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Abstract
Diabetic cardiomyopathy (DCM) is a condition characterized by myocardial dysfunc-
tion that occurs in individuals with diabetes, in the absence of coronary artery disease, 
valve disease, and other conventional cardiovascular risk factors such as hypertension 
and dyslipidemia. It is considered a significant and consequential complication of dia-
betes in the field of cardiovascular medicine. The primary pathological manifestations 
include myocardial hypertrophy, myocardial fibrosis, and impaired ventricular func-
tion, which can lead to widespread myocardial necrosis. Ultimately, this can progress 
to the development of heart failure, arrhythmias, and cardiogenic shock, with severe 
cases even resulting in sudden cardiac death. Despite several decades of both funda-
mental and clinical research conducted globally, there are currently no specific tar-
geted therapies available for DCM in clinical practice, and the incidence and mortality 
rates of heart failure remain persistently high. Thus, this article provides an overview 
of the current treatment modalities and novel techniques pertaining to DCM, aiming 
to offer valuable insights and support to researchers dedicated to investigating this 
complex condition.
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1  |  INTRODUC TION

Diabetes mellitus (DM) is a serious global public health issue, with in-
creasing incidence.1 Diabetic cardiomyopathy (DCM) is a severe com-
plication characterized by left ventricular diastolic insufficiency with 
or without left ventricular dilatation, myocardial fibrosis, increased left 
ventricular weight, ventricular wall thickness, and progression to heart 
failure, imposing a significant socioeconomic burden.2,3 Therefore, 
DCM treatment has become a research focus for many scholars. In ad-
dition to diet control and exercise to prevent and treat diabetes, phar-
macological treatment is a crucial measure.4 The pathogenesis of DCM 
involves metabolic disorders, subcellular component abnormalities, 
oxidative stress, apoptosis and autophagy, inflammatory response, im-
paired coronary microcirculation, and altered expression of microRNA 
(miRNA).5 Based on current knowledge of DCM pathogenesis, conven-
tional treatment strategies aim to correct glucolipid metabolism dis-
orders, protect cardiomyocytes, and prevent heart failure. However, 
compared to previous approaches, the latest treatment methods may 
be more precise and individualized, aiming to intervene in different 
pathological mechanisms for better treatment outcomes (Figure 1).

2  |  RECENT ADVANCES IN TRE ATMENT 
RESE ARCH

2.1  |  Gene therapy

In recent years, as the pathogenesis of DCM has been explored in 
depth, therapeutic studies targeting the target genes of DCM have 
emerged.6 Many studies have shown that miRNAs appear to be 

aberrantly expressed in DCM, suggesting that miRNAs can be used 
as early diagnostic methods and therapeutic targets for DCM.7–11 
In recent years, aberrant expression of miR-155 has been regarded 
as a causative factor in the occurrence of various inflammatory re-
sponses and autoimmune diseases.8–10 MiR-155 exerts its regulatory 
role in inflammatory responses by inhibiting the expression of the 
inhibitory factor Bc16 within the nuclear factor-κB (NF-κB) path-
way.9,11 In addition, several studies demonstrate that the downregu-
lation of miR-155, which regulates the transforming growth factor-β 
(TGF-β1)/Small Mothers Against Decapentaplegic2 (SMAD2) signal-
ing pathway, prevents myocardial fibrosis in DM mice.11,12 Moreover, 
miR-30d directly targets FoxO3a to regulate cardiomyocyte pyrop-
tosis in patients with DCM.13 Research indicates that circ_0071269 
directly targets miR-145, leading to the upregulation of gasdermin 
and modulation of proliferation and pyroptosis in H9c2 cells.14 
Furthermore, cmiR-21 demonstrates significant alterations in ex-
pression levels within the heart and circulation following myocardial 
injury, suggesting a close association with cardiac functional impair-
ments such as myocardial hypertrophy and fibrosis.15

Gene editing employs specific gene editing tools to precisely 
target particular gene mutations or abnormalities, allowing for the 
repair or correction of gene sequences and the restoration of nor-
mal functionality.16–19 Recent discoveries in novel molecular targets, 
improved vectors, and delivery methods have significantly enhanced 
the prospects of gene therapy for cardiovascular diseases.17,18,20,21 
Experimental evidence demonstrates that inhibiting the activation 
of G protein-coupled estrogen receptor 30 can suppress myocardial 
fibroblast proliferation in ovariectomized female rats with DM by 
reducing nitric oxide synthase activity and nitric oxide (NO) levels.22 
The inhibitor of protein phosphatase-1 can enhance the contractility 
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of the left ventricle and left atrium in a pig volume-overloaded heart 
failure model.23 Heat shock transcription factor 1 can regulate 
exercise-induced myocardial angiogenesis post-pressure overload 
through hypoxia-inducible factor-1 alpha, thereby improving cardiac 
function in Transverse aortic constriction mice.24 Research indicates 
that cardiac C-terminal G protein-coupled receptor kinases2 peptide 
can inhibit diet-induced adipocyte hypertrophy and insulin resis-
tance, thereby improving myocardial cell metabolism and delaying 
ventricular remodeling.25 β-Adrenergic receptors improve cardiac 
function and delay heart failure progression by inhibiting G protein-
coupled receptor kinase 2.26,27 Specific cardiac myocyte-specific 
knockout of A Disintegrin. Metalloprotease 17 has been shown to 
ameliorate left ventricular remodeling and enhance function in mice 
models of DCM.28 These findings actively contribute to unraveling 
the complete mechanisms of gene therapy for DCM and offer po-
tential therapeutic targets. Additionally, cell transduction methods 
such as retrograde delivery and heart-specific adeno-associated 
viral (AAV) vectors demonstrate significant long-term efficacy in 
preclinical models.16,17,20 However, transitioning successfully from 
preclinical success to clinical application still faces numerous chal-
lenges. The absence of large-scale cardiac clinical trials and the high 
prevalence of existing antibodies against many AAV serotypes are 
current issues.17,20,29 Nevertheless, the novel therapeutic gene, 
calcium-binding protein S100A1, regulates the Ca2+-related path-
way, increases mitochondrial adenosine triphosphate production, 
enhances energy supply to myocardial cells, and reinforces myo-
cardial cell contractility.30–32 Experimental evidence indicates that 
repairing and overexpressing S100A1 in rodent and pig myocardium 
suggests its potential to improve both systolic and diastolic func-
tions of the heart.32

However, gene therapy for DCM is still in its nascent stage, and 
further extensive research and clinical trials are required to assess 
its safety and efficacy.17,18,21 Additionally, gene therapy encounters 
numerous technical and ethical challenges, including the selection of 
delivery vectors and the precision of gene editing.17,21 Consequently, 
there is currently no widely adopted gene therapy approach for the 
treatment of DCM in clinical settings.18

2.2  |  Stem cell therapy

Preliminary research findings suggest that stem cell therapy may 
hold potential benefits for improving cardiac function, reduc-
ing myocardial damage, and enhancing the quality of life for pa-
tients.33,34 Stem cells demonstrate tremendous prospects in cardiac 
regeneration and the treatment of cardiovascular diseases, includ-
ing DCM, with mesenchymal stem cells (MSCs) showing particular 
promise.35–38 The paracrine effects of MSC-released extracellular 
vesicles exert a range of beneficial effects on the heart and vascu-
lature, including anti-apoptotic, anti-inflammatory, anti-fibrotic, and 
pro-angiogenic effects.33,38 Research has shown that extracellular 
vesicles derived from MSCs, originating from the stromal fraction 
of MSCs, mitigate myocardial ischemia–reperfusion injury through 

modulation of macrophage polarization, specifically regulated by 
miR-182.37 Furthermore, extracellular vesicle-mediated delivery of 
miR-25-3p demonstrates a reduction in myocardial infarction by tar-
geting pro-apoptotic proteins and enhancer of zeste homolog 2.38

2.3  |  Emerging therapeutic medications

2.3.1  |  SGLT-2 inhibitors

In recent years, sodium-glucose cotransporter-2 (SGLT-2) inhibi-
tors have demonstrated significant promise in the treatment of 
DCM.39–45 Commonly used SGLT-2 inhibitors include empagliflo-
zin, dapagliflozin, and canagliflozin.39 As opposed to conventional 
insulin-dependent hypoglycemic medications, SGLT-2 inhibitors 
work to lower blood glucose by inhibiting SGLT-2R on the renal 
tubules, reducing glucose reabsorption from the tubules and in-
creasing excretion, and to some extent inhibiting SGLT-1R on the 
intestine, reducing glucose absorption and utilization in the small 
intestine to achieve hypoglycemic effects.39 SGLT-2 inhibitors en-
able higher urine glucose and sodium excretion, and decreased 
blood volume in a chronic hyperglycemic setting, lowering cardiac 
Preload and afterload and raising cardiac output.40 Studies have 
shown that dapagliflozin has osmotic diuretic effects in addition to 
inhibiting myocardial fibroblast activation by blocking the TGF-β/
SMAD signaling pathway through activated protein kinase (AMPKα), 
attenuating streptozotocin (STZ)-induced myocardial fibrosis in rats 
with DM models, delaying left ventricular remodeling, and enhanc-
ing cardiac function.41 Packer et al. demonstrate that the cytosolic 
ion exchange protein Na+-H+ exchange pump is inhibited, intracel-
lular calcium ions are decreased, myocardial cell injury is reduced, 
myocardial hypertrophy, fibrosis, and systolic dysfunction are im-
proved. Eventually, the development of heart failure is inhibited.42 In 
addition, β-hydroxybutyric acid serves as an efficient metabolic sub-
strate for the heart, and SGLT-2 inhibitors induce β-hydroxybutyric 
acid production to improve cardiac metabolism at the mitochondrial 
level in T2DM patients.42 Moreover, studies have shown that SGLT-2 
inhibitors can have a cardioprotective impact by producing uric aci-
duria and a 10%–15% reduction in plasma uric acid levels by increas-
ing uric acid production and reducing glucose reabsorption through 
the Human Glucose Transporter 9 transporter.40 Because SGLT-2 
inhibitors are osmotic diuretics, inhibit cardiac Na+-H+ exchange, 
and improve myocardial metabolism, the risk of cardiovascular com-
plications may be reduced in patients with T2DM.43 Among them, 
engramine became the first glucose-lowering agent approved by 
the Food and Drug Administration to reduce cardiovascular mortal-
ity in the treatment of T2DM patients with comorbid cardiovascu-
lar disease.44 The relative risk of hospitalization for heart failure in 
T2DM patients is reduced by 35% after treatment with engramine 
in the empagliflozin, cardiovascular outcomes, and mortality in type 
2 diabetes outcome trial; by 33% in the Cardiovascular Assessment 
of Cargolizine study program; and by 27% in the Dagliflozin Effect 
cardiovascular events trial.40,45
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When combined with metformin, SGLT2 inhibitors demonstrate 
a good safety profile with no increased risk of hypoglycemia and 
few gastrointestinal adverse effects.46 The most common adverse 
effects of SGLT2 inhibitors in clinical practice include glycosuria, 
genital tract fungal infections, and urinary frequency.47,48 However, 
studies have shown that SGLT2 inhibitors may increase the risk of 
diabetic ketoacidosis (Figure 2).49–51

2.3.2  |  GLP-1 receptor agonists

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) can effec-
tively improve insulin resistance by promoting insulin secretion, 
inhibiting glucagon secretion, and stimulating islet β-cell prolifera-
tion and differentiation. GLP-1 RAs can also effectively control post-
prandial glucose and body weight by decreasing glucagon secretion, 
slowing gastric emptying, and reducing food intake.52 In comparison 
to insulin, GLP-1 RAs are recommended as the first-injection hypo-
glycemic therapy of choice for T2DM due to their effectiveness in 
controlling blood glucose levels without the risk of hypoglycemia, 
especially in obese patients.52,53 Several cardiovascular outcome 
studies have shown that GLP-1 RAs can prevent CV events, and 
thus, treatment with GLP-1 RAs is recommended specifically for pa-
tients with pre-existing atherosclerotic vascular disease.54,55

Abnormal expression of type I and III collagen deposition and 
matrix metalloproteinases (MMPs) are important factors contribut-
ing to myocardial fibrosis and diastolic dysfunction.56 In contrast, 
GLP-1 RAs activate the AMPK pathway, reduce endoplasmic re-
ticulum stress, and inhibit the expression of type I/III collagen and 
MMPs, thus improving cardiac function and exhibiting anti-fibrosis 

properties, which is a new therapeutic direction to prevent or delay 
the development of DCM.56,57

GLP-1 RAs were first approved for the treatment of T2DM in 
2005, and the representative drugs are exenatide, liraglutide, and 
lisinopril.53 Due to its slow duration of action and short half-life, 
exenatide, the first approved GLP-1 RA, requires at least two daily 
injections.53 Liraglutide, approved in 2009, has an extended half-
life of 13 h and is usually effective for glycemic control with once-
daily injections.53 The Cardiovascular Outcomes Assessment trial 
demonstrates a significant reduction in cardiovascular adverse 
events and overall mortality in patients with T2DM treated with li-
raglutide.57,58 A 52-week randomized controlled trial shows that li-
raglutide increases left ventricular ejection fraction and significantly 
improves cardiac function compared to selegiline and glargine insu-
lin treatment.59

The most common side effects of GLP-1 RAs are gastrointestinal 
reactions.60,61 Among them, semaglutide carries the highest risk of 
nausea, diarrhea, vomiting, constipation, and pancreatitis, while lira-
glutide carries the highest risk of upper abdominal pain.61

2.3.3  |  DPP-4 inhibitors

Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of novel oral 
antidiabetic medications. They stimulate β-cell growth, prolifera-
tion, and differentiation, and promote β-cell secretion by reducing 
entero-insulin inactivation, increasing the levels of endogenous 
GLP-1 and glucose-dependent insulinotropic peptide, and pro-
longing the action of insulin, thereby lowering blood glucose.60 
Additionally, DPP-4 inhibitors inhibit the degradation of Stromal 

F I G U R E  2 The primary mechanisms of action of SGLT-2 inhibitors.
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cell-derived factor-1α and enhance the homing of endothelial 
progenitor cells, which eventually exert vasoprotective effects.62 
Large prospective cardiovascular trials have confirmed that DPP-4 
inhibitors do not increase cardiovascular risk and are a safe and ef-
fective option for T2DM patients with cardiovascular disease and 
high-risk factors.63 Furthermore, in animal experiments, DPP-4 in-
hibitors have been shown to exert pleiotropic effects on heart fail-
ure. Studies have demonstrated that the use of DPP-4 inhibitors is 
beneficial for the prognosis of patients with diabetes complicated 
by heart failure.64,65

Compared to conventional hypoglycemic agents, DPP-4 inhibi-
tors have a good safety and tolerability profile with no increased risk 
of hypoglycemia and low gastrointestinal reactions.66–68 However, 
a meta-study showed that patients using DPP-4 inhibitors had a 
significantly increased risk of acute pancreatitis.69 In addition, some 
studies have shown that DPP-4 inhibitors can affect the degrada-
tion of bradykinin, leading to increased vascular permeability and 
edema.70

2.3.4  |  P2Y12 antagonists

P2Y12 antagonists were previously used as the drug of choice 
for dual antiplatelet therapy in patients with Acute Coronary 
Syndrome.71 There are two groups of P2Y12 antagonists in clinical 
use. The first group is thienotetrahydropyridines or thienopyridines, 
which includes ticlopidine, clopidogrel, and prasugrel. Ticlopidine is 
a first-generation thienopyridine that is no longer in clinical use due 
to toxicity. Clopidogrel, a second-generation thienopyridine, has 
been the most widely used P2Y12 inhibitor in patients undergo-
ing percutaneous coronary intervention or secondary prevention 
of ACS.72 The oral P2Y12 inhibitor Tegretol is more effective than 
clopidogrel in preventing major cardiovascular events in patients 
with ACS, but it increases the risk of major bleeding.73

Adenosine is a purine nucleoside analog formed by the metabo-
lism of adenosine diphosphate (ADP) or Adenosine triphosphate by 
nucleotidases released after local tissue hypoxia or tissue injury. Its 
biological effects include vasodilation, inflammation regulation, and 
platelet function inhibition.74 Studies have demonstrated that the 
P2Y12 receptor antagonist Tegretol exerts its cardioprotective ef-
fects mainly by increasing the levels of mesoadenosine.74 An experi-
ment demonstrates that Tegretol inhibits the activation of NOD-like 
receptor thermal protein domain associated protein 3 inflammatory 
vesicles, improves myocardial fibrosis, and slows down the progres-
sion of myocardial contractile dysfunction.75 Meanwhile, the combi-
nation of SGLT2 inhibitors dapagliflozin and Tegretol has synergistic 
effects on the treatment of DCM, slowing myocardial remodeling in 
DCM in mice with a T2DM model.75,76

Patients with DM are at an increased risk of thrombotic events 
due to the presence of atherosclerosis. Laboratory tests have shown 
that patients with DCM also have increased blood viscosity.72,77 
P2Y12 receptor antagonists, which inhibit thrombosis by blocking 

P2Y12 receptor binding and inhibiting platelet glycoprotein IIb/IIIa 
receptor activation and fibrinogen ligation, can significantly reduce 
the risk of thrombotic events.77 Tegretol, on the other hand, inhibits 
the aggregation of platelets by inducers other than ADP and can in-
hibit platelet aggregation in vivo in a rapid, efficient, and sustained 
manner.77

In addition to reducing the risk of thrombotic events, studies 
have shown that P2Y12 receptor antagonists have antitumor effects 
when P2Y12R or P2Y12R genetic defects are inhibited.73 However, 
it should be noted that P2Y12 inhibitors, while antiplatelet coagula-
tion, may increase the risk of exacerbating bleeding.78

2.4  |  Other medications or potential active 
ingredients

Sphingosine-1-phosphate (S1P) is a product of the enzyme sphin-
gosine kinase 1 (SphK1).79–81 Elevated levels of S1P are involved 
in the process of DCM and myocardial fibrosis.81,82 A recent study 
has shown that advanced glycation end product (AGE) inhibitors, in 
addition to their role in blocking AGE formation, can also prevent 
DCM by inhibiting the expression of the SphK1 gene.82 Nicorandil, 
a microcirculation-improving drug, significantly reduces the risk of 
cardiovascular events and improves prognosis.83 It is demonstrated 
that nicorandil, which activates the phosphatidylinositol-3-kinase 
(PI3K)/protein kinase B (PKB) pathway, reduces cardiomyocyte ap-
optosis and improves the symptoms of cardiac insufficiency in DM 
rats.84 Moreover, studies have shown that Nesfatin-1 improves in-
sulin sensitivity in STZ-induced DM model rats through the p38-
MAPK pathway, reducing inflammation and ameliorating cardiac 
dysfunction.85

In recent years, extensive research has shown that certain herbal 
extracts have potential therapeutic effects on DCM.86–91 For in-
stance, Schisandrin B has been found to alleviate DCM by targeting 
MyD88 and inhibiting MyD88-dependent inflammation.86 Paeonol 
promotes OPA1-mediated mitochondrial fusion through the acti-
vation of the CK2α-Stat3 pathway, thus mitigating mitochondrial 
oxidative stress to protect the heart.87 Piceatannol has also been 
shown to alleviate inflammation and oxidative stress in high glucose-
induced H9C2 cells by modulating the Nrf2/HO-1 and NF-κB path-
ways.88 Furthermore, flavonoids have been widely demonstrated to 
effectively inhibit cell hypertrophy, fibrosis, and apoptosis induced 
by high glucose.89,90

2.5  |  Traditional medications

2.5.1  |  Conventional antihyperglycemic medications

Classic traditional antihyperglycemic medications include insulin and 
metformin, among others (Figure 3). Insulin is the first-line agent for 
the treatment of type 1 diabetes mellitus (T1DM), as it is the only 
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hypoglycemic hormone in the body.92 Diabetic patients experience 
disturbances in sugar and fat metabolism, leading to an excessive 
accumulation of glucose and lipids. This disrupts the balance of myo-
cardial energy-redox, impairs mitochondrial function, and increases 
the generation of reactive oxygen species (ROS), triggering oxidative 
stress in cardiac cells. Insulin effectively manages blood sugar levels, 
suppresses mitochondrial ROS production, upregulates intracellular 
antioxidant enzymes, and mitigates excessive ROS, thus reducing 
damage to myocardial cells, and delaying ventricular remodeling.93,94 
Insulin can also inhibit the transcription of transcription factor sig-
nal transducer and activator of transcription and the activation of 
the interleukin-6 signaling pathway, by regulating the extracellular 
regulated protein kinase pathway and PI3K/forkhead box O1 path-
way to reduce the production of inflammatory mediators, ultimately 
attenuating the myocardial inflammatory response.95,96 Secondly, in-
sulin improves cardiac metabolism by promoting glucose uptake and 
utilization by cardiomyocytes and reducing free fat acid accumula-
tion. In addition, insulin can participate in myocardial contraction 
and prevent ischemia-induced apoptosis and autophagy directly or 
indirectly through insulin-like growth factors-1.95 It has been shown 
that the combination of insulin and selenium synergistically resists 
apoptosis in DM cardiomyocytes by regulating Ku70 acetylation and 
inhibiting Bax translocation.96

Metformin has become the gold standard in the treatment 
of diabetes in several countries due to its beneficial effects on 
the treatment of other underlying metabolic diseases in addition 
to its effective hypoglycemic effect.97,98 The American Diabetes 
Association (ADA) recommends pharmacological treatment with 

metformin first, and if the drug alone is not effective in controlling 
blood glucose, it is used in a diphasic or triple combination.99

In addition to its effective hypoglycemic effect, experimen-
tal studies on DM model mice demonstrate that metformin, as an 
AMPK agonist, could inhibit cardiomyocyte apoptosis by activat-
ing AMPK, improving autophagy, and activating the prokineticin2/
prokinetic receptor-mediated PKB/glycogen synthase kinase-3β 
signaling pathways, increasing NO bioavailability, and reducing 
advanced glycated end-products deposition.99–101 Meanwhile, the 
mitochondrial respiratory chain is improved, mitochondrial uncou-
pling, increases energy production is reduced, myocardial diastolic 
efficiency is strengthened, and the process of cardiac remodeling is 
slowed by activating the AMPK pathway.100 The Discoidin Domain 
Receptor 2 (DDR2), as a collagen receptor tyrosine kinase, plays a 
specific regulatory role in the expression of type I collagen genes 
in cardiac and vascular adventitial fibroblasts.102–104 Research has 
shown that metformin attenuates the increased expression of 
DDR2 mRNA and protein induced by high glucose by inhibiting the 
TGF-β1/SMAD2/3 signaling pathway.104 Additionally, it inhibits the 
expression of fibronectin and type I collagen dependent on DDR2, 
thus slowing down the progression of myocardial fibrosis and ven-
tricular remodeling.103,104

A multicenter, double-blind, placebo-controlled study shows 
a 24% incidence of gastrointestinal reactions to metformin at 
1000 mg/day as starting therapy.105 In addition, metformin is prone 
to accumulate in patients with moderate to severe chronic kidney 
disease, leading to lactic acidosis, central nervous system dysfunc-
tion, cardiovascular failure, renal failure, and even death.97

F I G U R E  3 Mechanisms of blood 
glucose regulation.
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2.5.2  |  Statins

Patients with DM often exhibit increased lipid levels.106 Therefore, 
reducing lipid levels is crucial for the prevention and treatment 
of cardiovascular disease. Statins are effective inhibitors of cho-
lesterol biosynthesis and the most effective drugs for reducing 
low-density lipoprotein cholesterol, which is essential for primary 
and secondary prevention of coronary heart disease and lowering 
cardiovascular morbidity and mortality rates.107 As the preferred 
lipid-modifying drug, statins have been shown to improve cardio-
vascular prognosis in patients with DM and are often used for car-
diovascular disease prevention in patients with T2DM. They also 
have the added benefit of reducing inflammatory responses and 
improving vascular endothelial function while effectively lower-
ing total cholesterol levels.108 Major guidelines for cardiovascular 
disease prevention agree that patients with DM and diagnosed 
cardiovascular disease are at high risk for future atherosclerotic 
cardiovascular disease and require intensive lipid regulation and 
lipid-lowering.109

Patients with DCM are susceptible to myocardial inflamma-
tory responses due to the hyperglycemic environment in the body, 
which is closely related to the development of vascular endothe-
lial dysfunction.110 Studies have shown that statins can inhibit the 
activation of the inflammatory factor interleukin-1, reduce the 
myocardial inflammatory response in DCM patients, and improve 
endothelial dysfunction, thereby playing a myocardial protective 
role.110,111

Statins are generally well-tolerated, but their side effects are 
mainly related to the dose taken. When the dose is increased to 
40 mg or even 80 mg, liver damage characterized by elevated trans-
aminases and rhabdomyolysis characterized by elevated creatine 
kinase may occur.112

2.5.3  |  Anti-heart failure drugs

Patients with DCM often develop heart failure in the middle to late 
stages of DM development. In addition to glycemic control, anti-
heart failure drugs can be used.

2.5.4  |  Renin-angiotensin-aldosterone 
system inhibitors

Renin-angiotensin-aldosterone system (RAAS) inhibitors are divided 
into angiotensin-converting enzyme inhibitors (ACEI), angiotensin II 
receptor blockers (ARB), and direct renin inhibitors. ACEI and ARB 
are first-line treatments for cardiovascular disease in patients with 
DM.113 RAAS inhibitors have been shown to inhibit the development 
of inflammatory and fibrotic responses and improve cardiovascu-
lar systolic and diastolic responses in patients with cardiovascular 
disease.

RAAS inhibitors function as hypotensive agents by inhibiting 
Ang II synthesis, leading to a reduction in ventricular diastolic pres-
sure and the treatment of congestive heart failure.114 Additionally, 
RAAS inhibitors can inhibit myocardial remodeling through various 
pathways, potentially providing a protective effect on DCM.114,115 
Experimental studies suggest that RAAS inhibitors may prevent DCM 
by inhibiting cardiac-specific NF-κB signaling.116 A study finds that 
Alamandine, the newest identified peptide of the renin-angiotensin 
system, attenuates myocardial oxidative stress and inflammatory re-
sponses and prevents myocardial lesions in a DM mouse model.117 
Captopril, an ACEI inhibitor, improved end-diastolic pressure eleva-
tion and inhibited myocardial fibrosis in spontaneous DM rats after 
treatment for 4 months, thus playing a preventive role in DCM.118

Although ACEIs are generally well-tolerated and have no signif-
icant immediate side effects, some studies suggest that reducing 
Ang II production may lead to adverse effects such as hypoten-
sion, acute renal failure, and hyperkalemia.119 Increased vascular 
permeability and interstitial fluid accumulation, typically caused by 
bradykinin, may cause side effects such as cough, angioedema, and 
anaphylactic-like reactions. Moreover, side effects such as hypoten-
sion, early renal decline, renal insufficiency, and hyperkalemia are 
associated with drug doses.119,120

2.5.5  |  β-Blocking drugs

β-Blocking drugs are indispensable for treating heart failure pa-
tients with reduced ejection fraction.121 β-Blocking drugs can 
reduce myocardial oxygen consumption, improve cardiac me-
tabolism, and attenuate myocardial fibrosis, leading to reduced 
mortality in heart failure. These drugs inhibit cardiomyocyte β1 
receptors, decrease the rate of lipolysis by inhibiting adipose β3 
receptors, and reduce glycogenolysis by inhibiting the hyperglyce-
mic response induced by adrenaline, thereby lowering blood glu-
cose. Additionally, numerous recent studies have demonstrated 
that carvedilol improves myocardial hypertrophy, oxidative 
stress-induced cardiomyocyte apoptosis, and myocardial fibrosis, 
ameliorating ventricular remodeling and cardiac dysfunction and 
reducing mortality in heart failure.122

The use of β-blockers is effective against angina pectoris and 
hypertension. In secondary prevention, they can improve patients 
with previous myocardial infarction or left ventricular systolic dys-
function, as well as reduce mortality.123 However, side effects of 
β-blockers include increased insulin resistance, dyslipidemia, new-
onset DM, and weight gain.124 In addition, β-blockers have a rela-
tively high incidence of stroke and cardiovascular mortality.124

2.5.6  |  Diuretics

The ADA recommends thiazide diuretics for the treatment of DM pa-
tients with combined hypertension. Diuretics control blood volume, 
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lower blood pressure, prevent cardiovascular disease with long-term 
use, and reduce morbidity and mortality.125 Patients with DCM with-
out reduced ejection fraction who have water retention can improve 
edema with diuretics such as spironolactone. Liu W et  al. treated 
STZ-induced DM model rats with spironolactone for 12 weeks and 
found that myocardial oxidative stress and inflammatory response 

were reduced, and myocardial fibrosis was improved by spironol-
actone.126 In addition, patients with chronic heart failure are often 
treated with circulating diuretics to control congestive symptoms.127

However, the overuse of diuretics can cause reduced tissue per-
fusion, renal impairment, water-electrolyte disturbances, and occa-
sionally gastrointestinal symptoms.127,128

F I G U R E  4 The current advantages and disadvantages of DCM treatments.
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3  |  COMPARISON OF EMERGING 
INTERVENTION ME A SURES WITH E XISTING 
THER APIES

Emerging intervention measures, such as gene therapy and stem 
cell therapy, are novel treatment approaches developed based on 
existing therapies.18,19,33,34 They aim to delve into the pathological 
mechanisms and pathogenesis of DCM, striving for improved treat-
ment outcomes.129,130

First, emerging intervention measures place greater emphasis 
on the pathogenesis of DCM, attempting to fundamentally block 
or reverse pathological processes.19,21,129,130 Compared to exist-
ing therapies, these new treatment methods may more precisely 
target relevant pathological and physiological processes, leading 
to more pronounced treatment effects.18,19,33,113,130,131 Second, 
emerging intervention measures may focus more on individualized 
treatment. At present, the current therapeutic strategies for DCM 
primarily center around glycemic control, blood pressure manage-
ment, lipid regulation, and symptomatic relief.130,132,133 But they 
cannot directly intervene at the genetic level.132 Gene therapy's 
advantage lies in its ability to intervene in the root cause of the 
disease, potentially achieving long-term and personalized treat-
ment effects.18,19,33–36,129

Existing therapies mainly rely on drug management and symp-
tom relief to control disease progression, but they cannot facil-
itate the recovery of damaged myocardium.33,113,131 In contrast, 
stem cell therapy holds potential for regeneration and repair, 
aiding in the self-repair of myocardial cells and improving cardiac 
function.33–36,131

It should be noted that the field of DCM treatment is still evolv-
ing, and emerging intervention measures are still in the research 
stage, requiring clinical trials to validate their safety and effective-
ness.16–18,132 For patients with DCM, current existing therapies re-
main essential for management (Figure 4).

4  |  CONCLUSION

DCM has attracted widespread attention as an independent disease in 
recent years. Effective glycemic control, regulation of blood pressure, 
lipids, and other risk factors, as well as protection of cardiomyocytes, 
are the main treatment strategies at present. The emerging therapeu-
tic drugs demonstrate unique advantages in treating DCM, protect-
ing the heart, delaying myocardial remodeling, and reducing adverse 
reactions. However, certain more personalized, targeted treatments 
have yet to undergo large-scale clinical trials to validate their safety 
and efficacy. The future treatment of DCM needs to be based on a full 
understanding of its pathological mechanisms and more precise and 
effective therapeutic approaches for its target genes.
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