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Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial patho-

gen with a predicted coding capacity of less than 700 proteins and is one of

the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae
is extensively modified by processing events that target the P97 and

P102 adhesin families. Here, we present analyses of the proteome of

M. hyopneumoniae-type strain J using protein-centric approaches (one- and

two-dimensional GeLC–MS/MS) that enabled us to focus on global processing

events in this species. While these approaches only identified 52% of the

predicted proteome (347 proteins), our analyses identified 35 surface-associated

proteins with widely divergent functions that were targets of unusual endopro-

teolytic processing events, including cell adhesins, lipoproteins and proteins

with canonical functions in the cytosol that moonlight on the cell surface.

Affinity chromatography assays that separately used heparin, fibronectin,

actin and host epithelial cell surface proteins as bait recovered cleavage products

derived from these processed proteins, suggesting these fragments interact

directly with the bait proteins and display previously unrecognized adhesive

functions. We hypothesize that protein processing is underestimated as a

post-translational modification in genome-reduced bacteria and prokaryotes

more broadly, and represents an important mechanism for creating cell surface

protein diversity.
1. Background
Mycoplasma spp. are bacteria that evolved by a process of degenerative evol-

ution from the low G þ C Firmicutes. Mycoplasmas have lost genes for cell

wall biosynthesis, and many anabolic processes (including a TCA cycle) are reli-

ant on glycolysis for the production of cellular ATP [1,2]. Mycoplasmas

typically have small genomes of less than 1000 kbp and are dependent on the

host for the supply of cholesterol for membrane biosynthesis, amino acids,

nucleotides and other macromolecular building blocks for cell growth [3]. As

such, mycoplasmas are excellent model organisms to examine the complexity

of post-translational modifications in prokaryotes.

Mycoplasma hyopneumoniae is an agriculturally significant swine respiratory

pathogen that causes substantial economic losses, estimated in the billions of

dollars per annum [4]. Complete genome sequences of four geographically dis-

tinct strains of M. hyopneumoniae are available [3,5,6], shedding light on the

http://crossmark.crossref.org/dialog/?doi=10.1098/rsob.150210&domain=pdf&date_stamp=2016-02-10
mailto:steven.djordjevic@uts.edu.au
http://dx.doi.org/10.1098/rsob.150210
http://dx.doi.org/10.1098/rsob.150210
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


rsob.royalsocietypublishing.org
Open

Biol.6:150210

2
metabolic capacity, host specialization and evolutionary

background of this minimal organism. Genomes range in

size from 850 to 920 kb and encode approximately 700

open reading frames (ORFs). The M. hyopneumoniae strain

232 genome contains 691 known proteins and 728 annotated

genes. A recent proteome analysis of strain 232 identified

8607 unique peptide sequences (false discovery rate of

0.53%) confirming the expression of 70% (483) of the 691 pre-

dicted ORFs during culture in Friis broth. This included 171 of

the 328 predicted hypothetical proteins (52%), 80% of the lipo-

protein genes, and all the P97/P102 adhesin gene families. In

the same study, proteogenomic analysis of strain 232 uncov-

ered previously unidentified genes and 50 extensions to

several genes [7]. Transcriptome studies indicate that 92% of

predicted ORFs are transcribed in M. hyopneumoniae strain

7448 [8]. Seventy-eight non-coding RNAs were also identified

in the analysis. Genes with the highest expression levels pri-

marily encoded proteins involved in basal metabolism, as

well as chaperones, adhesins, surface proteins, transporters

and RNase P. A number of uncharacterized proteins were

also identified. The M. hyopneumoniae gene encoding the

P216 adhesin protein was also presented with a significant

number of transcripts (RPKM, reads per kilobase of transcript

per million mapped reads: 10 796.4) [8]. While these

approaches have shed light on the protein coding capacity of

M. hyopneumoniae, they do little to understand the extent by

which it modifies its proteome post-translationally.

During the early, critical stages of infection, M. hyopneumo-
niae adheres specifically along the entire length of cilia of

ciliated epithelial cells that line the trachea, bronchi and

bronchioles in the upper respiratory tract of pigs. This associ-

ation causes ciliostasis, loss of cilia and eventual epithelial

cell death, which effectively perturbs mucociliary function.

The P97 and P102 adhesin families are central to mediating

attachment of M. hyopneumoniae to epithelial cilia [9–19].

Notably, all members of the P97 and P102 adhesin families

are processed post-translationally to the extent that it is diffi-

cult to find evidence of adhesin pre-proteins [9–12,15,17,

18,20–23]. Most members of the P97 and P102 families are

processed via highly efficient cleavage events typically at

S/T–X–F�–X–D/E sites, but also within stretches of hydro-

phobic amino acids and by numerous, less efficient cleavage

events often in a manner consistent with trypsin-like activity

[20–22,24]. Consequently, the surface protein architecture of

M. hyopneumoniae displays cleavage fragments derived via

processing of the P97 and P102 adhesin families by several

endopeptidases. What is unclear is how endoproteolysis

alters the presentation of surface proteins not related to the

P97 and P102 adhesin families, including members of the

lipoprotein family.

The current trend in global proteomic analysis has been to

use high-speed, ultra-sensitive mass spectrometers combined

with orthogonal upfront chromatographic fractionation

(i.e. two-dimensional LC–MS/MS) in a peptide-centric

manner to characterize proteomes. These high-throughput

protocols rely on all proteins in a sample being digested

with an efficient protease (e.g. trypsin) into peptides for

downstream analysis. Peptide-centric or ‘bottom-up’ approa-

ches are used widely, because peptides are more readily

solubilized for fractionation and are amenable to chromato-

graphic separation, and mass spectrometry is more sensitive

when analysing peptides, rather than intact proteins [25].

Conversely, protein-centric approaches aim to preserve
intact proteins throughout fractionation steps, so that proteo-

form information may be retained [26], and then discrete

proteins or fractions are digested to peptides and analysed

individually by mass spectrometry. Protein-centric methods

are thus not necessarily ‘top-down’ approaches that aim to

analyse individual intact proteins by mass spectrometry

[27]. Without selective enrichment, high-throughput pep-

tide-centric approaches can fail to capture post-translational

proteolytic modifications and can lead to an oversimplifica-

tion of the complexity of the proteome. In this study,

we applied protein-centric approaches that retain mass con-

text with the aim of identifying proteins that are targets of

processing events in M. hyopneumoniae-type strain J.
2. Experimental procedures
2.1. Preparation of Mycoplasma hyopneumoniae whole

cell lysate
Mycoplasma hyopneumoniae (strain J) was grown in modified

Friis broth [28] and harvested as described previously [29].

A 0.1 g pellet of M. hyopneumoniae cells was resuspended in

7 M urea, 2 M thiourea, 40 mM Tris–HCl pH 8.8, 1% w/v

C7BzO and disrupted with four rounds of sonication at

50% power for 30 s bursts on ice. Proteins were reduced

and alkylated with 5 mM tributylphosphine and 20 mM

acrylamide monomers for 90 min. Insoluble material was pel-

leted by centrifugation at 16 000g for 10 min, and the

remaining soluble protein was precipitated in five volumes

of ice-cold acetone for 30 min and the pellet air-dried.

For one-dimensional SDS–PAGE, the pellet was resus-

pended in SDS sample buffer (0.25 M Tris–HCl pH 6.8; 0.25%

w/v SDS; 10% glycerol and 0.0025% w/v bromophenol blue).

For two-dimensional-PAGE, protein pellets were resuspended

in 7 M urea, 2 M thiourea, 1% w/v C7BzO. If solution conduc-

tivity was measured to be greater than 200 mS cm21, samples

were desalted and buffer exchanged into 7 M urea, 2 M

thiourea, 1% w/v C7BzO using a microBioSpin column

(Bio-Rad) according to manufacturer’s instructions.

2.2. TX-114 extraction
Mycoplasma hyopneumoniae cell pellets were resuspended in

1% Triton buffer (1% Triton X-114, 10 mM Tris–HCl pH

8.0, 150 mM sodium chloride, 1 mM EDTA) and extracted

as previously described [11,30]. The detergent phase sample

was mixed with SDS–sample buffer and separated as for

GeLC–MS/MS.

2.3. Two-dimensional polyacrylamide gel
electrophoresis

Two-dimensional gels were run using 250 mg of whole

cell lysate with 0.2% pH 3–10 carrier ampholytes (Bio-Rad).

Isoelectric focusing was performed using 11 cm pH 4–7

IPG strips (Bio-Rad) and 11 cm pH 6–11 immobiline dry-

strips (GE Healthcare). Focusing was carried out using a

Protean IEF system (Bio-Rad) at a constant 208C and 50 mA

current limit per strip with a three-step programme: slow

ramp to 4000 V for 4 h, linear ramp to 10 000 V for 4 h, then

10 000 V until 120 kVh was reached. Following IEF, the
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strips were equilibrated with 5 ml equilibration solution (2%

SDS, 6 M urea, 250 mM Tris–HCl pH 8.5, 0.0025% (w/v)

bromophenol blue) for 20 min before the second-dimension

SDS–PAGE. The second-dimension gels were run using

precast Bio-Rad TGX midi gels with TGS running buffer

(Bio-Rad). Reference gels were stained with Coomassie blue

G250 overnight and destained with 1% acetic acid to

remove background. All visible spots (180 from the pH 4–7

gel and 160 from the pH 6–11 gel) were manually excised

from the gel and subjected to in-gel trypsin digestion,

before analysis by LC–MS/MS.

2.4. One-dimensional gel electrophoresis liquid
chromatography tandem mass spectrometry

GeLC–MS/MS was performed on three biological replicates

of M. hyopneumoniae whole cell lysates, with technical repli-

cates analysed by ion trap MS/MS and Q-TOF MS/MS

(representative lane shown in figure 4a). One-dimensional

GeLC–MS/MS was also performed on a TX-114 detergent

fraction and on a high-load lane of whole cell extract

(where mass context was not reliably retained owing to

macromolecular crowding effects), and these were also

analysed by Q-TOF MS.

About 150 mg of protein from any preparation was separ-

ated by SDS–PAGE, and fixed and stained with Coomassie

blue G-250. Additionally, a high-load lane was run using

500 mg protein from whole cell lysates. Entire gel lanes

were cut into 16 equal slices for whole cell lysates, 30 for

the high-load lane or 15 for the TX-114 fraction. Gel slices

were further diced into approximately 1 mm2 cubes,

destained, washed and digested in-gel with trypsin for

analysis. Identification of proteins was performed following

clean-up of peptide fractions using OMIX C18 SPE pipette

tips, using one of the LC–MS/MS methods described below.

2.5. Expression of recombinant proteins and creation of
polyclonal antisera

Expression of recombinant P65 and creation of polyclonal

antisera was carried out as described previously [9,14,31].

2.6. Blotting
Proteins separated on pH 6–11 two-dimensional gels were

transferred to PVDF membranes as described previously

[12]. Blots were blocked with 5% (w/v) skim milk powder

in PBS with 0.1% Tween 20 (v/v) (PBS-T) at room temperature

for 1 h. For detection of immunogenic proteins, membranes

were probed with pooled convalescent sera collected from

low-health-status M. hyopneumoniae-infected pigs described

previously [9] diluted 1 : 100 in PBS-T for 1 h, followed by

incubation with peroxidase-conjugated anti-pig antibodies

diluted 1 : 3000 in PBS-T for 1 h. For detection of adhesin R1

cilium binding domains, membranes were probed with anti-

sera raised against the F3 recombinant fragment that spans

the R1 cilium binding domain of MHJ_0194 (F3P97); described

previously [14] diluted 1 : 100 in PBS-T for 1 h, then peroxi-

dase-conjugated anti-rabbit antibodies diluted 1 : 1500 in

PBS-T for 1 h. For detection of P65 fragments, membranes

were probed with antisera raised against recombinant P65

diluted 1 : 200 in PBS-T for 1 h, then peroxidase-conjugated
anti-rabbit antibodies diluted 1 : 2000 in PBS-T for 1 h. Mem-

branes were washed in three changes of PBS-T between

incubations and were developed with SIGMAFAST 3,30-

diaminobenzidine tablets (Sigma-Aldrich) as per manufacturer’s

instructions.

2.7. Affinity chromatography for identification of
protein interactions

Heparin affinity chromatography and avidin purification of

fibronectin-binding proteins and PK15 cell surface protein

interactors were performed as described previously [20–22].

Avidin purification of actin- and plasminogen-binding

proteins was carried out as follows. Actin from bovine

muscle (Sigma-Aldrich) was solubilized in 8 M urea, 20 mM

triethylammonium bicarbonate, pH 8.0. Cysteine residues

were reduced and alkylated with 5 mM tributylphosphine

and 20 mM acrylamide monomers for 90 min at room temp-

erature. Actin monomers were labelled in 20-fold molar

excess Sulfo-NHS-LC-Biotin for 3 h at room temperature.

Plasminogen from human serum (Sigma-Aldrich) was

labelled in 20-fold molar excess Sulfo-NHS-LC-Biotin for

3 h at room temperature. Excess biotin was removed by

buffer exchange into PBS using a PD-10 Desalting Column

(GE Healthcare, Life Sciences). Biotinylated actin and

plasminogen were incubated with avidin agarose (Thermo

Scientific) on a rotating wheel for 5 h. The separate slurries

were packed into columns and the flow-through collected

from each. Unbound ligand was thoroughly washed with

PBS. M. hyopneumoniae cells were pelleted by centrifugation

at 10 000g for 20 min, washed with PBS, and gently lysed in

0.5% Triton X-100/PBS. Insoluble material was removed by

centrifugation at 16 000g for 10 min, and the cleared lysate

was incubated with biotinylated ligand–avidin agarose mix-

tures overnight on a rotating wheel at 48C. The mixtures were

packed into columns, and the unbound proteins were

thoroughly washed and collected in PBS. Interacting proteins

were eluted with 30% acetonitrile, 0.4% trifluoroacetic acid.

The eluting proteins were concentrated using a 3000 Da

cut-off filter and acetone precipitated before pelleting by

centrifugation. Elutions were subsequently subjected to one-

dimensional SDS–PAGE for transfer and detection by

blotting or GeLC–MS/MS for protein identification.

Surface proteins were identified by enzymatic cell surface

shaving using trypsin for 5 min at 378C as previously described

[12] and cell surface labelling using Sulfo-NHS-LC-Biotin for

30 s at 48C as previously described [10].

2.8. One-dimensional liquid chromatography tandem
mass spectrometry using Q-TOF

These methodologies were performed as described previously

[21,22]. Briefly, samples were loaded using an Eksigent AS-1

autosampler connected to a Tempo nanoLC system (Eksigent,

USA) at 20 ml min21 onto a C8 trap column (Michrom, USA)

before washing and elution at 300 nl min21 onto a PicoFrit

column (75 mm � 150 mm) packed with Magic C18AQ resin

(Michrom, USA). Peptides were eluted and ionized into the

source of a QSTAR Elite hybrid quadrupole time-of-flight

mass spectrometer (AB Sciex) at 2300 V using the following

programmes: 5250% MS solvent B (98% acetonitrileþ 0.2%

formic acid) over 30 min for gel slices or 15 min for gel



Table 1. Overview of number of identifications by each method.

method
protein
IDs

peptide
IDs

unique
spectra

proteins
unique to
method

Ge ion trap 331 2774 3832 7

Ge Q-TOF 297 1701 1961 2

rsob.royalsocietypublis

4
spots, 50280% MS B over 5 min, 80% MS B for 2 min, 8025%

for 3 min. An intelligent data acquisition experiment was

performed, with a mass range of 35021500 Da scanned for

peptides of charge state 2þ to 5þ with an intensity of more

than 30 counts scan21. Selected peptides were fragmented,

and the product ion fragment masses were measured over a

mass range of 5021500 Da. The mass of the precursor peptide

was then excluded for 120 s for gel slices or 15 s for gel spots.
Ge high-load 331 1748 2093 6

Ge TX-114 206 846 897 5
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2.9. One-dimensional liquid chromatography – mass
spectrometry/mass spectrometry using ion trap

Peptide samples were analysed by nanoflow LC–MS/MS

(nanoLC-MS/MS) using a LTQ-XL linear ion trap mass spec-

trometer (Thermo, San Jose, CA), using a fused silica capillary

with an integrated electrospray tip (75 mm ID � 70 mm)

packed with 100 Å, 5 mm Zorbax C18 resin (Agilent Technol-

ogies, CA, USA). An electrospray voltage of 1800 V was

applied via a liquid junction upstream of the C18 column.

Samples were injected onto the column using a Surveyor

autosampler, which was followed by an initial wash step

with buffer A (5% v/v acetonitrile, 0.1% v/v formic acid)

for 10 min at 1 ml min21. Peptides were eluted from the

column with 0–50% buffer B (95% v/v acetonitrile, 0.1% v/

v formic acid) for 58 min at 500 nl min21. The column

eluate was directed into a nanospray ionization source of

the mass spectrometer. Spectra were scanned over the range

of 400–1500 amu and, using XCALIBUR software (version

2.06, Thermo), automated peak recognition, dynamic exclu-

sion and MS/MS of the top six most intense precursor ions

at 35% normalization collision energy were performed.
2.10. Mass spectrometry/mass spectrometry data
analysis

The MS/MS data files were searched using Mascot (provided

by the Australian Proteomics Computational Facility, hosted

by the Walter and Eliza Hall Institute for Medical Research

Systems Biology Mascot Server) against the LudwigNR data-

base, comprising the UniProt, plasmoDB and Ensembl

databases (vQ209. 8785680 sequences, 3087386706 residues),

with the following parameter settings. Fixed modifications:

none; variable modifications: propionamide, oxidized meth-

ionine, deamidated asparagine, n-terminal pyroglutamic

acid and carbamoylmethylcysteine cyclization; enzyme:

semitrypsin; number of allowed missed cleavages: 3; peptide

mass tolerance: 100 ppm or 2.0 Da for data generated by

Q-TOF or ion trap instruments, respectively. MS/MS mass

tolerance: 0.2 Da or 0.4 Da for data generated by Q-TOF or

ion trap instruments, respectively; charge state: 2þ and 3þ.

SCAFFOLD v. 3.00.02 (Proteome Software Inc., Portland) was

used to validate and compare MS/MS-based peptide and

protein identifications. Peptide identifications were accepted if

their calculated probability was greater than 95.0% with a

false discovery rate of 1.27%, and protein identifications were

accepted if their calculated probability using the Peptide

Prophet algorithm was greater than 80.0% with a false discov-

ery rate of 2.4%. Protein probabilities were assigned by the

Protein Prophet algorithm. Proteins that contained similar pep-

tides and could not be differentiated based on MS/MS analysis

alone were grouped to satisfy the principles of parsimony.
The use of multiple techniques improved confidence in

‘one-hit wonders’; proteins identified by a single peptide in a

single replicate. Adopting the approach of White et al. [32], if

the same single peptide was identified in two or more repli-

cates or experiments, the protein was considered to be

present, rather than a ‘one-hit wonder’. Similarly, if a single

peptide identified a protein in one replicate and a different

single peptide identified the same protein in a separate repli-

cate, then the protein was considered to be expressed. Single

peptide hits were only retained in the dataset if, after being sub-

jected to manual validation, the MS/MS spectra had a

considerable sequence of b- and y-ions that were the dominant

ions in the spectra. Six proteins were identified to be true one-

hit wonders, with the identifying spectra and fragmentation

data shown in electronic supplementary material, figure S4.

2.11. In silico analyses
Predicted MW and pI information for intact proteins and

fragments was obtained using ProtParam via ExPASy bioinfor-

matics resource portal (http://web.expasy.org/protparam/)

[33]. Transmembrane domain predictions were made using

TMPred (http://embnet.vital-it.ch/software/TMPRED_form.

html) [34] with default minimum 17 and maximum 33

amino acid length of the hydrophobic portion of the transmem-

brane helix. The PONDR VSL2 algorithm was used to predict

regions of protein disorder (http://pondr.com) [35]. All ana-

lyses were performed using sequence data obtained from

UNIPROT (http://www.uniprot.org/) [36].
3. Results
3.1. Protein-centric approaches to mapping the

Mycoplasma hyopneumoniae proteome
We applied a series of fractionation technologies that retain

mass context to lysates of M. hyopneumoniae-type strain J, to

determine the diversity of proteins that are targets of endo-

proteolytic processing. Members of two adhesin families

related to P97 and P102 respectively are known to be exten-

sively processed on the cell surface of M. hyopneumoniae,

but the extent to which proteins on the cell surface are targets

of endoproteolytic processing has not been explored. Three

hundred and forty-seven unique M. hyopneumoniae strain J

proteins, representing approximately 52% of the predicted

proteome, were identified from the combined experiments

following analysis by SCAFFOLD (electronic supplementary

material, table S1). Table 1 summarizes the identification of

proteins expressed in M. hyopneumoniae as detected by each

http://web.expasy.org/protparam/
http://web.expasy.org/protparam/
http://embnet.vital-it.ch/software/TMPRED_form.html
http://embnet.vital-it.ch/software/TMPRED_form.html
http://embnet.vital-it.ch/software/TMPRED_form.html
http://pondr.com
http://pondr.com
http://www.uniprot.org/
http://www.uniprot.org/
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Figure 1. Two-dimensional gels and immunoblots. (a) Two-dimensional gel image ( pH 4 – 7) with locations of relevant spots indicated. (b) Two-dimensional gel
image ( pH 6 – 11) with locations of relevant spots indicated and ‘cloud region’ boxed by a dashed line. Spots identified to contain protein cleavage fragments are
circled. Full description of all cut spots and identifications from pH 4 – 7 and pH 6 – 11 two-dimensional gels can be found in electronic supplementary material,
figures S2 and S3, respectively. (c) Two-dimensional blot probed with rabbit serum raised against the F3 recombinant fragment that spans the R1 cilium binding
domain of MHJ_0194 (F3P97). Strongly staining protein fragments carrying regions of R1 or R1-like fragments of the cilium adhesin P97 and Mhp271 show that
proline-rich repeats are highly antigenic. (d ) A blot probed with pooled convalescent sera from sero-positive pigs. The ‘cloud regions’ are also boxed, showing
overlap between adhesin fragments and immunoreactive regions of the blots.

rsob.royalsocietypublishing.org
Open

Biol.6:150210

5

of these methods. Interestingly, two uncharacterized proteins

were identified mapping only to strain 232: an 8.8 kDa

protein, Q5ZZV3, identified by one peptide in two runs on

both ion trap and Q-TOF; and an 11.3 kDa protein,

Q5ZZV5, identified by two peptides in one run from ion

trap data. A BLAST search of the UniProt database shows

that these proteins are conserved among strains 232, 7448

and 168; however, they are not annotated to be present in

strain J. Seventy-seven (22%) of the identified proteins are

named in UniProt as ‘uncharacterized protein’, despite

some sharing homology with proteins that are well character-

ized in the literature such as P97 and P102 paralogues,

MHJ_0369 and MHJ_0368 (Q4A9W4 and Q4A9W5), homol-

ogues of Mhp385 and Mhp384 (Q600R9 and Q600S0)

respectively, in M. hyopneumoniae strain 232 [12].

GeLC–MS/MS preserves the intact molecular weight of

proteins and was a valuable strategy to identify cleavage

events that affected the migration of members of the P97

and P102 adhesin families [10,20–22]. Much finer resolution

of cleavage fragments was achieved using two-dimensional

PAGE. pH 4–7 and 6–11 gels were run using whole cell

extracts of M. hyopneumoniae (figure 1). Overall, 340 spots

comprising 180 spots from a 4–7 isoelectric point gradient

gel and 160 spots from a 6–11 isoelectric point gradient gel

were resolved well enough to be excised and analysed by
LC–MS/MS. Identifications were obtained for 302 spots

(159 from pI 4–7 and 143 from pI 6–11; electronic sup-

plementary material, figures S2 and S3). One hundred and

thirty unique proteins were identified from these 302 spots,

representing 19% of the predicted proteome (37% of the

identifiable proteome).

Eighty-seven proteins were identified from multiple spots.

Not all of these, however, could be attributed to processing

events, with a significant number of proteins appearing as

‘spot trains’ at a specific molecular weight that track along

the pI gradient. This is likely to be the result of other post-

translational modifications that affect pI, such as deamidation,

or phosphorylation, which has been previously documented

in M. hyopneumoniae [18]. Of particular interest was the pres-

ence of ‘cloud regions’ where numerous spots could be

detected, but could not be individually resolved (figure 1,

boxed). These cloud regions are significant, as similar patterns

in the same region have been previously identified when M.
hyopneumoniae proteins were separated over nonlinear pH 6–

11 gels using a different gel system, carried out in a different

laboratory and are thus unlikely to be an artefact of sample

preparation or gel separation methods [23]. We postulated

that these low-abundance cleavage fragments are generated

by endoproteolysis of abundantly expressed members of the

P97 and P102 adhesin families. A two-dimensional blot
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probed with rabbit anti-F3P97 serum [14] showed that P97, P66

and a range of lower abundance fragments of MHJ_0194 are

recognized (figure 1c). Identical blots probed with a pool of

convalescent sera sourced from pigs testing positive for infec-

tion with M. hyopneumoniae showed a strong reaction to the

low-abundance P97 and P102 adhesin cleavage fragments

(figure 1d). These observations are consistent with the highly

immunoreactive nature of proteins carrying proline-rich

repeats [18] such as those recognized by anti-F3P97 serum.

3.2. The extent of protein processing in Mycoplasma
hyopneumoniae

Overall, 35 proteins (10% of the identified proteome) showed

convincing evidence of proteolytic processing through identifi-

cation from protein-centric experiments at molecular masses

that were not in agreement with the predicted intact mass

(table 2; also denoted by asterisks in electronic supplementary

material, table S1). Ten of these belong to the P97/P102 adhe-

sin families. Consistent with these data, endoproteolytic

processing events have been characterized in P97/P102 adhe-

sin families including MHJ_0194 (P97) [20,23], MHJ_0493 (P97

paralogue P216) [18,22], MHJ_0663 (P97 paralogue P146) [9],

MHJ_0369 (P97 paralogue Mhp385) [12], MHJ_264 (P97 para-

logue Mhp107) [16], MHJ_0195 (P102) [17,23], MHJ_0494

(P102 paralogue P159/P76/P110) [21,37], MHJ_0662 (P102

paralogue P135/Mhp683) [10], MHJ_0638 (P102 paralogue

Mhp384) [12] and MHJ_263 (P102 paralogue P116/Mhp108)

[15]. Other proteins showing evidence of cleavage include

five uncharacterized proteins, three known surface antigens,

two annotated proteases, multiple annotated cytosolic proteins

and glycolytic enzymes, such as pyruvate dehydrogenase

complex components A, B and D, and lactate dehydrogenase.

It is important to note that this list is not exhaustive, as many

other proteins were not identified with sufficient sequence

coverage to be confirmed as cleavage fragments.

We selected lipoprotein P65, an uncharacterized protein

of unknown function and the cytosolic protein lactate dehy-

drogenase, which we show are targets of endoproteolytic

processing events, to provide an insight into the sequences

that are targeted by the processing machinery and present

some the putative functions of the cleavage fragments that

are generated by these processing events.

3.3. Evidence that the P65 lipoprotein is processed on
the surface of Mycoplasma hyopneumoniae

P65, MHJ_0656 (Q4A932), comprises 627 amino acids and

encodes a 71 kDa lipolytic lipoprotein with preference for

short-chain fatty acids [38]. The N-terminal 29 amino acids

comprise the signal sequence and are expected to be removed

followed by lipid modification of the cysteine residue at pos-

ition 30, generating a mature lipoprotein with a mass of

68 kDa and a pI of 5.8. We identified P65 as a series of protein

spots on a two-dimensional gel with a mass of approximately

68 kDa and a pI of 5.8 (figure 2, peptide coverage in black).

This 68 kDa molecule was also identified in separate affi-

nity-capture assays using heparin and biotinylated porcine

epithelial-like surface proteins as bait (figure 2, peptide cov-

erage in red and blue, respectively). P65 is predicted to

display three regions of protein disorder from amino acids

189–228 (DR1), 340–418 (DR2) and 553–627 (DR3) according
to the PONDR VSL2 algorithm. One of these, DR1, also over-

laps with a coiled coil region (100% probability using the

COILS algorithm) between amino acids 214–245, suggesting

that this region may not be disordered [39]. Efficient cleavage

events are known to occur in S/T–X–F�X–D/E and related

motifs that reside within acidic, disordered regions in the

P97 and P102 adhesin families in M. hyopneumoniae
[9,10,12,17,20–22]. We identified an S/T–X–F�X–D/E

motif in P65 with sequence 360T–N–F�D–D364 that resides

in DR2, and a cleavage site that cuts at phenylalanine with

sequence 501V–A–F�F–A505 that is not located within a

region of disorder. Both motifs reside within acidic regions

that display a pI of 5 or less (figure 2). Cleavage at
360T–N–F�D–D364 is expected to generate an N-terminal

fragment of 38 kDa and a C-terminal fragment of 30 kDa.

Tryptic peptides that mapped to the N-terminal 38 kDa

(amino acids 30–362) and to the C-terminal 30 kDa regions

of P65 (amino acids 365–627) were identified when

M. hyopneumoniae proteins were enriched by extraction with

TX-114 and characterized by LC–MS/MS in gel slices repre-

senting proteins with masses between 35–45 and 30–35 kDa,

respectively. Cleavage fragments with these masses were also

identified by LC–MS/MS during affinity-capture exper-

iments using fibronectin as bait (see fragments 1 and 2 in

figure 2). No semi-tryptic peptides were identified to further

validate this cleavage site, as lysine resides closely flank this

region, making peptide identification following trypsin

digestion unlikely. Affinity capture experiments using fibro-

nectin as bait also provided evidence that the 30 kDa

C-terminal fragment was cleaved at the 501V–A–F�F–A505

site, where cleavage is expected to generate a fragment of

16 kDa. Consistent with this, several tryptic peptides that

mapped between amino acids 363–501 were identified in a

gel slice containing M. hyopneumoniae proteins with masses

between 15 and 23 kDa (fragment 6 in figure 2). Protein

spots migrating with a mass of approximately 50 kDa on

two-dimensional gels produced tryptic peptides mapping

to P65, consistent with a fragment that started at position

30 and ended at position 503 (fragment 3 in figure 2), and

the semi-tryptic peptide F.504FAELNTDQEIK514 was ident-

ified from gel slices and gel spots by LC–MS/MS,

providing further evidence that cleavage occurred at position

503 at the 501V–A–F�F–A505 site (table 3; electronic

supplementary material, figure S4).

Two additional putative cleavage sites were identified in

the N-terminal third of P65, 104T–T–E�N–W–L109 and
165L–T–M�S–V–G170. These sites were identified by the

identification of semi-tryptic peptides from GeLC–MS/MS

and peptide-centric methods (table 3; electronic supplemen-

tary material, figure S4). Complementary C-terminal and

N-terminal tryptic peptides identified the cleavage site
104T–T–E�N–W–L109, whereas the N-terminal semi-tryptic

peptide M.168SVGANDPFLAIFNEFK184 indicating cleavage

at 165L–T–M�S–V–G170 was identified from analysis by

three different methods (table 3). Cleavage at position 167

is expected to generate two fragments spanning amino

acids 30–167 (15.5 kDa; pI 4.87) and amino acids 168–627

(52.4 kDa; pI 6.35). A fragment with peptide coverage consist-

ent with cleavage at this site was identified by LC–MS/MS in

a series of protein spots with mass of approximately 50 kDa

and with pIs ranging from 5.2 to 5.9. Peptides mapping to

the same fragment were also identified from a gel slice con-

taining Triton-X114 insoluble proteins with masses between
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Figure 2. Cleavage map of P65 (MHJ_0656, Q4A932). (a) Major features of P65, including a putative signal peptide in light blue (SP), putative heparin binding
motifs in light red (HEP), acidic/basic regions and disordered regions with four proposed cleavage sites. Peptides mapping to protein fragments identified from
multiple analyses are indicated. Black regions indicate peptides obtained from gel spot or slice data. Peptides identified by affinity chromatography using heparin,
PK15 surface proteins and fibronectin-coupled GeLC – MS/MS data are indicated in red, blue and orange, respectively. (b) Western blot of Mycoplasma hyopneu-
moniae proteins probed with antisera raised against recombinant P65. The lane labelled WCL contains M. hyopneumoniae whole cell lysate. Lanes labelled TX114 and
Aq contain biotinylated surface proteins of M. hyopneumoniae strain J that partitioned to the detergent and aqueous phases, respectively. Biotinylated proteins were
recovered from the Triton and aqueous phases by avidin chromatography prior to gel loading. Multiple cleavage fragments of P65 were detected at masses lower
than the abundant intact form. The boxed proteins in the aqueous phase extract at approximately 70 kDa could be attributed to the loss of the lipid anchor in the
N-terminus, explaining its abundance in the aqueous phase.

Table 3. Semi-tryptic peptides denoting cleavage sites in P65. Site of cleavage that semi-tryptic peptide denotes in P65 according to figure 2, with peptide
sequence showing amino acid positions and semi-tryptic terminus and modified amino acids underline. No indicates the number of times a peptide was
identified by a given method. In the case where peptides were identified multiple times or in multiple runs, only the highest-scoring peptide is shown.

site peptide sequence score E-value identified no.

1 – 1 K.90NSLVSYDNLAISGTTTE106.N 61 0.0011 peptide-centrica 5

1 – 2 E.107NWLYLLNPTK116.Y 50 0.011 peptide-centric 1

1 – 3 E.107NWLYLLNPTKYPNGK121.Mþdeamidated (N) 51 0.011 peptide-centric 1

2 – 1 M.168SVGANDPFLAIFNEFK184.K 74 4.4 � 1026 WCL ion trap 2

2 – 2 M.168SVGANDPFLAIFNEFK184.K 50 0.0025 TX114 Q-TOF 1

2 – 3 M.168SVGANDPFLAIFNEFK184.K 82 0.011 gel spots 1

4 – 1 F.504FAELNTDQEIK514.E 56 0.0024 WCL Q-TOF 1

4 – 2 F.504FAELNTDQEIK514.E 90 0.0014 gel spots 6

4 – 3 F.504FAELNTDQEIK514.Eþdeamidated (Q) 108 2.84 � 1025 gel spots 2
aPeptide-centric methods described in electronic supplementary material, figure S4.
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45 and 50 kDa, and again following heparin affinity purifi-

cation, in a gel slice containing proteins with masses

between 45 and 60 kDa (fragment 4 in figure 2). We were

unable to find a 15.5 kDa protein spanning amino acids
30–167. Cleavage at amino acid position 106 is expected to

generate an N-terminal 8.5 kDa protein (pI ¼ 4.36) and a

C-terminal 59.3 kDa protein (pI ¼ 7.00). While neither of

these cleavage fragments were identified in our studies, we
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acidic/basic

actin
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fibronectin
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full length
MW: 34.2 kDa, pI: 7.63

one-dimensional gels ~35 kDa two-dimensional gels 34 kDa, pI: 5.7–7.5
heparin 30–37 kDa PK15 35–45 kDa actin 30–40 kDa fibronectin 23–37 kDa

fragment 1
MW: ~21 kDa, pI: ~5.2

two-dimensional gel 19 kDa, pI: 5.3–5.8
heparin 15–20 kDa fibronectin 15–23 kDa

fragment 2
MW: ~13 kDa, pI: ~9.2

two-dimensional gel 13 kDa, 8.5
heparin <15 kDa

Figure 3. Cleavage map of L-lactate dehydrogenase (LDH; MHJ_0133, P0C0J3). The major features of L-lactate dehydrogenase are shown, including putative trans-
membrane domains (TMD), putative heparin binding motifs (HEP), putative disordered regions (DR) and acidic/basic regions. A single proposed cleavage site is
shown between amino acids 188 and 199, based on peptide coverage. Peptides mapping to protein fragments identified from multiple analyses are indicated.
Black regions indicate peptides obtained from gel spot (figure 1) or slice data. Peptides identified by affinity chromatography using heparin, PK15 surface proteins,
actin and fibronectin-coupled GeLC – MS/MS data are indicated in red, blue, purple and orange, respectively, at masses as indicated.
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did identify a single tryptic peptide in a gel slice spanning

30–35 kDa that contained M. hyopneumoniae proteins cap-

tured during affinity chromatography using fibronectin as

bait (fragment 5 in figure 2). This fragment is consistent

with cleavage at positions 106 and 362, generating a protein

with a mass of 30.4 kDa with a pI of 6.97.

3.4. Processing events identified in atypical cell surface
proteins of Mycoplasma hyopneumoniae

Metabolic proteins such as elongation factor Tu, pyruvate dehy-

drogenase complex components A, B and D, glyceraldehyde-3-

phosphate dehydrogenase and L-lactate dehydrogenase (LDH)

showed evidence of post-translational processing and were

also identified in cell surface analyses (table 2). Evidence that

LDH is processed is presented in figure 3. LDH was identified

at its predicted mass of 35 kDa and at multiple pI between

5.7–7.5 on pH 4–7 and 6–11 two-dimensional gels (figure 3,

peptide matches in black). Peptides mapping to LDH were

also identified from gel spots at apparent molecular mass of

19 kDa and pI 5.3–5.8 on pH 4–7 gels and at 13 kDa and pI
8.5 on pH 6–11 gels. The full-length LDH protein was identified

in separate affinity-capture assays using heparin, biotinylated

fibronectin, actin and porcine epithelial-like surface proteins as

bait (figure 3, peptide coverage in red, orange, purple and

blue, respectively). While further studies are needed to confirm

biologically meaningful interactions between LDH and these

host molecules, affinity-capture assays provide independent evi-

dence that regions within LDH bind host molecules and enrich

for cleavage fragments.

A single cleavage event between amino acids 188–199

would result in a theoretical N-terminal fragment of approxi-

mately 21 kDa with a pI of 5.2 and C-terminal fragment of

approximately 13 kDa and a pI of 9.2, which is similar to

the fragments of LDH identified from two-dimensional
gels. The shift in pI may be attributed to deamidation

of asparagine residues at position 121 in the N-terminal

fragment and positions 269 and 279 in the C-terminal frag-

ment as detected in peptides identified by GeLC–MS/MS.

Neither fragment of LDH was detected from actin or PK15

cell surface binding pulldowns; however, peptides mapp-

ing to LDH were identified at masses between 40 and

200 kDa in actin pulldowns, possibly indicating incomplete

disassociation from multimeric complexes prior to SDS–

PAGE. Peptides mapping to the N-terminal fragment were

identified from heparin and fibronectin affinity GeLC–MS/

MS experiments in slices at masses 15–20 and 15–23 kDa

respectively, whereas peptides mapping to the C-terminal

fragment were identified only from heparin affinity GeLC–

MS/MS experiments in a slice encompassing masses less

than 15 kDa. Although no heparin-binding motif was ident-

ified in the C-terminal fragment, the lysine-rich sequence
290DKEKEKFAKS300 could facilitate interaction with heparin.

Further work is needed to determine if 290DKEKEKFAKS300

binds heparin.
3.5. Processing in uncharacterized proteins
MHJ_0009 encoding a 77.5 kDa uncharacterized protein

(Q4AAU0) was identified consistently in slices 6 (approx.

70–90 kDa), 13 (approx. 13–16 kDa) and 14 (approx. 10–

13 kDa) of GeLC–MS/MS using ion trap and Q-TOF

analyses from whole cell lysates (figure 4). Peptides identified

from replicates of slice 6 mapped to the N-terminus and

middle regions of the protein at approximately the predicted

mass of the intact protein. Slices 13 and 14, however, are

taken from regions of the gel with mass 10–16 kDa, and pep-

tides identified from replicates of these slices mapped only to

the C-terminal region of the protein. This C-terminal frag-

ment may represent the product of post-translational
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Figure 4. GeLC – MS/MS analysis identified cleavage fragment of MHJ_0009 (Q4AAU0). (a) Representative one-dimensional gel of M. hyopneumoniae whole cell
lysates. The gel lanes were cut into 16 slices (as shown), digested in-gel with trypsin and analysed by LC – MS/MS using ion trap and Q-TOF instruments, allowing
protein mass context to be retained. (b) Identified peptides mapping to uncharacterized protein MHJ_0009 (Q4AAU0) in bold. Peptides in bold were identified from
gel slice 6 at the approximate predicted intact mass (77 kDa). Peptides underlined in black were generated from proteins identified only from slices 13 and 14.
Analysis of the C-terminal cleavage fragment spanning amino acids 568 – 664 with ProtParam indicated that it was 12.5 kDa with a predicted pI of 5.47 (see also
figure 1). MHJ_0009 was also identified by GeLC – MS/MS from slices at approximately 12 kDa from low-affinity heparin chromatography elutions. Putative heparin
binding motifs are underlined in grey.
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proteolytic cleavage. Predicting the true N-terminus of the

C-terminal fragment at amino acid position 567 (M) would

generate a protein with a mass of 12.5 kDa and pI of 5.47

as predicted by ProtParam. We identified the C-terminal

fragment from two-dimensional gels at the same approxi-

mate molecular mass, with pI ranging from approximately

5.5 to 6.2 (figure 1). MHJ_0009 was also identified from

GeLC–MS/MS of samples following heparin affinity chrom-

atography from a slice at molecular mass of approximately

10–12 kDa, in elutions carrying proteins with low heparin

binding affinity (elution in 150–600 mM NaCl). This is consist-

ent with the presence of putative heparin binding motifs

within the C-terminus. Eight putative heparin-binding motifs

were identified within MHJ_0009 similar to those described

previously [21,22] in both the N- and C-terminal frag-

ments, as denoted by grey underlined regions in figure 4.

The protein was identified by the same two C-terminal

peptides identified from low molecular mass slices in GeLC–

MS/MS (underlined in black in figure 4). The C-terminal

fragment of MHJ_0009 contains a thioredoxin-like domain,

and a BLAST search of this fragment gives approximately

60% identity to thioredoxin from other Mycoplasma species

(M. bovoculi: E-value: 2 � 10243, score: 375, identity: 62%).

Further work is needed to confirm if the C-terminal cleavage

fragment displays oxidoreductase activity.

Only one of the cleaved proteins listed in table 2,

the uncharacterized protein MHJ_0523, has not also been

identified in surfaceome studies using enzymatic shaving

and/or cell surface biotinylation [40]. MHJ_0523 encodes a

230 kDa putative lipoprotein and is predicted to possess
a transmembrane domain at the N-terminus (TMPred

score 1612) and three other putative transmembrane

domains (figure 5), which would suggest that the protein

is likely to traverse the cell membrane. Extraction of

M. hyopneumoniae with TX-114 is likely to have concentrated

MHJ_0523 into the detergent-soluble fraction, indicating that

it may be surface-exposed but expressed at low levels, ren-

dering it undetectable by our shaving/biotin labelling

methods. Detection of MHJ_0523 in slice 1 indicates that

the molecule is poorly soluble during SDS–PAGE or that

it forms large mass multimeric structures. Fragments ident-

ified were from the C-terminus ranging from masses

upwards of 75 kDa on the TX114 gel, with no coverage of

the first 314 amino acids. Five putative S/T–X–F–X–D/E

cleavage motifs were identified along the length of the

ORF, but we were unable to confirm if processing does

occur at these sites.

3.6. Proteases identified in Mycoplasma hyopneumoniae
Eighteen ORFs have been annotated in the UniProt database

(GO annotation) to have putative protease activity, 11 of

which have been identified in our study (table 4). Identified

proteins with annotated endoprotease activity include

MHJ_0522 (Q4A9G3) oligoendopeptidase F, MHJ_0525

(Q4A9G0) Lon protease, MHJ_0636 (Q4A952) tsaD,

MHJ_0202 (Q4AAC8) ftsH and MHJ_0568 (Q4A9B9), an

uncharacterized protein. These identifications are consistent

with those identified in strain 232 [7]. These proteases are

likely to carry out the major proteolytic actions that give
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Figure 5. MHJ_0523 cleavage map. (a) General features and peptides mapping to MHJ_0523 identified from (b) GeLC-MS/MS of a M. hyopneumoniae Triton X-114
detergent phase enrichment. Transmembrane domains are indicated by horizontally striped regions and three disordered regions spanning more than 40 amino acids
were detected (DR1-3). Five putative S/T-X-F-X-D/E cleavage motifs are indicated by arrows. Peptide coverage identified from individual slices is indicated in grey,
and theoretical molecular weight and isoelectric points of protein fragments are shown (according to peptide coverage).

Table 4. Identified proteases of M. hyopneumoniae.

accession and
locus identified proteases surface gene ontology (GO)

Q4AAC8

MHJ_0202

ATP-dependent zinc metalloprotease FtsH

(EC 3.4.24.-)

Y cell division; integral component of membrane;

metalloendopeptidase activity; zinc ion binding

Q4A9G0

MHJ_0525

Lon protease (EC 3.4.21.53) (ATP-dependent

protease La)

Y cellular response to stress; cytoplasm; serine-type

endopeptidase activity

Q4AAK4

MHJ_0125

putative aminopeptidase Y aminopeptidase activity

Q4A9G3

MHJ_0522

oligoendopeptidase F (EC 3.4.24.-) Y metalloendopeptidase activity; zinc ion binding

Q4A9M4

MHJ_0461

leucyl aminopeptidase (EC 3.4.11.1) Y aminopeptidase activity; manganese ion binding;

metalloexopeptidase activity

Q4A929

MHJ_0659

XAA-PRO aminopeptidase (EC 3.4.11.9) Y aminopeptidase activity; metalloexopeptidase activity

Q4AAM9

MHJ_0098

ATP-dependent protease binding protein N ATP binding; nucleoside-triphosphatase activity; peptidase

activity

Q4A952

MHJ_0636

tRNA N6-adenosine threonylcar-

bamoyltransferase (EC 2.6.99.4)

N cytoplasm; iron ion binding; metalloendopeptidase activity

Q4AAG1

MHJ_0169

methionine aminopeptidase (MAP) (MetAP)

(EC 3.4.11.18)

N metal ion binding; metalloaminopeptidase activity; protein

initiator methionine removal

Q4AAS7a

MHJ_0022

signal peptidase I (EC 3.4.21.89) N integral component of membrane; serine-type peptidase activity

Q4A9B9

MHJ_0568

uncharacterized protein N serine-type endopeptidase activity

aAlthough MHJ_0022 has a signal peptidase I signature motif, existing biochemical data from amino-terminal sequence analysis of amino-terminal cleavage
products indicates that this species lacks SPase I activity. ‘Surface’ indicates proteins were (Y) or were not (N) identified in cell surface shaving or biotinylation
experiments.
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rise to adhesin fragments, as well as potentially processing

other proteins. Lon proteases are bioinformatically predicted

to cleave at hydrophobic residues, including phenylalanine

(F), and so may play a role in processing at the dominant

cleavage motif S/T–X–F�–X–D/E [9,10]. Additionally,
uncharacterized protein MHJ_0568 is predicted to possess

a trypsin-like domain, which may be responsible for tryp-

sin-like cleavage events at lysine (K) and arginine (R)

residues. Efforts are currently under way to confirm these

bioinformatically predicted results.
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4. Discussion
4.1. Protein-centric approaches to mapping the

Mycoplasma hyopneumoniae proteome
While our protein-centric separation approaches identified only

347 proteins, representing 52% of the M. hyopneumoniae
proteome [32,41–44], they enabled us to characterize endo-

proteolytic processing events in 35 functionally diverse,

surface-associated proteins. The unidentified portion of the

proteome consisted of 198 uncharacterized ORFs, which may

be of low abundance or have a high rate of turnover, or may

not be transcribed under the growth conditions used in our

analyses. Additionally, some ORF sequences that remain uni-

dentified contain too many (or rarely too few) lysine and/or

arginine residues, making the tryptic peptides generated by

digestion undetectable by the methods used. Instrument sensi-

tivity only partially explains why we did not identify a greater

proportion of the proteome, given that we were only able

to identify 70% (483) of the 691 predicted ORFs in strain

232 during culture in Friis broth [7]. Our approach is consis-

tent with our primary goal to preserve mass-context prior

to mass spectrometry as a means to identify the gamut of pro-

teins targeted by processing mechanisms. Two-dimensional

PAGE was able to resolve individual proteins and isoforms,

providing information about post-translational modifications,

whereas one-dimensional GeLC–MS/MS methods are

higher-throughput, making them better suited for global pro-

teome identification. The protein-centric approaches used in

our studies provided insights into the extent of protein proces-

sing in M. hyopneumoniae. Table 2 lists the proteins cleaved in

M. hyopneumoniae. Notably, almost all of the proteins in

table 2 were identified in a comprehensive surfaceome analysis

conducted using cell shaving and surface biotinylation method-

ologies (J.L.T., B.B.A.R. & S.P.D. 2012 unpublished data). Our

data suggest that protein processing is a post-translational

modification that occurs with greater frequency than is cur-

rently recognized and occurs in a wide range of functionally

diverse cell surface proteins. This is consistent with the proces-

sing machinery being associated with the cell surface or

with the general secretory pathway. On a cautionary note, it

remains to be determined what mechanisms are needed to

export proteins with canonical functions in the cytosol onto

the cell surface [45–47]. Nonetheless, we provide strong evi-

dence that numerous proteins with functions in the cytosol

are bound on the surface of M. hyopneumoniae where they are

targets of endoproteolytic processing. We detected cleavage at

S/T–X–F�–X–D/E sites consistent with the hypothesis that

the same enzyme that cleavages the P97 and P102 families is

also targeting other surface accessible proteins.

Enrichment procedures such as TX-114 fractionation and

affinity-capture chromatography techniques were useful for

enriching the low-abundance proteome, delineating regions

of proteins that bind host molecules and enriching for clea-

vage fragments, all of which provided clues to protein

function. TX-114 extraction enriches for hydrophobic mem-

brane proteins, which partition to the detergent phase [48].

As M. hyopneumoniae lacks a cell wall, the cell membrane is

the mediator of contact between the bacteria and extracellular

environment; hence, membrane-bound proteins are poten-

tially valuable targets for vaccine and therapeutic

development. While the TX-114 GeLC–MS/MS protocol
detected the fewest protein identifications, at 206, it contribu-

ted five unique proteins to the overall analysis, all of which

were uncharacterized proteins described as lipoproteins

and/or predicted to contain transmembrane domains using

TMpred. Overall, 26 of 50 M. hyopneumoniae lipoproteins

were identified by all methods, and LC–MS/MS analysis of

TX-114 solubilized proteins identified 22 of the 26.

While the precise functions of bacterial lipoproteins

remain poorly understood, there is mounting evidence to

suggest they are pathogen-associated molecular pattern

(PAMP) molecules on the surface of Gram-positive bacteria.

PAMPs are recognized by Toll-like receptors that trigger

innate immune responses [49–52]. Most mycoplasma lipo-

proteins are surface-exposed with acyl groups anchoring

these proteins in the cell membrane, where they are thought

to function as cytadhesins, transport proteins or virulence

factors with immunomodulatory capabilities [53]. P65 is an

abundantly expressed, immunoreactive and lipolytic lipopro-

tein that selectively partitions to the detergent phase during

extraction with TX-114 [38,54]. Schmidt et al. showed that

anti-P65 antibodies inhibit the lipolytic activity of P65 and

growth of M. hyopneumoniae, indicating that P65 performs a

primary function on the external membrane surface by pro-

viding a source of essential lipids for growth [38]. It has

also been suggested that P65 may alter surfactant properties

in the lungs of pigs in vivo [38]. In our studies, P65 was recov-

ered during affinity capture protocols using different host

molecules as bait. Although these are preliminary data that

require quantitative studies to confirm a direct role for P65

in these interactions, this suggests that P65 displays motifs

that facilitate binding to a diverse range of host molecules.

Consistent with these preliminary observations, we show

here for the first time that P65 is a target of several processing

events that generate cleavage fragments which are selectively

retained during affinity chromatography using porcine epi-

thelial cell surface proteins, fibronectin or porcine heparin

as bait. The ability of the cleavage fragments of P65 to bind

the same bait proteins as P65 lends weight to the hypothesis

that the interactions with host molecules are direct and bio-

logically relevant. Cleavage occurred at a number of sites in

the P65 protein sequence, including at a phenylalanine resi-

due within a S/T–X–F�X–D/E motif; a known processing

site in the P97 and P102 adhesin families [9–12,15,18,

20–23]. An immunoblot of biotinylated cell surface M. hyop-
neumoniae strain J proteins fractionated using TX-114 that was

probed with anti-P65 polyclonal antibodies identified a

65 kDa protein and numerous smaller mass fragments of

P65 consistent with cleavage at several sites within the mol-

ecule. These data show that P65 and cleavage fragments of

P65 reside on the surface of M. hyopneumoniae. Notably,

there is clear evidence of a doublet at approximately 65 kDa

(boxed in figure 2b) in the lane containing M. hyopneumoniae
aqueous phase proteins. Previous studies have shown that

P65 may undergo clipping at the N-terminus and be a target

of further post-translational processing events [54]. Our data

suggest that the doublet may represent forms of P65 that have

lost the lipid anchor because they partitioned to the aqueous

phase. If correct, these data suggest that a small lipopeptide

similar to the macrophage-activating lipopeptide 2 (MALP-2)

of Mycoplasma fermentans may be produced from P65.

Lipoproteins of mycoplasmal origin are known targets

of post-translational processing events. The first 14 amino

acids of MALP-404, a 41 kDa lipoprotein in M. fermentans, are
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removed by a post-translational cleavage event generating a

2 kDa MALP-2 lipopeptide. The C-terminal 39 kDa cleavage

fragment (known as RF) that results from this cleavage event

has been isolated from culture supernatants, but its func-

tion remains unknown [55]. Unlike RF, both MALP-2 and

MALP-404 are lipid-modified and remain associated with the

membrane of M. fermentans. MALP-2 is a potent immunomodu-

latory molecule that engages Toll-like receptor 2 [50]. Like

the MALP-2 lipopeptide, the N-terminus of P65 may play a

similar immunomodulatory role in M. hyopneumoniae; however,

further studies are required to confirm this. Similarly, MGA0674

is an 82 kDa lipoprotein in Mycoplasma gallisepticum whose

expression is elevated in virulent strain Rlow compared with

the attenuated vaccine strain F, suggesting that it may play a

role in pathogenesis. MGA0674 is a target of a processing

event at position 225 that releases a C-terminal 57 kDa fragment

from the anchored N-terminal 22 kDa lipoprotein [56]. There

are other reports of processing events that target lipoproteins

in Mycoplasma pneumoniae but their functions have remained

poorly characterized [57].
4.2. The extent of proteolytic processing in Mycoplasma
hyopneumoniae

A significant number of the 35 proteins identified to be targets

of post-translational processing were glycolytic enzymes and

other metabolic proteins. Glycolytic enzymes are increasingly

being identified as multitasking or moonlighting proteins in

a wide range of organisms, including parasites [58], yeasts

and fungi [59], mammalian cells [60], plants [61] and bacteria

[62], and this is reflected in the range of entries seen in Multi-

taskProtDB [63]. In other members of the Mollicutes, proteins

with canonical functions in the cytosol have also been found to

be surface-exposed and interact with host components. For

example, in Mycoplasma pneumoniae, elongation factor Tu

(EfTu) and pyruvate dehydrogenase (PdhB) were identified

as surface-exposed moonlighting proteins, through screening

for fibronectin binding proteins by ligand blotting of whole

cell lysates and fibronectin-coupled affinity chromatography,

and their surface localization was confirmed by immunogold

labelling and electron microscopy [64]. Further investigation

of EfTu revealed specifically that the carboxyl-terminus was

surface-exposed by immunogold labelling and responsible

for fibronectin binding [65]. In Mycoplasma genitalium, glyceral-

dehyde-3-phosphate dehydrogenase was identified to be

surface-exposed and bind mucin, probably functioning as an

adhesin [66]. These proteins were identified here to be cleaved.

Many processing events are likely to alter canonical (enzy-

matic) function and profoundly influence how cleavage

fragments interact with the mycoplasma membrane and host

molecules [67].

LDH is a highly immunogenic cytoplasmic protein

involved in the glycolytic process of M. hyopneumoniae
[68,69]. Here, we have identified LDH to be present at the

cell surface both as a full-length molecule and as cleavage frag-

ments. We identified a single putative cleavage site between

amino acids 188–199 and the cleaved form of LDH is unlikely

to carry out its primary function owing to significant structural

alteration. In eukaryotic organisms, LDH has been recognized

as a moonlighting protein, along with other glycolytic enzymes

such as hexokinase, glyceraldehyde dehydrogenase and eno-

lase, playing a role in transcriptional regulation [70]. LDH
has also been identified as a single-stranded DNA-binding

protein in eukaryotic cells [71,72]. In eukaryotic cells, this

switch in function is likely to be due to translocation to the

nucleus where these functions take place, possibly through

post-translational modifications such as tyrosine phosphoryl-

ation [70,73,74]. It is possible that, as in eukaryotic cells, post-

translational modifications may also affect localization and

function of LDH in M. hyopneumoniae, or direct a subset

towards processing. Intact LDH was identified from spots on

two-dimensional gels between pI of 5.7 and 7.5. With a theor-

etical pI of 7.63, this indicates an acidic shift is likely to be

caused by a variable degree of post-translational modification

such as deamidation affecting a proportion of LDH [75].

LDH has also been identified from extracellular supernatants

of various Lactobacillus and Bifidobacterium species from the

honeybee Apis mellifera [76]. These lactic acid bacteria belong

to the Firmicutes, and are genetically similar to the low G þ
C content mycoplasma species. It was hypothesized that

LDH, once localized to the surface, could evolve alternative

functions as a moonlighting protein, functioning as an auxili-

ary adhesin [76]. Indeed, we have also previously identified a

glutamyl aminopeptidase from M. hyopneumoniae, MHJ_0125,

which moonlights as a multifunctional adhesin at the cell sur-

face [77], and a leucyl aminopeptidase, MHJ_0461, which

functions as a multi-substrate peptidase and binds heparin,

plasminogen and foreign DNA [47]. The cleavage fragments

of LDH identified here bound to heparin, used as a structural

mimic for glycosaminoglycans in the respiratory tract, and

the N-terminal fragment also bound to fibronectin, an extra-

cellular matrix component, indicating fragments may also

have adhesin functions.
5. Conclusion
We identified 347 (52%) of the 672 putative ORFs predic-

ted from the genome sequence of M. hyopneumoniae
strain J. The proteome coverage from well-resolved two-

dimensional gels, while low, is unsurprising. The limitations

of two-dimensional gels are well documented, particularly

considering the nature of sample preparation required,

which limits the ability to retain and resolve very basic,

acidic, small, large or hydrophobic proteins [43]. However,

protein-centric, gel-based separations provide a technique

complimentary to high-throughput two-dimensional

LC–MS/MS protocols by maintaining mass and pI context,

allowing the identification of cleavage products and the

extent of proteolytic processing. We show for the first time

that proteins with canonical functions in the cytosol that

moonlight on the cell surface are also targets of endoproteo-

lytic events. This describes a new dimension to protein

moonlighting and suggests that much more biological infor-

mation is inherent in proteins. While we cannot yet

determine the exact nature of cleavage events as they occur

in vivo, the analysis presented here is an important first step

in determining physiologically relevant cleavage events.

Cleavage events will undoubtedly complicate efforts to corre-

late the transcriptome with the proteome in future studies

[78,79], and the protein-centric approaches presented here

will provide a solid foundation for further investigation of

post-translational processing in proteins involved in patho-

genesis of M. hyopneumoniae, and will assist with

delineating functionally important binding motifs.
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