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Abstract

Motivation: Next-generation sequencing technology is increasingly being used for clinical diag-

nostic tests. Clinical samples are often genomically heterogeneous due to low sample purity or

the presence of genetic subpopulations. Therefore, a variant calling algorithm for calling low-

frequency polymorphisms in heterogeneous samples is needed.

Results: We present a novel variant calling algorithm that uses a hierarchical Bayesian model to

estimate allele frequency and call variants in heterogeneous samples. We show that our algorithm

improves upon current classifiers and has higher sensitivity and specificity over a wide range of

median read depth and minor allele fraction. We apply our model and identify 15 mutated loci in

the PAXP1 gene in a matched clinical breast ductal carcinoma tumor sample; two of which are

likely loss-of-heterozygosity events.

Availability and implementation: http://genomics.wpi.edu/rvd2/.

Contact: pjflaherty@wpi.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next-generation sequencing (NGS) technology has enabled the sys-

tematic interrogation of the genome for a fraction of the cost of

traditional assays (Koboldt et al., 2013). Protocol and platform en-

gineering improvements have enabled the generation of 1� 109

bases of sequence data in 27 h for �$1000 (Quail et al., 2012). As a

result, NGS is increasingly being used as a general platform for

research assays for methylation state (Laird, 2010), DNA mutations

(1000 Genomes Project Consortium et al., 2012), copy number vari-

ation (Alkan et al., 2009), promoter occupancy (Ouyang et al.,

2009) and others (Rivera and Ren, 2013). NGS diagnostics are

being translated to clinical applications including non-invasive fetal

diagnostics (Kitzman et al., 2012), infectious disease diagnostics

(Capobianchi et al., 2012), cancer diagnostics (Navin et al., 2010),

and human microbiome analysis (The Human Microbiome Project

Consortium, 2013).

Increasingly, NGS is being used to interrogate mutations in

heterogeneous clinical samples. For example, NGS-based non-

invasive fetal DNA testing uses maternal blood sample to sequence

the minority fraction of cell-free fetal DNA (Fan et al., 2008).

Infectious diseases such as HIV and influenza may contain

many genetically heterogeneous sub-populations (Flaherty et al.,

2011; Ghedin et al., 2010). DNA sequencing of individual regions

of a solid tumor has revealed genetic heterogeneous within an indi-

vidual sample (Navin et al., 2010). Importantly, accounting for tech-

nical errors can drastically improve performance (Zagordi et al.,

2010).

However, the primary statistical tools for calling variants from

NGS data are optimized for homogeneous samples. Samtools and

GATK use a naive Bayesian decision rule to call variants (DePristo

et al., 2011; Li, 2011). GATK involves more sophisticate pre- and

post-processing steps wherein the genotype prior is fixed and
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constant across all loci and the likelihood of an allele at a locus is a

function of the Phred score (McKenna et al., 2010).

Recently, some have developed algorithms to call low-frequency

or rare variants in heterogeneous samples. Yau et al. (2010) developed

a Bayesian framework which can model the normal DNA contamin-

ation and intra-tumor heterogeneity by parameterizing the normal

genotype cell proportion at each SNP. VarScan2 combines algorith-

mic heuristics to call genotypes in the tumor and normal sample

pileup data and then applies a Fisher’s exact test on the read count

data to detect a significant difference in the genotype calls (Koboldt et

al., 2012). Strelka uses a hierarchical Bayesian approach to model the

joint distribution of the allele frequency in the tumor and normal sam-

ples at each locus (Saunders et al., 2012). With the joint distribution

available, one is able to identify locations with dissimilar allele fre-

quencies. muTect uses a Bayesian posterior probability in its decision

rule to evaluate the likelihood of a mutation (Cibulskis et al., 2013).

RVD uses a hierarchical Bayesian model to capture the error structure

of the data and call variants (Cushing et al., 2013; Flaherty et al.,

2011). That algorithm requires a very high read depth to estimate the

sequencing error rate and call variants.

Several studies have compared the relative performance of these

algorithms. Spencer et al. (2013) demonstrated that VarScan-som-

atic performed the best when comparing SAMtools, GATK and

SPLINTER for detecting minor allele fractions (MAFs) of 1–8%,

with >500 coverage required for optimal performance. However,

Spencer et al. (2013) also highlighted the fact that VarScan2 yielded

more false positives at high read depth. Stead et al. (2013) showed

that VarScan-somatic outperformed Strelka and had performance

on-par with muTect in detecting a 5% MAF for read depths be-

tween 100 and 1000.

The remainder of this article is organized as follows. In the next

section we describe the statistical model structure of our new algo-

rithm, RVD2. Then, we derive a sampling algorithm for computing

the posterior distribution over latent variables in the model and use

those samples in a Bayesian posterior distribution hypothesis test to

call variants. We compare the performance of RVD2 to several other

variant calling algorithms for a range of read depths and minor al-

lele fractions. Finally, we show that RVD2 is able to call variants

on a heterogeneous clinical sample and identify two novel loss-of-

heterozygosity events.

2 Model Structure

RVD2 uses a two-stage approach for detecting rare variants. First, it

estimates the parameters of a hierarchical Bayesian model under

two sequencing datasets: one from the sample of interest (case) and

one from a known reference sample (control). Then, it tests for a sig-

nificant difference between key model parameters in the case and

control samples and returns called variant positions.

Figure 1 shows a graphical representation of the RVD2 statistical

model. In this graphical model framework, a shaded node represents

an observed random variable, an unshaded node represents an unob-

served or latent random variable and a directed edge represents a

functional dependency between the two connected nodes (Jordan,

2004). A rounded box or ‘plate’ represents replication of the nodes

within the plate. The graphical model framework connects graph

theory and probability theory in a way that facilitates algorithmic

methods for statistical inference.

For a given sample, the observed data consist of two matrices

r 2 RJ�N and n 2 RJ�N, where rji is the number of reads with a

non-reference base at location j in experimental replicate i and nji is

the total number of reads at location j in replicate i. J is the region of

interest length and N is the number of technical replicates in the

sample. Technical replicates are used to establish experimental vari-

ability in NGS procedure (Robasky et al., 2013), though multiple

replicates are not necessary for RVD2.

The model generative process given hyperparameters l0;M0 and

M is as follows:

1. For each location j:

a. Draw an error rate lj � Betaðl0;M0Þ
b. For each replicate i:

1. Draw hji � Betaðlj;MjÞ
2. Draw rjijnji � Binomialðhji; njiÞ

The generative process involves several hyperparameters: l0, a glo-

bal error rate; M0, a global precision; lj, a local error rate; and Mj, a

local precision. The global error rate, l0, estimates the expected

error rate across all locations. The global precision, M0, estimates

the variation in the error rate across locations. The local error rate,

lj, estimates the expected error rate across replicates at

location j. The local precision, Mj, estimates the variation in the

error rate across replicates at location j.

RVD2 has three levels of sampling. First, a global error rate and

global precision are chosen once for the entire dataset. Then, at each

location, a local precision is chosen and a local error rate is sampled

from a Beta distribution. Finally, the error rate for replicate i at

location j is drawn from a Beta distribution and the number of non-

reference reads is drawn from a binomial.

RVD2 hierarchically partitions sources of variation in the data.

The distribution rjijnji � Binomialðhji;njiÞ models the variation due

to sampling the pool of DNA molecules on the sequencer. The distri-

bution hji � Betaðlj;MjÞ models the variation due to experimental

reproducibility. The variation in error rate due to sequence context

is modeled by lj � Betaðl0;M0Þ. Importantly, increasing the read

depth nji only reduces the sampling error, but does nothing to reduce

experimental variation or variation due to sequence context.

The joint distribution over the latent and observed variables

for data at location j in replicate i given the parameters can be

factorized as

r

θ

M

N J

M0

μ

μ0

Fig. 1. RVD2 graphical model
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pðrji; hji; ljjnji; l0;M0;MjÞ ¼ pðrjijhji; njiÞpðhjijlj; MjÞpðlj; l0;M0Þ;

pðrjijhji;njiÞ ¼
Cðnji þ 1Þ

Cðrji þ 1ÞCðnji � rji þ 1Þ � h
rji

ji ð1� hjiÞnji�rji ;

pðhjijlj; MjÞ ¼
h

Mjlj�1

ji ð1� hjiÞMjð1�ljÞ�1

BðMjlj;Mjð1� ljÞÞ
;

pðlj; l0;M0Þ ¼
lM0l0�1

j ð1� ljÞM0ð1�l0Þ�1

BðM0l0;M0ð1� l0ÞÞ
;

(1)

where Bð�; �Þ denotes the beta function.

The log-likelihood of the dataset is

log pðrjn; l0;M0;MÞ ¼
XJ

j¼1

XN
i¼1

log

ð
lj

ð
hji

pðrjijhji;njiÞ

pðhjijlj; MjÞpðlj; l0;M0Þdhjidlj:

(2)

RVD2 improves on RVD in three ways. First, RVD2 has a Betaðl0;M0Þ
prior on local error rate lj, which captures the global across-position

error rate. The prior distribution allows lj to share information

across adjacent positions and allows RVD2 to handle low read

depths. Second, RVD2 handles multiple replicates in case samples.

Third, RVD2 has a more accurate Bayesian hypothesis testing

method compared with the normal z-test in RVD. We show a per-

formance comparison between RVD and RVD2 in Section 5.2.

3 Inference and Hypothesis Testing

The primary object of inference in this model is the joint posterior

distribution function over the latent variables,

pðl; hjr; n; /Þ ¼ pðl; h; rjn; /Þ
pðrjn; /Þ ; (3)

where the parameters are /¼D fl0;M0;Mg.
The Beta distribution over lj is conjugate to the Binomial distri-

bution over hji, so we can write the posterior distribution as a Beta

distribution. However, there is not a closed form for the product of

a Beta distribution with another Beta distribution, so exact inference

is intractable.

Instead, we have developed a Metropolis-within-Gibbs (MwG)

approximate inference algorithm shown in Algorithm 1. First, the

hyperparameters are initialized using method-of-moments (MoM).

Given those hyperparameter estimates, we sample from the mar-

ginal posterior distribution for lj given its Markov blanket using a

Metropolis–Hasting (M–H) rejection sampling rule. Finally, we

sample from the marginal posterior distribution for hji given its

Markov blanket. Samples from hji can be drawn from the posterior

distribution directly because the prior and likelihood form a conju-

gate pair. This sampling procedure is repeated until the chain

converges to a stationary distribution and then we draw samples

from the posterior distribution over latent variables.

Algorithm 1 Metropolis-within-Gibbs Algorithm

1: Initialize h, l, M, l0, M0

2: repeat

3: for each location j do

4: Draw T samples from pðljjhij;l0;M0Þ using M–H

5: Set lj to the sample median for the T samples

6: for each replicate i do

7: Sample from pðhijjrij; nij; lj;MÞ
8: end for

9: end for

10: until sample size sufficient

3.1 Initialization
The initial values for the model parameters and latent variables are

obtained by a MoM procedure. MoM works by setting the popula-

tion moment equal to the sample moment. A system of equations is

formed such that the number of moment equations is equal to the

number of unknown parameters and the equations are solved simul-

taneously to give the parameter estimates. We simply start with the

data matrices r and n and work up the hierarchy of the graphical

model solving for the parameters of each conditional distribution in

turn.

We present the initial parameter estimates here and provide the deriv-

ations in Supplementary Information. The MoM estimate for replicate-

level parameters are ĥ ji ¼ rji

nji
. The estimates for the local parameters are

l̂j ¼ 1
N

PN
i¼1 ĥ ji and M̂j ¼

l̂ jð1�l̂ jÞ

1
N

PN
i¼1 ĥ

2

ji

� 1. The estimates for the

global parameters are l̂0 ¼ 1
J

PJ
j¼1 l̂ j and M̂0 ¼ l̂0ð1�l̂0Þ

1
J

PJ
j¼1 l̂2

j

� 1.

3.2 Sampling from pðhijjrij;nij; lj;MÞ
Samples from the posterior distribution pðhjijrji; nji;lj;MjÞ
are drawn analytically because of the Bayesian conjugacy be-

tween the prior pðhjijlj;MjÞ � Betaðlj;MjÞ and the likelihood

pðrjijnji; hjiÞ � Binomialðhji;njiÞ. The posterior distribution is

pðhjijrji; nji;lj;MjÞ � Beta
�

rji þMjlj; nji � rji þMjð1� ljÞ
�
: (4)

3.3 Sampling from pðljjhji;Mj;l0;M0Þ
The posterior distribution over lj given its Markov blanket is

pðljjhji;Mj; l0;M0Þ / pðljjl0;M0Þpðhjijlj;MjÞ (5)

Since the prior, pðljjl0;M0Þ, is not conjugate to the likelihood,

pðhjijlj;MjÞ, we cannot write an analytical form for the posterior

distribution. Instead, we sample from the posterior distribution

using the M–H algorithm.

A candidate sample is generated from the symmetric proposal

distribution Q
�
l�j jl

ðpÞ
j

�
� N

�
lðpÞj ;rðpÞj

�
, where lðpÞj is the pth from

the posterior distribution. The acceptance probability is then

a ¼
pðl�j jl0;M0Þpðhðpþ1Þ

ji jl�j ;MjÞ
pðlðpÞj jl0;M0Þpðhðpþ1Þ

ji jlðpÞj ;MjÞ
: (6)

We fixed the proposal distribution variance for all the M–H

steps within a Gibbs iteration to rj ¼ 0:1 � l̂ j � ð1� l̂ jÞ if l̂j 2 ð10�3;

1� 10�3Þ and rj ¼ 10�4 otherwise, where l̂ j is the MoM estimator

of lj. Though it is not theoretically necessary, we have found that

the algorithm performance improves when we take the median of

five or more M–H samples in single Gibbs step for each position.

We resample from the proposal if the sample is outside of the

support of the posterior distribution. We typically discard 20% of

the sample for burn-in and thin the chain by a factor of 2 to reduce

autocorrelation among samples. Since, each position j is exchange-

able given the global hyperparameters, l0 and M0, this sampling

step can be distributed across up to J processors.

3.4 Posterior distribution test
3.4.1 Posterior difference test

MwG provides samples from the posterior distribution of lj given

the case or control data. For notational simplicity, we define the
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random variables associated with these two distributions lcase
j and

lcontrol
j and the associated samples as ~lcase

j and ~lcontrol
j .

A variant is called if lcase
j > lcontrol

j with high confidence,

Prðlcase
j � lcontrol

j > sÞ � 1

NMwG

XNMwG

k¼1

1~lcase
jk �~lcontrol

jk >s > 1� a; (7)

where s is a detection threshold and 1� a is a confidence level. We

draw a sample from the posterior distribution ~lD
j ¼

D
~lcase

j � ~lcontrol
j by

simple random sampling with replacement from ~lcase
j and ~lcontrol

j .

The threshold, s, may be set to 0 or optimized for a given median

depth and desired MAF detection limit. The optimal s maximizes

the Matthews Correlation Coefficient (MCC),

s� ¼ arg max
s
fMCCðsÞg: (8)

While we are able to compute the optimal s threshold for a test

dataset, in general we would not have access to s�. With sufficient

training data, one would be able to develop a lookup table or cali-

bration curve to set s based on read depth and MAF level of interest.

Absent this information we set s¼0.

3.4.2 Posterior somatic test

We use a two-sided posterior difference test with control and

case paired samples to identify somatic mutations. We consider scen-

arios when the case(tumor) error rate is lower than the

control(germline) error rate (e.g. loss-of-heterozygosity) as well as scen-

arios when the case(tumor) error rate is higher than the

control(germline) error rate (e.g. homozygous somatic mutation).

The two hypothesis tests are then Pr ðlcase
j � lcontrol

j > sÞ > 1� a and

Pr ðlcase
j � lcontrol

j < �sÞ > 1� a. We typically set the threshold s to 0.

3.4.3 Posterior germline test

We use a one-sided posterior distribution test with a single control

sample to identify germline mutations. We call a germline mutation

if lcontrol
j � s with high confidence,

Prðlcontrol
j � sÞ � 1

NMwG

XNMwG

k¼1

1~l
control
jk �s

> 1� a: (9)

3.5 v2 test for non-uniform base distribution
An abundance of non-reference bases at a position called by the pos-

terior density test may be due to a true mutation or due to a random

sequencing error; we would like to differentiate these two scenarios.

We assume non-reference read counts caused by a non-biological

mechanism results in a uniform distribution over three non-reference

bases. In contrast, the distribution of counts among three non-

reference bases caused by biological mutation would not be uniform.

We use a v2 goodness-of-fit test on a multinomial distribution

over the non-reference bases to distinguish these two possible

scenarios. The null hypothesis is H0 : p ¼ ðp1; p2;p3Þ where

p1 ¼ p2 ¼ p3 ¼ 1=3. Cressie and Read (1984) identified a power-

divergence family of statistics, indexed by k, that includes as special

cases Pearson’s v2ðk ¼ 1Þ statistic, the log likelihood ratio statistic

ðk ¼ 0Þ, the Freeman–Tukey statistic ðk ¼ �1=2Þ, and the Neyman

modified statistic X2ðk ¼ �2Þ. The test statistic is

2nIk ¼ 2

kðkþ 1Þ
X3

k¼1

r
ðkÞ
ji

r
ðkÞ
ji

E
ðkÞ
ji

0
@

1
A

k

� 1

2
64

3
75; k 2 R; (10)

where r
ðkÞ
ji is the observed frequency for non-reference base k at pos-

ition j in replicate i and E
ðkÞ
ji is the corresponding expected frequency

under the null hypothesis. Cressie and Read (1984) recommended

k ¼ 2=3 when no knowledge of the alternative distribution is avail-

able and we choose that value.

We control for multiple hypothesis testing in two ways. We use

Fisher’s combined probability test (Fisher et al., 1970) to combine

the P-values for N replicates into a single P-value at position j,

v2
j ¼ �2

XN
i¼1

ln ðpjiÞ: (11)

Equation (11) gives a test statistic that follows a v2 distribution

with 2N degrees of freedom when the null hypothesis is true. If the

sample average depth is higher than 500, we use the Benjamini–

Hochberg method to control the family-wise error rate over pos-

itions that have been called by the posterior distribution test

(Benjamini and Hochberg, 1995; Efron, 2010). The average depth

threshold is set because Benjamini–Hochberg method is a highly

conservative method and will reject many true calls when the read

depth is not high enough.

4 Datasets

We used two independent datasets to evaluate the performance of

RVD2 and compare it with other variant calling algorithms. The

synthetic DNA sequence data provide true positive and true negative

positions as well as define minor allele fractions. The HCC1187

data is used to test the performance on a sequenced cancer genome

with less than 100% tumor purity.

4.1 Synthetic DNA sequence data
4.1.1 Experimental methods

Two 400 bp DNA sequences (including linkers) that are identical ex-

cept at 14 loci with variant bases were synthesized and clonally iso-

lated. The samples with the mutations are taken as the case sample

and the sample without the mutations is taken as the control.

Aliquots of the case and control DNA were mixed at defined frac-

tions to yield defined minor allele fractions (MAFs) of 0.1, 0.3, 1, 10

and 100%. Paired-end sequencing was performed on an Illumina

GAIIx sequencer (Illumina SCS 2.8) with real-time image analysis

and base calling (Illumina RTA 2.8). Eland II (from Illumina pipe-

line version 1.6) was used with the default parameters to perform se-

quence alignment to the 300-bp synthetic DNA construct. More

details of the experimental protocol are available from the original

publication (Flaherty et al., 2011). As shown in Supplementary

Table S1, each sample has �1 000 000 35 bp paired end reads.

4.1.2 Pre-processing methods

The reads were aligned with Eland as described previously. We then

ran samtools mpileup with the -C50 option to filter for high mapping

quality reads. To simulate lower coverage data while retaining the

error structure of real NGS data, BAM files for the synthetic DNA

data were downsampled 10�; 100�; 1000� and 10 000� using

Picard v1.96. The final dataset contains read pairs for three replicates

of each case and pairs of reads three replicates for the control sample

giving N¼6 replicates for the control and each MAF level.

4.2 HCC1187 sequence data
4.2.1 Experimental methods

The HCC1187 dataset is a well-recognized baseline dataset from

Illumina for evaluating sequence analysis algorithms (Howarth

et al., 2011, 2007; Newman et al., 2013). The HCC1187 cell line
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was derived from epithelial cells from primary breast tissue from a

41–year-old adult with TNM stage IIA primary ductal carcinoma.

The estimated tumor purity was reported to be 0.8. Matched normal

cells were derived from lymphoblastoid cells from peripheral blood.

Sequencing libraries were prepared according to the protocol

described in the original technical report (Allen, 2013).

4.2.2 Pre-processing methods

The raw FASTQ read files were aligned to hg19 using the Isaac

aligner to generate BAM files (Raczy et al., 2013). The aligned data

had an average read depth of 40� for the normal sample and 90�
for the tumor sample with about 96% coverage with 10 or more

reads. We used samtools mpileup to generate pileup files using hg19

as reference sequence (Navin et al., 2010).

5 Results

We tested RVD2 using synthetic DNA and data from the HCC1187

primary ductal carcinoma sample. The inference algorithm param-

eters were set to yield 4000 Gibbs samples with a 20% burn-in and

2� thinning rate for a final total of 1600 samples. We drew 1000

samples from ~lD ¼ ~lcase
j � ~lcontrol

j to estimate the posterior probabil-

ity of a variant.

We performed the posterior difference test to identify mutations

in the haploid synthetic data. We set the threshold s¼0 and the size

of the test a ¼ 0:05.

For the HCC1187 dataset, we identified both somatic and germ-

line mutations. In the posterior somatic test, we set the threshold

s¼0 and the size of the test a ¼ 0:05. In the posterior germline test,

we set the threshold s ¼ 0:05 considering the low average coverage

(40�). The size of the test is set at a ¼ 0:15. We performed the v2

non-uniformity test after the posterior density tests.

5.1 Performance by read depth
We generated receiver-operating characteristic curves (ROCs) for a

range of median read depth and a range of MAFs. For these ROCs, we

used the posterior density test without the v2 test to evaluate the per-

formance of posterior density test individually. Figure 2 shows ROCs

generated by varying the threshold s with a fixed a ¼ 0:05. Figure 2a

shows ROC curves for a true 0.1% MAF for a range of median cover-

age depths. At the lowest depth the sensitivity and specificity is no better

than random. However, we would not expect to be able to call a 1 in

1000 variant base with a coverage of only 43. The performance im-

proves monotonically with read depth. Figure 2b and c shows a similar

relationship between coverage depth and accuracy for higher MAFs.

We measured the computational time for RVD2 varying the num-

ber of Gibbs sampling steps and the median read depth for the 400 bp

synthetic dataset. In brief, on a 2.4-GHz processor it took �13min

per 1000 Gibbs samples to fit the model. The computational time is

independent of the median read depth due to the model structure; the

same performance was observed for a median read depth of 130 and

40000. As stated previously, due to the independence structure of the

model, we are able to perform the sampling step for each location in

parallel greatly decreasing the computational time. The memory re-

quirement is roughly the size of the gene sequence times the number

of Gibbs samples. Complete timing results without parallelization are

shown in Supplementary Section 8.

5.2 Empirical performance compared with other

algorithms
We compare the empirical performance of RVD2 to other variant

calling algorithms using the synthetic DNA dataset by the false

discovery rate (FDR) and sensitivity/specificity. Among these algo-

rithms, Samtools and GATK are optimized for homogeneous sam-

ples, while RVD, VarScan2-somatic, Strelka and muTect have good

performance to call variants in heterogeneous samples. In research

applications, the FDR is a more relevant performance metric be-

cause the aim is generally to identify interesting variants for follow-

up. The sensitivity/specificity metric is more relevant in clinical ap-

plications where one is more interested in correctly calling all of the

positive variants and none of the negatives. GATK, Varscan2,

Strelka and muTect are only able to make use of one case and one

control sample, so we provide results of RVD2 with the same data

set (N¼1) for comparison.

We compare the empirical performance across a wide range of

median read depth (�40� to �40 000�). In typical whole genome

applications, the read depth is between 10� and 100�. For targeted

cancer sequencing, the median read depth is higher at 100� to

1000�. For microbial or viral sequencing for rare variants, the me-

dian read depth is even higher at 1000� to 100 000�.

5.2.1 Sensitivity/specificity comparison

Figure 3 shows that samtools, GATK and VarScan2-mpileup all

have similar performance. They call the 100% MAF experiment

well even at low depth, but are unable to identify true variants in

mixed samples. VarScan2-somatic is able to call more mixed sam-

ples. However, as the read depth increases the specificity degrades.

Strelka is able to call 10% MAF variants with good performance,

but is limited at 1% MAF and below. muTect has good performance

across a wide range of MAF levels. But even at the highest depth

only has around 0.5 sensitivity for low MAF levels.

The performance statistics for RVD are an average of three sets

of pair-end case replicates. RVD performed the best among all algo-

rithms when the read depth is near 40 000. RVD called all the

mutated positions across all MAF levels with no false positives when

MAF level is 0.3% or lower. However, RVD cannot call any muta-

tions when the depth is too low to measure the baseline error rate

and therefore is not useful for low-depth data.

RVD2 has a high sensitivity and specificity for a broad range of

read depths and MAFs. The sensitivity increases considerably with

read depth at a slight expense to specificity. For the most difficult

(a) (b)

(c) (d)

Fig. 2. ROCs varying read depth showing detection performance
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test with a low read depth and low MAF, RVD2 performs on-par

with muTect. With s� the performance is much better with high sen-

sitivity and specificity across a wide range of read depths and MAFs.

However, in practice one may not know the optimal s� a priori.

With N¼6 replicates, the sensitivity increases considerably for low

MAF variants with a slight degradation in specificity due to false

positives. When the median read depth is at least 10� the MAF,

RVD2 has higher specificity than all of the other algorithms tested

and has a lower sensitivity in only three cases.

5.2.2 FDR comparison

Figure 4 shows the FDR for RVD2 compared with samtools,

GATK, varscan, Strelka and muTect. Blank cells indicate no positive

calls were made.

Samtools performs well on 100% MAF sample and performance

improves for read depths 3089 and 30 590. GATK performs well on

both the 10 and 100% variants, but makes a false positive call at the

100% MAF level for all read depth levels. VarScan2-pileup per-

forms perfectly for all but the lowest depth for the 100% MAF.

VarScan2-somatic is able to make calls for all but the lowest

MAF and coverage level. However, the FDR is high due to many

false positives. Interestingly, at a MAF of 100% the FDR is zero for

lowest read depth and over 0.9 for the highest read depth. Strelka

has a better FDR than the samtools, GATK or Varscan2-somatic al-

gorithms for almost all read depths at the 10 and 100% MAF.

However, it does not call any variants at or below 1% MAF.

muTect has the best FDR performance of the other algorithms we

tested over a wide range of MAF and depths. But the FDR level is

relatively high at around 0.7 for 0.1–1% MAF and 0.3 for

10–100% MAF. RVD has best FDR performance in the high read

depth for 0.1–1% MAF levels. The FDR increases to around 0.3 for

10–100% MAF in the high read depth.

RVD2 has a lower FDR than other algorithms when the read

depth is greater than 10� the inverse MAF with N¼1 and s set to

the default value of zero or to the optimal value. The FDR is

higher when N¼6 because the variance of the control error rate

distribution Pðlcontrol
j jrcontrolÞ is smaller. The smaller variance yields

improvements in sensitivity at the expense of more false positives.

Since the FDR only considers positive calls, the performance by that

measure degrades.

5.3 HCC1187 primary ductal carcinoma sample
RVD2 identified 15 variant locations in the 59 kbp PAXIP1 gene

from chr7:154735400 to chr7:154794682. There were 11 germline

variants and 10 somatic mutations. Figure 5 shows the estimated

MAFs for the normal and tumor samples at the called locations.

Interestingly, positions chr7:154754371 and chr7:154758813 ap-

pear to be loss-of-heterozygosity events. Some of these mutations

are also found to be common population SNPs according to

dbSNPv138. The corresponding identities are shown in Figure 5.

The read depth distribution for positions called by RVD2 is pro-

vided in Supplementary Table S1. Karyotyping indicates that

chromosome 7 in HCC1187 is tetraploid http://www.path.cam.ac.

uk/pawefish/BreastCellLineDescriptions/HCC1187.html.

5.3.1 Performance comparison with other algorithms

We ran muTect and VarScan2-somatic to call mutations in the

PAXIP1 gene in HCC1187 sample. We also compared with the re-

sult shown in original research report where Strelka was used to

identify mutations in the same sample (Allen, 2013). Figure 6a

shows mutation detection result from Strelka, RVD2, muTect and

VarScan2-somatic. For notation simplicity, we use position index to

present actual positions in Figure 6 (the corresponding genomic pos-

itions are provided in Supplementary Table S1).

The mutations called by RVD2 and muTect are the most consist-

ent among all the techniques. RVD2 detected 15 germline mutations

and 10 somatic mutations, while muTect reported 16 mutations; 11

were called by both. In the disagreements, RVD2 did not call pos-

itions 1, 39, 54 and 84 while muTect did not call positions 41 75

and 77. Referring to the depth distribution shown in Figure 6b, it

Median VarScan2 VarScan2 RVD2 RVD2 RVD2 RVD2
Depth mpileup somatic (T=0) (T*) (T=0) (T*)

0.1% 39 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00
139 0.00/1.00 0.00/1.00 0.00/1.00 0.14/0.87 0.00/1.00 0.07/0.95 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00
408 0.00/1.00 0.00/1.00 0.00/1.00 0.07/0.92 0.00/1.00 0.29/0.91 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00
4129 0.00/1.00 0.00/1.00 0.00/1.00 0.57/0.52 0.00/1.00 0.64/0.86 0.00/1.00 0.00/1.00 0.00/1.00 0.14/1.00 0.29/1.00
41449 0.00/1.00 0.00/1.00 0.00/1.00 0.64/0.79 0.00/1.00 0.14/0.93 1.00/1.00 0.43/1.00 0.57/1.00 0.86/0.97 0.79/1.00

0.3% 36 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.43/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00
135 0.00/1.00 0.00/1.00 0.00/1.00 0.14/0.85 0.00/1.00 0.57/0.98 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00
410 0.00/1.00 0.00/1.00 0.00/1.00 0.21/0.95 0.00/1.00 0.50/0.94 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00
4156 0.00/1.00 0.00/1.00 0.00/1.00 0.57/0.53 0.00/1.00 0.36/0.91 0.00/1.00 0.14/1.00 0.29/1.00 1.00/0.99 1.00/0.99
41472 0.00/1.00 0.00/1.00 0.00/1.00 0.64/0.75 0.00/1.00 0.43/0.90 1.00/1.00 0.93/0.97 0.93/0.99 1.00/0.85 0.93/0.97

1.0% 53 0.00/1.00 0.00/1.00 0.00/1.00 0.00/0.99 0.00/1.00 0.29/0.98 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00
184 0.00/1.00 0.00/1.00 0.00/1.00 0.29/0.82 0.00/1.00 0.50/0.93 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00
535 0.00/1.00 0.00/1.00 0.00/1.00 0.43/0.89 0.00/1.00 0.71/0.91 0.00/1.00 0.00/1.00 0.00/1.00 0.21/1.00 0.21/1.00
5584 0.00/1.00 0.00/1.00 0.00/1.00 0.57/0.47 0.00/1.00 0.64/0.95 0.00/1.00 0.93/0.99 1.00/0.99 1.00/0.98 1.00/1.00
55489 0.00/1.00 0.00/1.00 0.00/1.00 0.64/0.69 0.00/1.00 0.86/0.90 1.00/0.99 1.00/0.95 1.00/0.99 1.00/0.87 1.00/0.99

10.0% 22 0.21/1.00 0.43/1.00 0.00/1.00 0.36/1.00 0.29/1.00 0.86/0.99 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00
88 0.14/1.00 0.53/1.00 0.00/1.00 0.86/0.99 0.29/1.00 1.00/0.98 0.00/1.00 0.57/1.00 1.00/1.00 1.00/1.00 1.00/1.00
260 0.00/1.00 0.57/1.00 0.00/1.00 0.86/1.00 1.00/1.00 1.00/0.99 0.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
2718 0.00/1.00 0.79/1.00 0.00/1.00 0.57/0.78 1.00/1.00 1.00/0.98 0.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
26959 0.00/1.00 0.57/1.00 0.00/1.00 0.64/0.53 1.00/0.99 1.00/0.98 1.00/0.98 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

100.0% 27 1.00/0.99 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/0.98 0.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
101 1.00/0.99 1.00/1.00 1.00/1.00 1.00/0.99 1.00/1.00 1.00/0.98 0.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
298 1.00/0.99 1.00/1.00 1.00/1.00 1.00/0.99 1.00/0.99 1.00/0.98 0.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
3089 0.86/1.00 1.00/1.00 1.00/1.00 1.00/0.65 1.00/0.99 1.00/0.98 0.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
30590 0.71/1.00 1.00/1.00 1.00/1.00 1.00/0.39 1.00/1.00 1.00/0.99 1.00/0.98 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

MuTect RVD
N=1 N=6

MAF SAMtools GATK Strelka

Fig. 3. Sensitivity/specificity comparison of RVD2 with other variant calling algorithms using synthetic DNA data
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Median VarScan2 VarScan2 RVD2 RVD2 RVD2 RVD2
Depth mpileup somatic (T=0) (T*) (T=0) (T*)

0.1% 39 1.00
139 0.96 0.95
408 0.97 0.89
4129 0.96 0.86 0.00 0.00
41449 0.90 0.93 0.04 0.14 0.11 0.50 0.80

0.3% 36 0.14
135 0.97 0.50
410 0.86 0.76
4156 0.96 0.87 0.00 0.00 0.26 0.26
41472 0.92 0.87 0.08 0.43 0.28 0.80 0.43

1.0% 53 1.00 0.67
184 0.95 0.79
535 0.87 0.78 0.00 0.00
5584 0.96 0.70 0.19 0.18 0.30 0.07
55489 0.93 1.00 0.76 0.19 0.59 0.22 0.78 0.12

10.0% 22 0.00 0.00 0.00 0.25
88 0.00 0.14 0.00 0.33 0.00 0.00 0.00 0.00
260 0.08 0.00 0.18 0.00 0.00 0.00 0.00
2718 0.91 0.07 0.36 0.00 0.00 0.00 0.00
26959 0.95 0.18 0.33 0.31 0.00 0.00 0.00 0.00

100.0% 27 0.12 0.07 0.07 0.00 0.07 0.36 0.00 0.00 0.00 0.00
101 0.12 0.07 0.00 0.22 0.07 0.36 0.00 0.00 0.00 0.00
298 0.12 0.07 0.00 0.12 0.18 0.39 0.00 0.00 0.00 0.00
3089 0.00 0.07 0.00 0.91 0.18 0.33 0.00 0.00 0.00 0.00
30590 0.00 0.07 0.00 0.94 0.00 0.26 0.3 0.00 0.00 0.00 0.00

N=1 N=6
MAF SAMtools GATK Strelka MuTect RVD

Fig. 4. FDR comparison of RVD2 with other variant calling algorithms using synthetic DNA data. Blank cells indicate no locations were called variant

Fig. 5. Estimated minor allele fraction for germline and somatic mutations called by RVD2 in the 59kbp PAXIP1 gene. Blue diamonds indicate germline mutations,

where lcontrol is significantly different from the reference sequence. Red stars indicate somatic mutations, where lcase is significantly different from lcontrol. The

vertical lines represent 95% credible interval around posterior mean MAF. Ten positions are common population SNPs according to dbSNPv138, and the identi-

ties are shown below the positions

(a) (b)

Fig. 6. (a) Positions called by VarScan2-somatic, muTect, RVD2 and Strelka in the 59kbp PAXIP1 gene from chr7:154735400 to chr7:154794682. The positions are

sorted by index (correspondence to genomic positions shown in Supplementary Table S1). (b) Read counts for each base for positions called by RVD2 and

muTect from raw pileup data
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can be seen that positions 41, 75 and 77 are more likely mutated

while positions 1, 39, 54 and 84 are less likely mutated.

Strelka was the least sensitive algorithm among all the algo-

rithms. According to the technical report, Strelka identified position

26 (chr7:154760439) as variant, but did not call any other variants.

In particular Strelka missed the two LOH events called by RVD2.

VarScan2-somatic called most positions among all algorithms,

84 positions as shown in Figure 6a. VarScan2-somatic detected all

the positions called by RVD2 except position 39, which turns out to

be a very likely mutation given the depth distribution in Figure 6b.

VarScan2-somatic reported 65 positions which were not called

by any other three algorithms. The read depth in Supplementary

Table S1 suggests that these positions are very likely to be false posi-

tives. As shown in Figure 4, the FDR for VarScan2-somatic at read

depth 53 MAF level 1.0% is as high as 1.00. Spencer et al. (2013)

also mentioned that VarScan2 has tendency to call many false posi-

tives at high read depth.

6 Discussion

We describe here a novel algorithm for model estimation and hy-

pothesis testing for identifying single-nucleotide variants in hetero-

geneous samples using NGS data. Our algorithm has a higher

sensitivity and specificity than many other approaches for a range of

read depths and MAFs.

Our inference algorithm uses Gibbs sampling to do inference in

the RVD2 hierarchical empirical Bayes model. This sampling pro-

cedure provides a guarantee to identify the global optimal parameter

settings asymptotically. However, it may require many samples to

achieve that guarantee causing the algorithm to be slower than other

deterministic approaches. We opted for this balance of speed and ac-

curacy because computational time is often not limiting and the cost

of a false positive or false negative greatly outweighs the cost of

more computation. Another factor that can affect the speed of

RVD2 is the number of M–H sample within one Gibbs sampling

run. RVD2 is able to use multiple cores in parallel, which can signifi-

cantly improve time efficiency. In future studies, we plan to reduce

the computational cost by using more sophisticated MCMC sam-

pling methods or deterministic approximation methods such as vari-

ational EM or stochastic variational EM.

We have focused on the statistical model and hypothesis test in

this study and our results do not include any pre-filtration of errone-

ous reads or post-filtration of mutation calls beyond a simple quality

score threshold. Incorporation of such data-cleaning steps will likely

improve the accuracy of the algorithm.

Our approach does not address identification of indels, structural vari-

ants or copy number variants. Those mutations typically require specific

data analysis models and tests that are different than those for single-

nucleotide variants. Furthermore, analysis of RNA-seq data or other data

generated on the NGS platform may require different models that are

more appropriately tuned to the particular noise feature of that data.

The availability of clinical sequence data is increasing as the

technical capability to sequence clinical samples at low-cost im-

proves. Consequently, we require statistically accurate algorithms

that are able to call germline and somatic point mutations in hetero-

geneous samples with low purity. Such accurate algorithms are a

step toward greater access to genomics for clinical diagnostics.
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