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Abstract

Diabetic cardiomyopathy (DCM) is a condition characterized by myocardial dysfunc-
tion that occurs in individuals with diabetes, in the absence of coronary artery disease,
valve disease, and other conventional cardiovascular risk factors such as hypertension
and dyslipidemia. It is considered a significant and consequential complication of dia-
betes in the field of cardiovascular medicine. The primary pathological manifestations
include myocardial hypertrophy, myocardial fibrosis, and impaired ventricular func-
tion, which can lead to widespread myocardial necrosis. Ultimately, this can progress
to the development of heart failure, arrhythmias, and cardiogenic shock, with severe
cases even resulting in sudden cardiac death. Despite several decades of both funda-
mental and clinical research conducted globally, there are currently no specific tar-
geted therapies available for DCM in clinical practice, and the incidence and mortality
rates of heart failure remain persistently high. Thus, this article provides an overview
of the current treatment modalities and novel techniques pertaining to DCM, aiming
to offer valuable insights and support to researchers dedicated to investigating this

complex condition.
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1 | INTRODUCTION

Diabetes mellitus (DM) is a serious global public health issue, with in-
creasing incidence.! Diabetic cardiomyopathy (DCM) is a severe com-
plication characterized by left ventricular diastolic insufficiency with
or without left ventricular dilatation, myocardial fibrosis, increased left
ventricular weight, ventricular wall thickness, and progression to heart
failure, imposing a significant socioeconomic burden.?® Therefore,
DCM treatment has become a research focus for many scholars. In ad-
dition to diet control and exercise to prevent and treat diabetes, phar-
macological treatment is a crucial measure.* The pathogenesis of DCM
involves metabolic disorders, subcellular component abnormalities,
oxidative stress, apoptosis and autophagy, inflammatory response, im-
paired coronary microcirculation, and altered expression of microRNA
(miRNA).” Based on current knowledge of DCM pathogenesis, conven-
tional treatment strategies aim to correct glucolipid metabolism dis-
orders, protect cardiomyocytes, and prevent heart failure. However,
compared to previous approaches, the latest treatment methods may
be more precise and individualized, aiming to intervene in different

pathological mechanisms for better treatment outcomes (Figure 1).

2 | RECENT ADVANCES IN TREATMENT
RESEARCH

2.1 | Gene therapy

In recent years, as the pathogenesis of DCM has been explored in

depth, therapeutic studies targeting the target genes of DCM have
emerged.6 Many studies have shown that miRNAs appear to be
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aberrantly expressed in DCM, suggesting that miRNAs can be used
as early diagnostic methods and therapeutic targets for DCM.”1
In recent years, aberrant expression of miR-155 has been regarded
as a causative factor in the occurrence of various inflammatory re-
sponses and autoimmune diseases.® 1% MiR-155 exerts its regulatory
role in inflammatory responses by inhibiting the expression of the
inhibitory factor Bc16 within the nuclear factor-kB (NF-kB) path-
way.”!! In addition, several studies demonstrate that the downregu-
lation of miR-155, which regulates the transforming growth factor-f
(TGF-p1)/Small Mothers Against Decapentaplegic2 (SMAD2) signal-
ing pathway, prevents myocardial fibrosis in DM mice.'**2 Moreover,
miR-30d directly targets FoxO3a to regulate cardiomyocyte pyrop-
tosis in patients with DCM.®® Research indicates that circ_0071269
directly targets miR-145, leading to the upregulation of gasdermin
and modulation of proliferation and pyroptosis in H9c2 cells.1
Furthermore, cmiR-21 demonstrates significant alterations in ex-
pression levels within the heart and circulation following myocardial
injury, suggesting a close association with cardiac functional impair-
ments such as myocardial hypertrophy and fibrosis.!®

Gene editing employs specific gene editing tools to precisely
target particular gene mutations or abnormalities, allowing for the
repair or correction of gene sequences and the restoration of nor-
mal functionality.’*™'” Recent discoveries in novel molecular targets,
improved vectors, and delivery methods have significantly enhanced
the prospects of gene therapy for cardiovascular diseases.!”1820:21
Experimental evidence demonstrates that inhibiting the activation
of G protein-coupled estrogen receptor 30 can suppress myocardial
fibroblast proliferation in ovariectomized female rats with DM by
reducing nitric oxide synthase activity and nitric oxide (NO) levels.??
The inhibitor of protein phosphatase-1 can enhance the contractility
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FIGURE 1 Treatments of DCM.



SHOU et AL.

of the left ventricle and left atrium in a pig volume-overloaded heart
failure model.?® Heat shock transcription factor 1 can regulate
exercise-induced myocardial angiogenesis post-pressure overload
through hypoxia-inducible factor-1 alpha, thereby improving cardiac
function in Transverse aortic constriction mice.?* Research indicates
that cardiac C-terminal G protein-coupled receptor kinases2 peptide
can inhibit diet-induced adipocyte hypertrophy and insulin resis-
tance, thereby improving myocardial cell metabolism and delaying
ventricular remodeling‘25 B-Adrenergic receptors improve cardiac
function and delay heart failure progression by inhibiting G protein-
coupled receptor kinase 2.24?7 Specific cardiac myocyte-specific
knockout of A Disintegrin. Metalloprotease 17 has been shown to
ameliorate left ventricular remodeling and enhance function in mice
models of DCM.?8 These findings actively contribute to unraveling
the complete mechanisms of gene therapy for DCM and offer po-
tential therapeutic targets. Additionally, cell transduction methods
such as retrograde delivery and heart-specific adeno-associated
viral (AAV) vectors demonstrate significant long-term efficacy in
preclinical models.*®*”2° However, transitioning successfully from
preclinical success to clinical application still faces numerous chal-
lenges. The absence of large-scale cardiac clinical trials and the high
prevalence of existing antibodies against many AAV serotypes are
current issues.'2%2? Nevertheless, the novel therapeutic gene,
calcium-binding protein S100A1, regulates the Ca%*-related path-
way, increases mitochondrial adenosine triphosphate production,
enhances energy supply to myocardial cells, and reinforces myo-
cardial cell contractility.3°'32 Experimental evidence indicates that
repairing and overexpressing SI00A1 in rodent and pig myocardium
suggests its potential to improve both systolic and diastolic func-
tions of the heart.®?

However, gene therapy for DCM is still in its nascent stage, and
further extensive research and clinical trials are required to assess
its safety and e1’ficacy.17'18'21 Additionally, gene therapy encounters
numerous technical and ethical challenges, including the selection of
delivery vectors and the precision of gene editing.”?* Consequently,
there is currently no widely adopted gene therapy approach for the
treatment of DCM in clinical settings.*®

2.2 | Stem cell therapy

Preliminary research findings suggest that stem cell therapy may
hold potential benefits for improving cardiac function, reduc-
ing myocardial damage, and enhancing the quality of life for pa-
tients.3%34 Stem cells demonstrate tremendous prospects in cardiac
regeneration and the treatment of cardiovascular diseases, includ-
ing DCM, with mesenchymal stem cells (MSCs) showing particular
promise.®>38 The paracrine effects of MSC-released extracellular
vesicles exert a range of beneficial effects on the heart and vascu-
lature, including anti-apoptotic, anti-inflammatory, anti-fibrotic, and
pro-angiogenic effects.33%8 Research has shown that extracellular
vesicles derived from MSCs, originating from the stromal fraction
of MSCs, mitigate myocardial ischemia-reperfusion injury through
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modulation of macrophage polarization, specifically regulated by

miR-182.%7 Furthermore, extracellular vesicle-mediated delivery of
miR-25-3p demonstrates a reduction in myocardial infarction by tar-

geting pro-apoptotic proteins and enhancer of zeste homolog 2.8

2.3 | Emerging therapeutic medications

2.3.1 | SGLT-2 inhibitors

In recent years, sodium-glucose cotransporter-2 (SGLT-2) inhibi-
tors have demonstrated significant promise in the treatment of
DCM.*"% Commonly used SGLT-2 inhibitors include empagliflo-
zin, dapagliflozin, and canagliflozin.®’ As opposed to conventional
insulin-dependent hypoglycemic medications, SGLT-2 inhibitors
work to lower blood glucose by inhibiting SGLT-2R on the renal
tubules, reducing glucose reabsorption from the tubules and in-
creasing excretion, and to some extent inhibiting SGLT-1R on the
intestine, reducing glucose absorption and utilization in the small
intestine to achieve hypoglycemic effects.’’ SGLT-2 inhibitors en-
able higher urine glucose and sodium excretion, and decreased
blood volume in a chronic hyperglycemic setting, lowering cardiac
Preload and afterload and raising cardiac output.*® Studies have
shown that dapagliflozin has osmotic diuretic effects in addition to
inhibiting myocardial fibroblast activation by blocking the TGF-p/
SMAD signaling pathway through activated protein kinase (AMPKa),
attenuating streptozotocin (STZ)-induced myocardial fibrosis in rats
with DM models, delaying left ventricular remodeling, and enhanc-
ing cardiac function.** Packer et al. demonstrate that the cytosolic
ion exchange protein Na*-H* exchange pump is inhibited, intracel-
lular calcium ions are decreased, myocardial cell injury is reduced,
myocardial hypertrophy, fibrosis, and systolic dysfunction are im-
proved. Eventually, the development of heart failure is inhibited.*? In
addition, p-hydroxybutyric acid serves as an efficient metabolic sub-
strate for the heart, and SGLT-2 inhibitors induce B-hydroxybutyric
acid production to improve cardiac metabolism at the mitochondrial
level in T2DM patients.42 Moreover, studies have shown that SGLT-2
inhibitors can have a cardioprotective impact by producing uric aci-
duria and a 10%-15% reduction in plasma uric acid levels by increas-
ing uric acid production and reducing glucose reabsorption through
the Human Glucose Transporter 9 transporter.*® Because SGLT-2
inhibitors are osmotic diuretics, inhibit cardiac Na*-H" exchange,
and improve myocardial metabolism, the risk of cardiovascular com-
plications may be reduced in patients with T2DM.** Among them,
engramine became the first glucose-lowering agent approved by
the Food and Drug Administration to reduce cardiovascular mortal-
ity in the treatment of T2DM patients with comorbid cardiovascu-
lar disease.** The relative risk of hospitalization for heart failure in
T2DM patients is reduced by 35% after treatment with engramine
in the empagliflozin, cardiovascular outcomes, and mortality in type
2 diabetes outcome trial; by 33% in the Cardiovascular Assessment
of Cargolizine study program; and by 27% in the Dagliflozin Effect

cardiovascular events trial.*04
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When combined with metformin, SGLT2 inhibitors demonstrate
a good safety profile with no increased risk of hypoglycemia and
few gastrointestinal adverse effects.*® The most common adverse
effects of SGLT2 inhibitors in clinical practice include glycosuria,
genital tract fungal infections, and urinary frequency.**® However,
studies have shown that SGLT2 inhibitors may increase the risk of

diabetic ketoacidosis (Figure 2).49-31

2.3.2 | GLP-1 receptor agonists
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) can effec-
tively improve insulin resistance by promoting insulin secretion,
inhibiting glucagon secretion, and stimulating islet p-cell prolifera-
tion and differentiation. GLP-1 RAs can also effectively control post-
prandial glucose and body weight by decreasing glucagon secretion,
slowing gastric emptying, and reducing food intake.>? In comparison
to insulin, GLP-1 RAs are recommended as the first-injection hypo-
glycemic therapy of choice for T2DM due to their effectiveness in
controlling blood glucose levels without the risk of hypoglycemia,
especially in obese patients.‘r’z'53 Several cardiovascular outcome
studies have shown that GLP-1 RAs can prevent CV events, and
thus, treatment with GLP-1 RAs is recommended specifically for pa-
tients with pre-existing atherosclerotic vascular disease.>*%°
Abnormal expression of type | and Il collagen deposition and
matrix metalloproteinases (MMPs) are important factors contribut-
ing to myocardial fibrosis and diastolic dysfunction.56 In contrast,
GLP-1 RAs activate the AMPK pathway, reduce endoplasmic re-
ticulum stress, and inhibit the expression of type I/1ll collagen and
MMPs, thus improving cardiac function and exhibiting anti-fibrosis
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FIGURE 2 The primary mechanisms of action of SGLT-2 inhibitors.
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properties, which is a new therapeutic direction to prevent or delay
the development of DCM.>¢%7

GLP-1 RAs were first approved for the treatment of T2DM in
2005, and the representative drugs are exenatide, liraglutide, and
lisinopril.>® Due to its slow duration of action and short half-life,
exenatide, the first approved GLP-1 RA, requires at least two daily
injections.>® Liraglutide, approved in 2009, has an extended half-
life of 13h and is usually effective for glycemic control with once-
daily injections.53 The Cardiovascular Outcomes Assessment trial
demonstrates a significant reduction in cardiovascular adverse
events and overall mortality in patients with T2DM treated with li-
raglutide.>”%® A 52-week randomized controlled trial shows that li-
raglutide increases left ventricular ejection fraction and significantly
improves cardiac function compared to selegiline and glargine insu-
lin treatment.>’

The most common side effects of GLP-1 RAs are gastrointestinal
reactions.®%%? Among them, semaglutide carries the highest risk of
nausea, diarrhea, vomiting, constipation, and pancreatitis, while lira-

glutide carries the highest risk of upper abdominal pain.*

2.3.3 | DPP-4 inhibitors

Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of novel oral
antidiabetic medications. They stimulate p-cell growth, prolifera-
tion, and differentiation, and promote B-cell secretion by reducing
entero-insulin inactivation, increasing the levels of endogenous
GLP-1 and glucose-dependent insulinotropic peptide, and pro-
longing the action of insulin, thereby lowering blood glucose.®®
Additionally, DPP-4 inhibitors inhibit the degradation of Stromal
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systolic dysfunction

cardioprotective
impact

E——)

. | heart failureﬂ

cardiac output ﬂ

Metabolic effects —



SHOU et AL.

cell-derived factor-la and enhance the homing of endothelial
progenitor cells, which eventually exert vasoprotective effects.®?
Large prospective cardiovascular trials have confirmed that DPP-4
inhibitors do not increase cardiovascular risk and are a safe and ef-
fective option for T2DM patients with cardiovascular disease and
high-risk factors.®® Furthermore, in animal experiments, DPP-4 in-
hibitors have been shown to exert pleiotropic effects on heart fail-
ure. Studies have demonstrated that the use of DPP-4 inhibitors is
beneficial for the prognosis of patients with diabetes complicated
by heart failure.’%%°

Compared to conventional hypoglycemic agents, DPP-4 inhibi-
tors have a good safety and tolerability profile with no increased risk
of hypoglycemia and low gastrointestinal reactions.47%® However,
a meta-study showed that patients using DPP-4 inhibitors had a
significantly increased risk of acute pancreatitis.69 In addition, some
studies have shown that DPP-4 inhibitors can affect the degrada-
tion of bradykinin, leading to increased vascular permeability and
edema.”®

2.34 | P2Y12 antagonists
P2Y12 antagonists were previously used as the drug of choice
for dual antiplatelet therapy in patients with Acute Coronary
Syndrome.”* There are two groups of P2Y12 antagonists in clinical
use. The first group is thienotetrahydropyridines or thienopyridines,
which includes ticlopidine, clopidogrel, and prasugrel. Ticlopidine is
a first-generation thienopyridine that is no longer in clinical use due
to toxicity. Clopidogrel, a second-generation thienopyridine, has
been the most widely used P2Y12 inhibitor in patients undergo-
ing percutaneous coronary intervention or secondary prevention
of ACS.”? The oral P2Y12 inhibitor Tegretol is more effective than
clopidogrel in preventing major cardiovascular events in patients
with ACS, but it increases the risk of major bleeding.73

Adenosine is a purine nucleoside analog formed by the metabo-
lism of adenosine diphosphate (ADP) or Adenosine triphosphate by
nucleotidases released after local tissue hypoxia or tissue injury. Its
biological effects include vasodilation, inflammation regulation, and
platelet function inhibition.”* Studies have demonstrated that the
P2Y12 receptor antagonist Tegretol exerts its cardioprotective ef-
fects mainly by increasing the levels of mesoadenosine.”* An experi-
ment demonstrates that Tegretol inhibits the activation of NOD-like
receptor thermal protein domain associated protein 3 inflammatory
vesicles, improves myocardial fibrosis, and slows down the progres-
sion of myocardial contractile dysfunction.75 Meanwhile, the combi-
nation of SGLT2 inhibitors dapagliflozin and Tegretol has synergistic
effects on the treatment of DCM, slowing myocardial remodeling in
DCM in mice with a T2DM model.”>”®

Patients with DM are at an increased risk of thrombotic events
due to the presence of atherosclerosis. Laboratory tests have shown
that patients with DCM also have increased blood viscosity.72'77

P2Y12 receptor antagonists, which inhibit thrombosis by blocking
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P2Y12 receptor binding and inhibiting platelet glycoprotein llb/llla

receptor activation and fibrinogen ligation, can significantly reduce
the risk of thrombotic events.”” Tegretol, on the other hand, inhibits
the aggregation of platelets by inducers other than ADP and can in-
hibit platelet aggregation in vivo in a rapid, efficient, and sustained
manner.”’

In addition to reducing the risk of thrombotic events, studies
have shown that P2Y12 receptor antagonists have antitumor effects
when P2Y12R or P2Y12R genetic defects are inhibited.”? However,
it should be noted that P2Y12 inhibitors, while antiplatelet coagula-
tion, may increase the risk of exacerbating bleeding.”®

2.4 | Other medications or potential active
ingredients

Sphingosine-1-phosphate (S1P) is a product of the enzyme sphin-
gosine kinase 1 (SphK1).”78! Elevated levels of S1P are involved
in the process of DCM and myocardial fibrosis.8#? A recent study
has shown that advanced glycation end product (AGE) inhibitors, in
addition to their role in blocking AGE formation, can also prevent
DCM by inhibiting the expression of the SphK1 gene.82 Nicorandil,
a microcirculation-improving drug, significantly reduces the risk of
cardiovascular events and improves prognosis.83 It is demonstrated
that nicorandil, which activates the phosphatidylinositol-3-kinase
(PI3K)/protein kinase B (PKB) pathway, reduces cardiomyocyte ap-
optosis and improves the symptoms of cardiac insufficiency in DM
rats.8* Moreover, studies have shown that Nesfatin-1 improves in-
sulin sensitivity in STZ-induced DM model rats through the p38-
MAPK pathway, reducing inflammation and ameliorating cardiac
dysfunction.®’

In recent years, extensive research has shown that certain herbal
extracts have potential therapeutic effects on DCM.81 For in-
stance, Schisandrin B has been found to alleviate DCM by targeting
MyD88 and inhibiting MyD88-dependent inflammation.®® Paeonol
promotes OPA1l-mediated mitochondrial fusion through the acti-
vation of the CK2a-Stat3 pathway, thus mitigating mitochondrial
oxidative stress to protect the heart.®” Piceatannol has also been
shown to alleviate inflammation and oxidative stress in high glucose-
induced H9C2 cells by modulating the Nrf2/HO-1 and NF-kB path-
ways.88 Furthermore, flavonoids have been widely demonstrated to
effectively inhibit cell hypertrophy, fibrosis, and apoptosis induced

by high glucose.??7°

2.5 | Traditional medications

2.5.1 | Conventional antihyperglycemic medications
Classic traditional antihyperglycemic medications include insulin and
metformin, among others (Figure 3). Insulin is the first-line agent for

the treatment of type 1 diabetes mellitus (T1DM), as it is the only
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hypoglycemic hormone in the body.”? Diabetic patients experience
disturbances in sugar and fat metabolism, leading to an excessive
accumulation of glucose and lipids. This disrupts the balance of myo-
cardial energy-redox, impairs mitochondrial function, and increases
the generation of reactive oxygen species (ROS), triggering oxidative
stress in cardiac cells. Insulin effectively manages blood sugar levels,
suppresses mitochondrial ROS production, upregulates intracellular
antioxidant enzymes, and mitigates excessive ROS, thus reducing
damage to myocardial cells, and delaying ventricular remodeling."’g‘"’4
Insulin can also inhibit the transcription of transcription factor sig-
nal transducer and activator of transcription and the activation of
the interleukin-6 signaling pathway, by regulating the extracellular
regulated protein kinase pathway and PI3K/forkhead box O1 path-
way to reduce the production of inflammatory mediators, ultimately
attenuating the myocardial inflammatory response."'c"96 Secondly, in-
sulin improves cardiac metabolism by promoting glucose uptake and
utilization by cardiomyocytes and reducing free fat acid accumula-
tion. In addition, insulin can participate in myocardial contraction
and prevent ischemia-induced apoptosis and autophagy directly or
indirectly through insulin-like growth factors-1.%° It has been shown
that the combination of insulin and selenium synergistically resists
apoptosis in DM cardiomyocytes by regulating Ku70 acetylation and
inhibiting Bax translocation.”®

Metformin has become the gold standard in the treatment
of diabetes in several countries due to its beneficial effects on
the treatment of other underlying metabolic diseases in addition
to its effective hypoglycemic effect.””?® The American Diabetes

Association (ADA) recommends pharmacological treatment with

N
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FIGURE 3 Mechanisms of blood
glucose regulation.
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metformin first, and if the drug alone is not effective in controlling
blood glucose, it is used in a diphasic or triple combination.””

In addition to its effective hypoglycemic effect, experimen-
tal studies on DM model mice demonstrate that metformin, as an
AMPK agonist, could inhibit cardiomyocyte apoptosis by activat-
ing AMPK, improving autophagy, and activating the prokineticin2/
prokinetic receptor-mediated PKB/glycogen synthase kinase-3p
signaling pathways, increasing NO bioavailability, and reducing
advanced glycated end-products deposition.""”’101 Meanwhile, the
mitochondrial respiratory chain is improved, mitochondrial uncou-
pling, increases energy production is reduced, myocardial diastolic
efficiency is strengthened, and the process of cardiac remodeling is
slowed by activating the AMPK pathway.'°° The Discoidin Domain
Receptor 2 (DDR2), as a collagen receptor tyrosine kinase, plays a
specific regulatory role in the expression of type | collagen genes
in cardiac and vascular adventitial fibroblasts.}°?"1%4 Research has
shown that metformin attenuates the increased expression of
DDR2 mRNA and protein induced by high glucose by inhibiting the
TGF-B1/SMAD2/3 signaling pathway.'* Additionally, it inhibits the
expression of fibronectin and type | collagen dependent on DDR2,
thus slowing down the progression of myocardial fibrosis and ven-
tricular remodeling.10%104

A multicenter, double-blind, placebo-controlled study shows
a 24% incidence of gastrointestinal reactions to metformin at
1000 mg/day as starting therapy.’°® In addition, metformin is prone
to accumulate in patients with moderate to severe chronic kidney
disease, leading to lactic acidosis, central nervous system dysfunc-

tion, cardiovascular failure, renal failure, and even death.”’
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2.5.2 | Statins

Patients with DM often exhibit increased lipid levels.10¢ Therefore,
reducing lipid levels is crucial for the prevention and treatment
of cardiovascular disease. Statins are effective inhibitors of cho-
lesterol biosynthesis and the most effective drugs for reducing
low-density lipoprotein cholesterol, which is essential for primary
and secondary prevention of coronary heart disease and lowering
cardiovascular morbidity and mortality rates.!%” As the preferred
lipid-modifying drug, statins have been shown to improve cardio-
vascular prognosis in patients with DM and are often used for car-
diovascular disease prevention in patients with T2DM. They also
have the added benefit of reducing inflammatory responses and
improving vascular endothelial function while effectively lower-
ing total cholesterol levels.198 Major guidelines for cardiovascular
disease prevention agree that patients with DM and diagnosed
cardiovascular disease are at high risk for future atherosclerotic
cardiovascular disease and require intensive lipid regulation and
lipid-lowering.1%?

Patients with DCM are susceptible to myocardial inflamma-
tory responses due to the hyperglycemic environment in the body,
which is closely related to the development of vascular endothe-
lial dysfunction.' Studies have shown that statins can inhibit the
activation of the inflammatory factor interleukin-1, reduce the
myocardial inflammatory response in DCM patients, and improve
endothelial dysfunction, thereby playing a myocardial protective
role 110111

Statins are generally well-tolerated, but their side effects are
mainly related to the dose taken. When the dose is increased to
40mg or even 80mg, liver damage characterized by elevated trans-
aminases and rhabdomyolysis characterized by elevated creatine

kinase may occur.!*?

2.5.3 | Anti-heart failure drugs
Patients with DCM often develop heart failure in the middle to late
stages of DM development. In addition to glycemic control, anti-

heart failure drugs can be used.

2.54 | Renin-angiotensin-aldosterone
system inhibitors

Renin-angiotensin-aldosterone system (RAAS) inhibitors are divided
into angiotensin-converting enzyme inhibitors (ACEI), angiotensin Il
receptor blockers (ARB), and direct renin inhibitors. ACElI and ARB
are first-line treatments for cardiovascular disease in patients with
DM.3 RAAS inhibitors have been shown to inhibit the development
of inflammatory and fibrotic responses and improve cardiovascu-
lar systolic and diastolic responses in patients with cardiovascular

disease.
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RAAS inhibitors function as hypotensive agents by inhibiting

Ang |l synthesis, leading to a reduction in ventricular diastolic pres-
sure and the treatment of congestive heart failure. 14 Additionally,
RAAS inhibitors can inhibit myocardial remodeling through various
pathways, potentially providing a protective effect on DCM. 114115
Experimental studies suggest that RAAS inhibitors may prevent DCM
by inhibiting cardiac-specific NF-kB signaling.*® A study finds that
Alamandine, the newest identified peptide of the renin-angiotensin
system, attenuates myocardial oxidative stress and inflammatory re-
sponses and prevents myocardial lesions in a DM mouse model.**’
Captopril, an ACEI inhibitor, improved end-diastolic pressure eleva-
tion and inhibited myocardial fibrosis in spontaneous DM rats after
treatment for 4 months, thus playing a preventive role in DCM.8
Although ACEls are generally well-tolerated and have no signif-
icant immediate side effects, some studies suggest that reducing
Ang Il production may lead to adverse effects such as hypoten-
sion, acute renal failure, and hyperkalemia.'*’ Increased vascular
permeability and interstitial fluid accumulation, typically caused by
bradykinin, may cause side effects such as cough, angioedema, and
anaphylactic-like reactions. Moreover, side effects such as hypoten-
sion, early renal decline, renal insufficiency, and hyperkalemia are

associated with drug doses.'1?12°

2.5.5 | pB-Blocking drugs

B-Blocking drugs are indispensable for treating heart failure pa-

tients with reduced ejection fraction.'?!

B-Blocking drugs can
reduce myocardial oxygen consumption, improve cardiac me-
tabolism, and attenuate myocardial fibrosis, leading to reduced
mortality in heart failure. These drugs inhibit cardiomyocyte 1
receptors, decrease the rate of lipolysis by inhibiting adipose p3
receptors, and reduce glycogenolysis by inhibiting the hyperglyce-
mic response induced by adrenaline, thereby lowering blood glu-
cose. Additionally, numerous recent studies have demonstrated
that carvedilol improves myocardial hypertrophy, oxidative
stress-induced cardiomyocyte apoptosis, and myocardial fibrosis,
ameliorating ventricular remodeling and cardiac dysfunction and
reducing mortality in heart failure.}??

The use of B-blockers is effective against angina pectoris and
hypertension. In secondary prevention, they can improve patients
with previous myocardial infarction or left ventricular systolic dys-
function, as well as reduce mortality.123 However, side effects of
B-blockers include increased insulin resistance, dyslipidemia, new-
onset DM, and weight gain.124 In addition, p-blockers have a rela-

tively high incidence of stroke and cardiovascular mortality.'?*

2.5.6 | Diuretics

The ADA recommends thiazide diuretics for the treatment of DM pa-
tients with combined hypertension. Diuretics control blood volume,
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lower blood pressure, prevent cardiovascular disease with long-term

use, and reduce morbidity and mortality.*?> Patients with DCM with-

out reduced ejection fraction who have water retention can improve

edema with diuretics such as spironolactone. Liu W et al. treated

STZ-induced DM model rats with spironolactone for 12weeks and

found that myocardial oxidative stress and inflammatory response

Therapeutic medications

SGLT-2 inhibitors

GLP-1 receptor agonists

DPP-4 inhibitors

P2Y12 antagonists

Potential active ingredients

Biguanides

Insulin

Statins

RAAS inhibitors

f-blocking drugs

Diuretics

dvanced medical interventions

Gene therapy

Stem Cell Therapy

FIGURE 4 The current advantages and disadvantages of DCM treatments.
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were reduced, and myocardial fibrosis was improved by spironol-
actone.'?® In addition, patients with chronic heart failure are often
treated with circulating diuretics to control congestive symptoms.*?”

However, the overuse of diuretics can cause reduced tissue per-
fusion, renal impairment, water-electrolyte disturbances, and occa-
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3 | COMPARISON OF EMERGING
INTERVENTION MEASURES WITH EXISTING
THERAPIES

Emerging intervention measures, such as gene therapy and stem
cell therapy, are novel treatment approaches developed based on
existing therapies.’®1?3%34 They aim to delve into the pathological
mechanisms and pathogenesis of DCM, striving for improved treat-
ment outcomes. 27130

First, emerging intervention measures place greater emphasis
on the pathogenesis of DCM, attempting to fundamentally block
or reverse pathological processes.!??%127130 Compared to exist-
ing therapies, these new treatment methods may more precisely
target relevant pathological and physiological processes, leading
to more pronounced treatment effects.181933113130.131 Second,
emerging intervention measures may focus more on individualized
treatment. At present, the current therapeutic strategies for DCM
primarily center around glycemic control, blood pressure manage-
ment, lipid regulation, and symptomatic relief.?3%132133 Byt they
cannot directly intervene at the genetic level.'®? Gene therapy's
advantage lies in its ability to intervene in the root cause of the
disease, potentially achieving long-term and personalized treat-
ment effects 18:19:33-36.129

Existing therapies mainly rely on drug management and symp-
tom relief to control disease progression, but they cannot facil-
itate the recovery of damaged myocardium.®31*313% |n contrast,
stem cell therapy holds potential for regeneration and repair,
aiding in the self-repair of myocardial cells and improving cardiac
function 33-36.131

It should be noted that the field of DCM treatment is still evolv-
ing, and emerging intervention measures are still in the research
stage, requiring clinical trials to validate their safety and effective-
ness 10718132 por patients with DCM, current existing therapies re-

main essential for management (Figure 4).

4 | CONCLUSION

DCM has attracted widespread attention as an independent disease in
recent years. Effective glycemic control, regulation of blood pressure,
lipids, and other risk factors, as well as protection of cardiomyocytes,
are the main treatment strategies at present. The emerging therapeu-
tic drugs demonstrate unique advantages in treating DCM, protect-
ing the heart, delaying myocardial remodeling, and reducing adverse
reactions. However, certain more personalized, targeted treatments
have yet to undergo large-scale clinical trials to validate their safety
and efficacy. The future treatment of DCM needs to be based on a full
understanding of its pathological mechanisms and more precise and

effective therapeutic approaches for its target genes.
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