 20 bounces to be enough
for all rays to escape.

(c) Power transferin DEA

In order to quantitatively compare DEA, RT and PWB, we calculate the energy flux across
apertures. In the DEA approach, one obtains such a flux by sampling the phase-space density
p, obtained by solving (2.1), along an aperture or port labelled X, according to

Px={p, xx), 4.9)

where xx is a state vector that is entirely supported on the mesh faces forming the aperture or
port. The inner product (, ) here is defined by

= ), J 1 (s, p)2(s, p) dsdp,

esh face
mesh faces

where (s,p) denote position and momentum coordinates on each face [51]. By choosing xx
accordingly, Px provides a direct analogue of the powers Pfort and Pgad( used in §4a to
characterize the PWB.

A benefit of the DEA approach is that it provides us with a direct means of mapping how
strongly different parts of the cavity or its phase space couple to particular loss mechanisms such
as transmission through a given aperture. To see this, let us alternatively express the power flux
across aperture X in the form

Px ={po, 1x), (4.10)

where

1

T
nx = (ﬁ) XX (4.11)

is a density, independent of the source pp, that quantifies how strongly each element of phase
space couples to aperture X. Here, T denotes a transpose operation. Note that ux is found in
practice by solving an adjoint analogue of (2.1), but driven by the aperture state xx rather than
the source pg.

An example of such a calculation is shown in figure 2, where the adjoint density pux has
been computed for each of the Port and aperture of Cavity 1 in the geometry illustrated in
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Figure 2. We show heatmaps that quantify how strongly different parts of Cavity 1 couple to apertures and ports for the
shown geometry (top) and with no wall losses (o« = 0). These are obtained by integrating adjoint density /.y over momentum
coordinates. Part (a) shows coupling to the top aperture while part (b) shows coupling the Port on the side section. For reference,
red dots correspond to the location of point sources shown in table 2. (Online version in colour.)

Table 2. Location of point sources considered for the comparison between DEA, RT and PWB.

# source 1 2 3 4 b) 6 7
(x,y) (0.1,0.9) 0.9,0.1) (0.5,0.4) (0.4,0.) (0.25,0.2) (0.9,0.9) (0.1,0.5)

figure 1a, and with no wall losses (o = 0). For the visualization in figure 2, we have integrated
over momentum coordinates to produce a density in spatial coordinates, plotted as a heatmap.
The points labelled 1...7 indicate the locations of sources reported in table 2, which are to be
used in the next section to compare predictions of PWB, RT and DEA. The non-uniformity of this
heatmap offers a quantitative insight into deviation from the assumptions of ergodicty behind the
power balance method: the relatively large aperture losses in this example result in a deviation
from the uniformity assumed by PWB that is substantial. By contrast, a second calculation for a
set-up that is identical except that the apertures and ports are much narrower, shown in figure 3,
results in much more homogeneous coupling. Here, the assumptions of power balance are much
better grounded and we expect better agreement between PWB, RT and DEA.

5. Results and discussion

In figure 4a, we show the computed spatial distribution of wave energy density using DEA for
the geometry of figure 1b, and in figure 4b we show a sample RT trajectory for the geometry of
figure 1b. The incident power is launched normal to the boundary through Port 1. In the DEA
calculation shown in figure 44, the colour scale indicates the level of wave energy density. The
energy density peaks near the source, that is, Port 1, and decays as one approaches the aperture
and passes into cavity 2. In particular, it reaches its minimum in the regions close to Port 2. In the
corresponding RT calculation, a total of 8002 rays were launched normal to the boundary of Port
1, and each ray is followed for 25 bounces off the wall and object boundaries. The plot 4b shows
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Figure 3. We show heatmaps equivalent to those of figure 2 except that the Port and aperture are narrower (reduced by a
factor of 10 compared to figure 2). The resulting smaller loss in the dynamics of each cavity results in an adjoint density that
is significantly more uniform than in figure 2: significant non-uniformity is seen only in the vicinity of the Port and aperture
themselves. This geometry therefore provides a setting that is closer to the idealized assumptions of PWB. (Online version in
colour.)
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Figure 4. Implementation of the cavity shown in figure 1b by the (a) DEA and (b) RT approach. Subplot (a) shows the energy
density by means of DEA and (b) shows a typical example of ray trajectory computed by the RT method. In both cases, the
incident ray is directed normal from Port 1. (Online version in colour.)

one of the rays tracked by the RT algorithm: The ray bounces within Cavity 1 hitting the scatterers
multiple times, and will eventually enter Cavity 2.

For the scatterer positions shown in figures 4a,b, we vary the absorption parameter «
(equivalent to the power reflectivity R =1 — «) of both the walls and the scatterers. The calculated
powers at Port 1 and Port 2 versus the absorption coefficient « are shown in figure 5 for the
three methods. The quantities Pllm]rt and 132Port refer to power leaving through Port 1 and Port 2,
respectively. As shown in figure 5, DEA and RT follow closely the power balance results in the
regime of low and intermediate losses. There is, however, a substantial deviation between DEA
and RT on the one hand and PWB on the other hand in the high loss limit. The deviation at high
losses can be understood in the following way. Both DEA and RT treat the propagation of energy
through the cavities in full. For the given configuration, wave energy entering Port 1 must be
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Figure 5. The left column shows plots of power on log scale versus loss factor c. The right column shows the same data except
a s on alog scale and power on a linear scale. P2 and P5" refer to power escaping through Port 1and 2, respectively. (Online
version in colour.)

reflected by at least one wall or scatterer section before it leaves through Port 1 or Port 2. At high
losses, this means a substantially larger fraction of injected power will be lost to the walls than
would be predicted based simply on the relative sizes of the ports and the wall. PWB assumes
that the power is uniformly distributed within each cavity and thus there is a larger proportion
of the energy near ports than in the actual energy flow calculations using RT or DEA. We note
that the DEA and RT results match very well for all o except for P}fort at high loss. This is due
to numerical diffusion present in DEA calculations having a larger effect on direct processes, i.e.
energy leaving through Port 1 again after one or two reflections. An example of energy diffusion
predicted by DEA is presented in [56]. Note also, that in the regime of low losses one finds a
small deviation between RT/DEA and PWB. This is due to the fact that different positions of
the scatterers lead to slightly different results for DEA /RT, whereas, the exact locations of the
scatterers has no bearing on the PWB results. This is illustrated by calculations for the geometry
depicted in figure 6a,b where we have moved the scatterers of the left cavity to new positions.
This leads to slightly different curves for P]{)Ort and P2port as shown in figure 7.

To explore the origin of the difference between the powers leaving through Port 1 in the two
cases, figure 4 and figure 6, we have first simplified the problem by eliminating cavity 2 but
keeping the aperture, which now acts similar to Port 1. The geometries we consider are shown
in figures 2 and 3. We then inject power through a point source whose location is varied while
keeping the scatterers fixed. These results are summarized in figure 8, where we have plotted
Pg’ort and Piort (power leaving through the side aperture) at @ =0 versus realizations (that is,
the different locations of the point sources). We also show the value based on a power balance
estimate alone at « =0, that is,

Pllnort

Y1 044

pilnj = (w1 +wa)
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Figure 6. We show the implementation of DEA and RT for a cavity for which we moved the scatterers-figure 1a. In particular,
(a) the computation of wave energy density by means of DEA and (b) RT implementation with one sample ray trajectory. Both
of these can be compared with the images in figure 4. (Online version in colour.)
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Figure 7. Reflected P; and transmitted P, EM power as function of absorption parameter « by the three different high-
frequency methods. (Left column) power on a log scale versus «. (Right column) the same data as the left column displayed in
log-linear scale for o and power, respectively. (Online version in colour.)

This relation can be derived from equation (4.6), setting w» = w4 and the original aperture width
wp — oo. This corresponds to no aperture being present and we are in a one-cavity situation with
two openings. It can be seen that both DEA and RT values of P]fOrt have variations depending
on the source position. The RT and DEA results show the same trend overall with the RT results
slightly larger than those of DEA. To shed light on these variations, we decrease the size of the
apertures and the ports by a factor of 10, see figure 3. These results are summarized in figure 8.
This has no effect on the expected value obtained by means of PWB, but it reduces the variations
for calculations based on RT and DEA. This can be understood by considering that PWB assumes
a uniform distribution of wave energy across the cavities. For RT and DEA cases this holds in
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Figure 8. Power flux versus point source locations (table 2) for the geometry shown in figures 2 and 3 calculated using the three
high-frequency methods at & = 0 (no wall damping). Power flux exiting from (a) the side Port P and (b) the top Port P}°".
In (a,b), the dotted lines are for the structure in figure 2 and solid lines are for the structure in figure 3. (Online version in colour.)

the limit o =0 and small apertures, that is the wave energy has sufficient time to visit all of the
available phase space. In the case shown in figure 2 energy is more likely to escape from the cavity
before exploring the whole phase-space and thus leading to the deviation from PWB—ergodicity
assumption. This is also apparent in the stronger gradients seen in figure 2 compared to figure 3.

We expect RT and DEA to perform better than PWB in the outdoor regime, where losses
are large, i.e. « > 0.5 and the ergodic hypothesis is not valid anymore. DEA can be applied
to any indoor/outdoor environment whose mesh-based CAD representation is available, and
the reflection coefficients of objects is known. DEA does not rely on the ergodic hypothesis
(as in PWB) and is computationally efficient for rays surviving tens of thousands of bounces
(for which RT becomes computationally demanding) through the environment. Furthermore,
either deterministic or stochastics complex sources can be incorporated in DEA through the
Wigner function method [57,58], through which the phase of the EM wave field can be accounted
for. The classical flux density propagated by DEA is retrieved by the Wigner function by
ensemble/frequency averaging. This is important for example in MIMO arrays, where the
direction of the beam-steering originates from phased signal driving the antenna array ports:
The averaging applied to the Wigner function removes the phase while it captures the direction
of propagation of the classical beam through the phase space representation.

In the context of wireless communications, the literature offers some insightful comparison
between RT methods and boundary integral equation solvers validated in coupled indoor
environments [59]. Given the close agreement between DEA and RT, this may serve as an indirect
validation of DEA compared to full wave methods in the context of EM fields. Moreover, DEA has
been validated by both FEM simulations [60] and measurements [10] of structure-borne sound
transmission. Further research is ongoing to validate RT and DEA predictions for EM wave
propagation.

6. Conclusion

We have compared under controlled conditions three different approximate methods of
computing wireless power distribution in multi-cavity systems. These are the power balance
method (PWB), equivalently the statistical energy analysis (SEA), ray tracing (RT) and the
dynamic energy analysis (DEA). All three methods apply to situations in which the wavelength
of the radiation is much smaller than the typical length scales in the problem. As such these
approximate methods are computationally more efficient than full wave computations.

Of the three methods RT and DEA both include propagation effects and account for details of
the geometry of the region being modelled. In principle, these two methods are mathematically
equivalent, although different in implementation. One can view RT as a Lagrangian description
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of wave propagation and DEA as an Eulerian description in analogy with continuum mechanics.
The PWB method, however, only follows the total energy in each macroscopic region (cavity)
of the system. Energy is assumed to be uniformly distributed throughout that region, and thus
propagation effects are not included.

Our findings are as follows. The three methods generally make the same predictions for gross
quantities such as the power leaving through ports or dissipated in walls. These are the things
that PWB predicts that can be compared directly with corresponding quantities predicted by ray
tracing. There are discrepancies between PWB and the other two methods in the prediction of
these gross quantities in cases where the assumptions needed for PWB are not met. Specifically,
when the energy decay time is too short to allow energy to become uniformly distributed
throughout phase space. Examples of this are cases where the wall absorption coefficient is
close to unity. A similar situation occurs in configurations where ports are so large that EM
wave randomization is incomplete. This leads in the DEA and RT computations to strongly
in-homogeneous power distributions that deviate from the average port power predicted by
PWB.

In principle, DEA and RT should give identical results in cases where a converged number
of rays are followed in RT and where a converged resolution in phase space is used in the
DEA. We have found some small deviations between these two methods which we attribute to
numerical diffusion in the DEA method, which is due to a limited resolution in the momentum
representation. These differences were much smaller than those found by comparing PWB to the
two other methods.

It is interesting to ask what further comparisons can be made. First, we might compare
the three approximate solutions to full wave solutions to find how the differences among
the approximate solutions compare with the difference with the exact solution. Such tests are
currently underway. Second, the current study focused on 2D geometry. The issue of three
dimensions and the added complication of field polarization should be addressed. Third, the
comparisons between DEA and RT were limited to gross quantities. The DEA computes local
wave energy density on a grid. Ray Tracing methods can also produce such a quantity. The
most efficient way of doing this would be to adopt the particle in cell (PIC) methods of charged
particle dynamics. This approach treats the motion of particles in the Lagrangian picture while
accumulating on a grid the Eulerian change and current densities. As the next generation of
wireless networks are designed and deployed many of these issues will be addressed.
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