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Abstract
The vibrations of hands and arms are the main symptoms of Parkinson’s ailment. Nevertheless, the 
affection of the vocal cords leads to troubles and defects in the speech, which is another accurate 
symptom of the disease. This article presents a diagnostic model of Parkinson’s disease  (PD) and 
proposes the time–frequency transform (wavelet WT) and Mel‑frequency cepstral coefficients (MFCC) 
treatment for this disease. The proposed treatment is centered on the vocal signal transformation 
by a method based on the WT and to extract the coefficients of the MFCC and eventually the 
categorization of the sick and healthy patients by the use of the classifier K‑nearest neighbor (KNN). 
The analysis used in this article uses a database that contains 18 healthy patients and twenty patients. 
The Daubechies mother WT is used in treatments to compress the vocal signal and extract the 
MFCC cepstral coefficients. As far as, the diagnosis of Parkinson’s ailment is concerned the KNN 
classifying performance gives 89% accuracy when applied to 52% of the database as training data, 
whereas when we increase this percentage from 52% to 73%, we reach 98.68% accuracy which is 
higher than using the support‑vector machine classifier. The KNN is conclusive in the determination 
of the PD. Moreover, the higher the training data is, the more precise the results are.
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 Introduction
In 1817, James Parkinson described 
Parkinson’s ailment,[1] which is a 
neurodegenerative disease of unknown 
cause, characterized by the progressive 
destruction of a specific population of 
neurons.

The loss of dopamine in the midbrain 
induces the slowness of movement, 
difficulty with walking, communication 
trembling, and rigidity which are the most 
obvious motor symptoms.[2]

The performing neuron analyses and 
magnetic resonance imaging examination of 
the brain are employed in the Parkinson’s 
disease  (PD) detection. The phonation and 
articulation means of speech extraction and 
analysis can give the needed guidance in 
the spotting of PD.

The PD has a lot of indicators; among 
them, the vocal impairment which is one of 

the earliest.[3] Exactly, the phonation is the 
main part of speech production affected.[4]

Several methods are used for the diagnosis 
of PD  (prediction cepstral coefficient,[2] 
perceptual linear predictive  [PLP],[5] 
and Mel‑frequency cepstral coefficient 
[MFCC][3,5]). Focusing on the vocal signal, 
we are interested in the most used in 
recognition systems which are the MFCC 
method. To exploit the human auditory 
system characteristics through the change of 
frequencies linear scale into Mel scale that 
allows to make cepstral analysis by passage 
in the log‑spectral domain,[4] the cepstral 
analysis had been used by Shourie[6] of the 
electroencephalogram signals in the process 
of perception observance, and mental imagery 
proves the impact of artistic expertise and 
also in the appraising of hypernasality for 
children affected by cleft palate centered on 
cepstrum analysis by Akafi et al.[7]

The diagnostic of patients affected by PD 
who undergo a categorization process for 
appraising and home monitoring of tremor 
in those patients elaborated by Bazgir 
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et al.[8] are also some other ways to reach the diagnosis of 
the disease, for example, handwriting.

Filter banks that are devised accordingly to the perceptual 
criteria of the human ear will be required for the 
computation of MFCC and PLP features. It is important 
that this spectrum obtained by computing the discrete 
Fourier transform  (DFT) of the windowed speech frames 
should be estimated accurately. The procedure involves the 
estimation of a short‑time spectrum.

Whereas, our interest is focused on the diagnosis of 
PD from vocal disorders detection.  The spotting of PD 
centered on the extraction of the cepstral coefficients of 
the MFCC from the speech was first proposed by Frail 
et al.[9,10] Shahbakhi et al. diagnosed PD[11] by the measures 
of fundamental frequency disturbance  (Jitter), amplitude 
disturbance  (Shimmer), and fundamental frequency F0. 
Recent researches using the cepstral coefficients of the 
MFCC[3,5] and PLP[5] performed by Banba et  al. and 
Upadhya et  al.[12] also conducted a study on the spotting 
of PD by extracting MFCC and PLP by the use of the 
Thomson multitaper window technique. Recent studies are 
based on the works performed by Taoufiq BELHOUSSINE 
DRISSI et al. that deal with wavelet transform and MFCC 
and the support‑vector machine  (SVM) classifier.[13] In this 
work, they transform the speech signals through the sorts 
of DWT which were tested; then, they extracted MFCC 
coefficients from the signals and applying the SVM as a 
classifier.

Among the simplest machine learning algorithms, we find 
the K‑nearest neighbor (KNN) algorithm, which is a robust 
classification method. This method is widely applied in 
real‑time applications. The SVM principal based on the 
use of hyper planes to separate the classes. The shape of 
the decision will change if a different kernel provides, so 
choosing the kernel is necessary. The choice of good kernel 
needs to have some knowledge about the data that is not 
always available. Besides that, more the size of the dataset 
used for training is big, more the computational time for 
training grows nonlinearly with it. Whereas, the KNN 
being based on vector distance concept, so errors are bound 
to be less. Hence, in this article, we will choose the KNN 
as classifier in the aim of having higher accuracy.

In this work, we come up with a diagnosis model of the 
PD based on a time–frequency treatments of speech 
signals of a database[14] that consists of 18 sound patients 
and twenty affected by “PD,” then extracting the cepstral 
coefficient of the MFCC, and in the end, a classification 
will be performed by the KNN classifier. We will create 
two training bases when the first accounts for 52% of 
the database and the other 73% and apply the suggested 
treatment (wavelet, MFCC, and KNN) on the totality of the 
database.

Continuous time–frequency transform

The continuous time–frequency transform  (CWT) was 
devised by the French geophysicist Morlet in 1980 to 
study earth tremor signals.[15] Then, Grossmann, Meyer, 
Mallat, and Daubechies laid their mathematical basis for 
wavelets.[16] Since that time, WT is more and more used in 
signal processing.

A wavelet uses two coefficients: a coefficient of scale “a” 
which permitted to obtain various versions, which were 
compressed or dilated of windows stemming from the 
same mother wavelet, this coefficient represents the inverse 
of the frequency and a coefficient of translation “b” that 
characterizes the displacement of the window along the 
axis of time.

The CWT of signal s (t) is defined by:[17]

( ) ( )
+ *

‑

1 t ‑ bWs a,b = s t . dt
aa

∞

∞

 ψ  
 ∫ � (1)

here ψ(t) is the mother wavelet, and ψ*(t) is the conjugate 
complex ψ(t).

It should be noted that the wavelet transform gives 
adequate temporal resolution at high frequencies and 
adequate frequency resolution at low ones.

Discrete wavelet transform

The   discrete wavelet transform  (DWT)  is the discrete 
version of the continuous time–frequency transform (CWT). 
It is achieved by the use of the Mallat algorithm[18] that is 
regarded as a multiresolution analysis. This algorithm is 
based on the definition of a pair of filters H (low‑pass filter) 
and G (high‑pass filter) and whose impulse responses h and 
g. Several sorts of wavelets are used in literature: Haar, 
Beylkin, Coiflet, Daubechies, Symmlet, Vaidyanathan, 
Battle,….

In this work, we will only use the wavelets of Daubechies.

Mel‑frequency Cepstral Coefficient

MFCCs refer to the parameters that used the most in 
speech recognition systems. MFCC analysis consists of 
the adaption of the linear scale of frequencies into the 
Mel scale to exploit the properties of the human auditory 
system[19] that give the most effective illustration of the 
speech signal. The process of extracting the coefficients is 
shown in Figure 1.[13,20]

Preemphasis

This is a voice signal filtering process  (sn, n  =  1,…, N) 
with a first‑order finite impulse response numeric filter sn 
given as follows:[19,21]

( ) ‑1H z = 1 ‑ k z � (2)

Where, k is the coefficient of the preemphasis that must be 
comprised between 0.9≤  k  ≤1. In this study, we fixed the 
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parameter k at 0.97.[13,20] In this way, the pre‑emphasized 
signal is related to the signal '

ns  by the formula below:
'
n n n 1s = s ‑ k s − � (3)

Segmentation

The vocal signal is nonstationary, but the signal processing 
ways are stationary signals. To solve this problem, we will 
proceed to the segmentation of the signal into N speech 
samples of frames in the lapse of 10–30 ms where the 
voice signal is regarded as stable. To dodge unexpected 
transitions from frame to frame, the two adjacent frames 
are overlapped.[3]

Windowing

As a result of the segmentation, some discontinuities are 
shown at the borders of the frames; in the aim of reducing 
the revealed discontinuities, we multiply the samples 
(s'n, n = 1,…, N) of the frame by a Hamming window.[20,22]

( )' ' '
n n

2 1
s = 0.54 0.46 . cos . s

1
n

N
 π −  −   

−   
� (4)

Where, N is the number of samples in the frame.

The fast Fourier transform

The fast Fourier transform  (FFT) application consists 
of converting every single frame of N samples to the 
frequency domain instead of the time domain. The FFT is a 
fast algorithm for implementing DFT.

The definition of the DFT is as follows:[13,22]

j2 knN 1

n k
k = 0

S = s e N
− π−

∑ � (5)

Mel filtering with a filter bank

The human ear follows a nonlinear scale through an audible 
spectrum.[20] Consequently, we will use the transformation 
of the linear scale of frequencies to the Mel scale. The 

latter is in a linear space under 1000 Hz  (low frequencies) 
and logarithmic above 1000 Hz (high frequencies).

The conversion from the linear scale to the Mel scale[13,20,22] 
is given as follows:

( ) 10
fMel f = 2595.log 1 +

700
 
 
 

� (6)

Logarithm/discrete cosine transform

The MFCC coefficients may be worked out first hand by 
employing the discrete cosine transform  (DCT) on the 
logarithm of energies coming out of a bank of M triangular 
filters, apart from according to the Mel scale[13] by the 
following equation.

( )
M

i j
j=1

ic = m .cos j 0.5
M
π − 

 
∑ � (7)

Here, mj is the logarithm of the energy obtained with 
the triangular filter j, M is the number of filters bank, 
in our article M was set to 20,[13] and i is the number of 
coefficients to be extracted.

Liftering

As the higher order of the MFCC coefficients is so 
small, we have to apply the lifter to lift the cepstrum. 
Consequently, it is important to increase these amplitudes 
so that they become quite similar.[20,22] To achieve that, 
we liftered the cepstral coefficient so that the following 
equation can be applied:

'
n

L nc = 1 + .sin .c
2 L

 π  
  

  
� (8)

Here, L is the parameter of the lifter. In this article, we set 
L = 22.[13]

K‑nearest Neighbor

KNN classifier is of a simple principle based on the theory 
of statistical training. First, we give a database that contains 
the two classes with a label vector is the training phase 
where the feature space is reached so that the database 
become separable. At the test phase, the database classified 
seeks the nearest neighbor given by training database, and 
according to this, it is classified either in class 1 or class 2. 
The Euclidean distance was applied to spot the nearest 
neighbor in the KNN algorithm.[23]

Between the two points x and y, we calculate the 
Euclidean distance d  (x, y) using Eq. 9. Here, N is the 
number of characteristics such that x =  (x1, x2, x3...xN) and 
y = (y1, y2, y3 … yN).

( )
N

2 2
i i

i=1
d x,y = x ‑ y∑ � (9)

Results
The goal of this study is to determine the KNN 
performance. Before the bloc of extraction of the MFCC 
coefficients, DWT block will be injected to achieve a 
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Figure 1: Extraction process of cepstral coefficients of the Mel‑frequency 
cepstral coefficient
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correct diagnosis of PD as shown in Figure 2.

We apply the database[14] that consists of 18 sound ones 
and twenty recordings of patients suffering from PD. They 
all utter the vowel “a.”

The algorithm of DWT is centered on the definition of a 
pair of filters H  (low‑pass filter) and G (high‑pass filter). 
The filter outputs are subsampled by a factor of 2. The 
high‑pass filter provides DWT coefficients or signal details 
at a given scale. The low‑pass filter gives the coefficients 
of the approximation of the signal at the same scale. The 
same operation is again applied to the approximation, thus 
generating another detail and a new approximation.[24]

A process of PD diagnosis which is similar to our process 
is applied in the article,[13] the difference between them is 
the classifier. The DWT gives the higher accuracy at level 
2 and the 3rd  scale. Hence, in our study, we will work 
with the Daubechies db2 wavelet at scale 3, and we are 
interested only in the approximation a3 [Figure 3].

In the first phase, we transform the vocal recordings by the 
use of Daubechies wavelet. The vocal signal of PD patient 
before and after using the Daubechies wavelet is shown in 
Figure 4. Figure 5 shows a zoom at the two representations 
of the signal.

In the second phase, we will execute an input of a3 approximation 
to the MFCC block to obtain from every single patient, the 
first 12 MFCC coefficients employing the program “Htk mfcc 
matlab.”[25] These coefficients will be the characteristics that be 
relied on to get a classification to reach an exact diagnosis. The 
MFCC is composed of numerous frames that need significant 
processing time to classify. However, such operation hinders a 
precise result.[19] To cope with this problem, we had recourse to 
the calculation of the average value of these images to obtain the 
voiceprint. The 12 MFCC and voiceprint for a sound patient are 
featured in Figure 6, as for Figure 7, it illustrates the MFCC and 
voiceprint for a patient suffered from PD.

In the third phase, in which we take a decision based on the 
categorization of the patients. In this aims, we create two 
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Figure 2: Process of Parkinson’s disease diagnosis
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training bases one of 52% and the other 73% of the database. 
At the first step, we will carry out a test on our database by 
using the first training base (of 52%) and another test during 
the use of the second training base (of 73%) classifier.

In a categorization problem, the labels are part of the 
following possible identities:

Moreover, the task consists of assigning a test example 
to one of the C classes. KNN classifier is the most used 
procedure. Moreover, the widely used method is setting 
K = 1 yields the nearest neighbor classification rule.

In spite of it is simplicity, KNN so often gives a good 
performance mainly for large data sets.

We calculated measures such as accuracy, sensitivity, and 
specificity by applying the following formula to determine 
the performance of the classifier:[13,26,27]

TN + TPAccuracy =
TP + TN + FP + FN

� (10)

TPSensitivity =
TP + FN

� (11)

TNSpecificity =
TN + FP � (12)

With:
•	 TP stands for true positive  (correctly classified healthy 

patients)

Figure 5: (a) A zoom of speech before the transformation. (b) A zoom of speech after being transformed through the use of wavelet

b

a

Figure 6: (a) Mel‑frequency cepstral coefficient value of a healthy patient. (b) Voiceprint value of a healthy patient

ba
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•	 TN stands for true negative  (correctly classified 
patients)

•	 FP stands for false positive  (incorrectly classified 
patients)

•	 FN stands for false negative  (incorrectly classified 
sound patients).

The percentage of the test is accuracy, sensitivity as well 
as specificity of all the recordings by the use of the 52% 
training is shown in Table  1, and then their percentage 
by using the training base of 73% in the test of all the 
recordings  (including 6 sick and 4 healthy patients) is 
shown in Table 2.

Conclusion
We have presented in this article, a sample of diagnosis based 
on PD that is centered on the signal treatment, in which we 
will employ the wavelet transform and the MFCC using 
a database of recordings of sick patients and healthy ones 
while they pronounce the vowel “a.” The change of speech 
signals is treated by Daubechies wavelet by the third‑scale 
approximation and then, we will recover the 12 cepstral 
coefficients after injecting the approximation into the MFCC 
bloc. To make a decision on which one is sick or healthy, we 
work with the KNN classifier by using two‑learning bases, 
one is 52% and the other 73% of the database. When you 
work with the database of 52%, one obtains an accuracy of 
89% which is higher than the accuracy obtained by using 
the classifier SVM with the database of 73%, and when we 
increase the percentage of the database to 73%, we get an 
accuracy of 98.68% and from that one can conclude that 
the increase of the base of data gives us better results by 
increasing the accuracy of the classifier and that the KNN is 
more accurate than the SVM classifier.
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