
The Author(s) BMC Bioinformatics 2017, 18(Suppl 11):383
DOI 10.1186/s12859-017-1802-x

RESEARCH Open Access

PennCNV in whole-genome sequencing
data
Leandro de Araújo Lima1,2 and Kai Wang1,3,4*

From The International Conference on Intelligent Biology and Medicine (ICIBM) 2016
Houston, TX, USA. 08-10 December 2016

Abstract

Background: The use of high-throughput sequencing data has improved the results of genomic analysis due to the
resolution of mapping algorithms. Although several tools for copy-number variation calling in whole genome
sequencing have been published, the noisy nature of sequencing data is still a limitation for accuracy and
concordance among such tools. To assess the performance of PennCNV original algorithm for array data in whole
genome sequencing data, we processed mapping (BAM) files to extract coverage, representing log R ratio (LRR) of
signal intensity, and B allele frequency (BAF).

Results: We used high quality sample NA12878 from the recently reported NIST database and created 10 artificial
samples with several CNVs spread along all chromosomes. We compared PennCNV-Seq with other tools with general
deletions and duplications, as well as for different number of copies and copy-neutral loss-of-heterozygosity (LOH).

Conclusion: PennCNV-Seq was able to find correct CNVs and can be integrated in existing CNV calling pipelines to
report accurately the number of copies in specific genomic regions.
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Background
Several tools have been published to call copy-number
variants (CNVs) in whole genome data, but the accu-
racy of results still remains a challenge [1]. Besides that,
most of current tools do not provide the option to distin-
guish heterozygous calls, inherited exclusively from either
mother or father, from homozygous calls, inherited from
both parents simultaneously. Furthermore, to our knowl-
edge, there are no tools to identify copy-neutral loss-of-
heterozygosity (LOH) events, which are regions in the
genome with two copies inherited only from one parent,
and consequently have all SNPs with only one allele.
PennCNV [2] has been successfully used in array data to

call CNVs since its publication in 2007. Because of its per-
formance, it has been applied in numerous genetic studies
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[3–7]. The precise hidden Markov model (HMM) algo-
rithm has delivered CNV calls that have been correctly
validated biologically in most CNV studies. However, in
last years, the number of sequencing studies increased and
the number of samples available with high-throughput
sequencing methods is large, for both whole genome and
exome data.
To assess the performance of PennCNV in whole

genome data, we adapted sequencing data to extract the
same information available in array data, naming this new
method PennCNV-Seq. We used real sample with vali-
dated CNV calls and created 10 artificial samples with dif-
ferent types of CNVs spread in all chromosomes. We used
the well-studied 1000 genomes sample NA12878, which
was recently massively sequenced by different methods
and analyzed by different labs [8]. For the simulated
samples, we used a tool developed by our lab (SVGen,
available at https://github.com/WGLab/SVGen/) after we
were not able to find simulation tools to combine artificial
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single-nucleotide variant (SNVs) and indels with artifi-
cial structural variations (SVs), reporting the breakpoint
coordinates correctly.
We tested the performance of PennCNV-Seq with one

real sample with 30X of coverage and 10 artificial samples
with 20X of coverage, each artificial sample with 10 CNVs
per chromosome. The results showed that PennCNV-Seq
is comparable to existing tools and its validation step can
be added to existing pipelines together with other tools to
make reliable CNV calls.

Methods
Pre-processing of mapping (BAM) files
The first step can be executed in parallel for each chro-
mosome, for each sample. From the BAM file, which is
the file with sequences aligned to a chosen reference, the
script “convert_map2signal.pl” generates two measures:
sequence count, which will simulate log R ratio (LRR)
from array data and B allele frequency (BAF), measures
used by original PennCNV [2] from array chips. The pro-
gram SAMtools [9] is used to calculate the coverage (with
mpileup) and call the variants (with bcftools). Sequence
count refers to the normalized sequence read (coverage)
on either a SNV or as the average coverage in a continu-
ous segment of genomic positions without SNVs. For this
step, it is required as input the mapping (BAM) file and
the reference genome (FASTA file).

Choice of SNPmarkers
Array chips were originally created for genome-wide
association studies using SNPs, and the markers are
chosen taking common variants in the population.
PennCNV-Seq uses a combination of SNPs common
in population and the SNPs present in the sample. To
increase the accuracy, regions between pairs of SNPs
are also used as markers and contribute to the algo-
rithm with coverage (LRR) information. As the resulting
“B allele frequency” data has to be compared to the
expected allele frequency values in the population, which
is taken from 1000 genomes project [10] and downloaded
from ANNOVAR [11] database. There are different files
for each of these super populations (sets of populations):
ALL (all samples), AFR (African), AMR (AdMixed Amer-
ican), EAS (East Asian), EUR (European) and SAS (South
Asian). The allele frequency file can be changed for
each sample being analyzed. More details can be found
on the website (http://www.1000genomes.org/category/
population/). So an additional step is executed to match
the markers (SNPs) and regions found in the previous
step with the markers present in the allele frequency
data. We then used BEDTools [12] to split the previous
regions in smaller regions depending on whether there are
SNPs/markers from the general population inside these
regions. Based on the user’s choice, this data can be

downloaded for versions hg19 and hg38 of the reference
genome.

Log R ratio
The log R ratio (LRR) is the normalized measure of signal
intensity for each SNP marker, in array chips. It is calcu-
lated taking the log2 of the ratio between the observed
and expected signal for two copies of the genome. After
the normalization, we expect to see the signal clustered
around 0 when the region has two copies. Higher values
may indicate a duplication event and lower values could
be an evidence of deletion (shown as an example in Fig. 1).
PennCNV-Seq extracts this value for each region taking
the pileup output given by SAMtools [9]. In sequenc-
ing data, the expected coverage is calculated as the mean
coverage for the corresponding chromosome. LRR of a
marker or region is then calculated as the log2 of the cov-
erage from this region divided by the mean coverage for
the chromosome.

B allele frequency
B allele frequency (BAF) simply refers to the fraction of
reads supporting non-reference alleles at a given SNV
position. This measure can be extracted from aligned
alleles at each position with SNV call and helps to
define CNV regions. For example, in one-copy dele-
tions, one would expect to see decreased sequence count
and general lack of clustering of B allele frequency
around 0.5, compared to neighboring regions without
deletions. As in the original algorithm, PennCNV-Seq
also uses “2” for markers without information about allele
frequency.

HiddenMarkovmodel (HMM)
The original algorithm of PennCNV [2] was not changed,
but we tuned some parameters to work with sequenc-
ing data. Because of different patterns of sequencing data,
the expected LRR had to be recalculated and used as
input parameter for the HMM. Besides average, the stan-
dard deviation of coverage was calculated for regions
with copy-number (CN) equals to 0, 1, 2, 3 and 4.
We tested different parameters for the transition matrix
and increased the probability of changing the state, that
is, we decreased the probability of a state stay the same
in 0.05 (from approx. 0.94 to 0.89) for CN=0, 1, 3
and 4. The probabilities for CN=2 to stay the same are
still 0.999.

Validation
Simulated data
To assess the performance of PennCNV in sequencing
data, we generated 10 artificial samples with SNVs and
5 types of CNVs spread randomly in all chromosomes.
For each sample, we generated two copies of genomes
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Fig. 1 Log R ratio for simulated data, in different types of CNVs. These values are used as input for PennCNV-Seq algorithm, and were estimated for
sequencing data. We generated 10 samples with 240 CNVs each, with copy-number (cn) 0, 1, 2, 3 and 4. After that, the mean LRR was generated for
each region

using different frequency profiles for SNVs. The first
copies, simulating mother’s genomes, received SNVs in
the frequency of European population (EUR code in the
1000 Genomes Project), and the second copies, simu-
lating the father’s genomes, received SNVs with the fre-
quency of African population (AFR code in the 1000
Genomes Project). After that, CNVswere inserted accord-
ing to the following descriptions and quantities: homozy-
gous and heterozygous deletions, respectively zero-copy
(approx. 54 per sample) and one-copy CNVs (approx.
64 per sample), heterozygous and homozygous duplica-
tions, respectively three-copy (approx. 74 per sample)
and four-copy CNVs (approx. 44 per sample), and loss-
of-heterozygosity (approx. 4 per sample), which are two
copies inherited only from mother or only from father,
hence with all SNPs being homozygous. The samples were
created with SVGen tool (available at https://github.com/
WGLab/SVGen/), each one with average 20X of cover-
age. To examine the impact of SV length in the simulation,
CNVs were created with lengths 1 kb, 1.5 kb, 2 kb, 2.5 kb,
3 kb, 3.5 kb, 4 kb, 5 kb, 6 kb, 8 kb, 10 kb, 20 kb, 30 kb,
40 kb, 50 kb, 75 kb, 100 kb, 150 kb, 200 kb, 500 kb, 1 mb
and 5 mb, and average distance between CNV regions
was 100 kb. LOH regions were simulated only with size
of 5 mb. All simulated data were generated based on hg38
genome reference assembly. The next step was to generate
paired-end reads with length of 100 bp and average insert
size of 300 bp. Then, the reads weremapped to the original
reference genome using BWA [13].

Real data
To analyze the performance of PennCNV-Seq in real
data we used the 1000 genomes well-studied sample
NA12878. In a paper published recently, Zook et al. [8]
provide a series of high quality data for benchmarking
of variant calling algorithms. The sample NA12878 is
available from different laboratories and techniques.
We used in this work the Illumina whole genome
sequencing data initially with 300X of coverage down-
sampled to 30X (see reference for more details; data
available at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/
data/NA12878/NIST_NA12878_HG001_HiSeq_300x).
The set of 2676 deletions was used as ground truth
regions.

Comparisonwith other CNV calling tools
To compare the performance of PennCNV-Seq with other
tools, we used CNVnator [14], which uses read cover-
age to call CNVs (deletions and duplications); and Lumpy
[15], which uses read-pair, split-read and read-depth;
PennCNV-Seq uses read-depth and allele frequency to
make CNV calls. We compared the performance of dif-
ferent tools considering zero- and one-copy CNVs as one
single set called “deletions”, three- and four-copy CNVs
as one single set called “duplications”. We did not com-
pare the performance of calling different number of copies
and loss-of-heterozygosity because available tools do not
have this options. These features were tested only in
PennCNV-Seq.
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Precision and recall calculation of CNV calls
Two performance measures were calculated consider-
ing at least 70% of overlap between predicted CNVs
and the real CNV call. For the ROC curve, we consid-
ered as threshold (minimal length of CNVs) for ground
truth and calls CNV regions with 0 kb, 1 kb, 2 kb, ...,
and 50 kb.

Individual validation of known calls
PennCNV [2] has an option to validate the call of a
given region. This step returns the likelihood of the
region regarding five different HMM states, representing
zero-copy, one-copy, two-copy, three-copy and four-copy
regions. We applied this step in all intervals of real CNVs
to check the whether the validation of real CNVs would
return correct results.

Results
Using the mapping (BAM) files as input, the pre-
processing step generated approx. 4.83 markers per 1000
bases in each chromosome, which defines an approximate
resolution for PennCNV calls. After this, we use the posi-
tion of SNPs common in population to split the markers
with large intervals in smaller regions neighbouring the
common SNP positions, for each sample. This step gen-
erates BAFLRR files with millions of lines (e.g. approx. 12
millions for chrom. 1 and 2 millions for chroms. 21 and
22, but only approx. 200,000 for chrom. Y), which will
increase the resolution of PennCNV-Seq.

LRR parameters for HMM
To adapt the HMM parameters for PennCNV-Seq, we
used simulated data to calculate the expected value for
LRR in regions of copy-number (CN) equals to 0, 1,
2, 3 and 4. We generated 10 samples with 240 CNVs
each. After that, we calculated the mean and standard
deviation (sd) of LRR in CNV (0, 1, 3 and 4 copies),
as well as in non-CNV regions (2 copies). The results
for LRR mean and sd are: for CN=0 mean is -3.739099
(st.dev. = 2.56), for CN=1 mean is -0.727964 (sd=0.3),
for CN=2 mean is 0.000000 (sd=0.16), for CN=3 mean
is 0.395454 (sd=0.127), for CN=4 mean is 0.658622
(sd=0.124). More details about these values can be
seen in Fig. 1.

Validation
After creating artificial genomes in FASTA files for 10
samples with 240 CNVs each, these files were used to
generate reads along all the genome, with the amount
of reads changing according to GC-content. Each sam-
ple was created with average 20X coverage, with paired-
end reads. Three tools were used to call CNVs in real
and simulated data: PennCNV-Seq, CNVnator [14] and
Lumpy [15].

Comparison of simple deletions and duplications in
simulated data
To compare simple deletions and duplications of
PennCNV-Seq with other tools, we grouped zero- and
one-copy CNVs in a set that was called “deletions” and
three- and four-copy CNVs in a set that was called “dupli-
cations”. We then calculated the precision and recall for
each type of CNV separately and compared to the ground
truth generated by SVGen (https://github.com/WGLab/
SVGen/), the CNV simulator. The results are shown
in Fig. 2.

CNV calling with different number of copies and LOH
We also tested PennCNV-Seq to assess its performance
when used to detect CNVs with different number of
copies: zero copy (homozygous deletion), one copy (het-
erozygous deletion), three copies (heterozygous duplica-
tion) or four copies (homozygous duplication). We also
simulated LOH events and used the data as input for
PennCNV-Seq. After that, we calculated precision and
recall for each CNV type. The detailed results are shown
in Table 1.

Calls in real data
After downloading the BAM file of NA12878, we ran
PennCNV-Seq, CNVnator [14] and Lumpy [15] to find
the 2675 deletions reported by NIST research [8]. We
calculated recall and precision varying the threshold for
minimal length of CNVs for calls and ground truth with
0 kb, 1 kb, 2 kb, ..., and 50 kb. The detailed results are
shown in Fig. 2.

PennCNV’s validation step of a priori known CNV regions
Although PennCNV-Seq algorithm can miss some calls
without prior knowledge, the validation step could be
used integrated to other tools to find the correct num-
ber of copies and state of a genomic region. To check
how PennCNV-Seq works to assess known CNV regions,
we applied PennCNV’s validation step to ground truth
regions and checked the likelihood reported for each
interval. We checked visually a set of plots and compared
the likelihoods to original simulation. One example can be
seen in Fig. 3.

Discussion
In last decade, the number of high-throughput sequence
samples produced greatly increased. This type of data has
been shown to be useful for not only short variant iden-
tification, as single-nucleotide variants (SNVs) and indels,
but also for larger variants, as copy-number variations
(CNVs). Several tools andmethods have been published to
find such types of variations in whole genome sequencing
data [1, 14, 15]. Through a computational approach, each
read generated by DNA sequencing machines are mapped
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Fig. 2 Comparison between Precision and Recall of PennCNV, Lumpy and CNVnator. a-b Real data: deletions of sample NA12878, with 30X
coverage, downloaded from NIST project database. No duplications were reported for this sample. c-f Simulated data of 10 samples with 20X. c-d
are showing deletions and e-f are showing duplications. The overlap to consider the prediction and the real CNV the same has to be 50%

to a reference genome, and such process generates a map-
ping (BAM) file with detailed information about how
the short sequences match to the corresponding human
genome assembly version.
Copy-number variation calling algorithms can use one

or more techniques to find deletions and duplications
in a genome: (i) read-pair, which compares the distance
between first and second reads in the mapping to the
expected insert size generated by paired-end sequencing;
(ii) split-read, which extracts information from reads par-
tially mapped to the reference, representing CNV break-
point regions; (iii) read depth, which is the count of
reads mapped to a specific region to the genome; and

Table 1 Performance of PennCNV-Seq regarding different
number of copies for CNVs: deletions with 0 or 1 copy, and
duplication with 3 or 4 copies, and loss-of-heterozygosity (LOH)

No. of copies Precision Recall

0 copy (hom. deletion) 0.814 0.399

1 copy (het. deletion) 0.711 0.665

3 copy (het. duplication) 0.962 0.528

4 copy (hom. duplication) 0.732 0.416

Loss-of-heterozygosity (LOH) 1.000 0.650

Precision is TP/(TP+FP) and Recall is TP/(TP+FN), where TP=True Positive, FP=False
Positive and FN=False Negative
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Fig. 3 PennCNV plot of Log R Ratio (coverage) and B Allele Frequency
for a zero-copy (CN=0) deletion in simulated data. It is possible to see
how the coverage is much lower than the average and the lack of
data for allele frequency, as there are just very few reads mapped in
the read

(iv) assembly, which uses the reads to recover the original
genome and then find the CNV regions. Some tools use a
combination of these four methods to improve the CNV
calls. More details can be found in the recent review of
Pirooznia and colleagues [1].
Although the amount of tools for CNV calling in

genome data is large, the accuracy of results still remains
a challenge [1]. Besides that, most of current tools do not
provide the option to identify the inheritance, and con-
sequently, distinguish the number of copies of each CNV.
For example, when a tool reports a deletion or duplication,
the results do not provide information about zygosity.
Therefore it is not possible to know whether the CNV was
inherited only from one parent or both, and this could
have a big difference regarding the effect of the variation
in the person.
Another important event that current CNV calling tools

do not find is the copy-neutral loss-of-heterozygosity
(LOH). This happens when in a specific region of a per-
son’s genome receives two copies from the same parent,
instead of receiving one copy from each parent. Thus this
portion of the genome will be completely homozygous.
As no other tools check information from the SNP alle-
les, and as in such event there is no change in number
of copies, during the process of CNV calling it is not
possible to identify the parts of genome in which LOH
happens.

Conclusion
With pre-processing steps to extract from mapping
(BAM) files information about coverage, simulating log R
ratio, and B allele frequency of SNP markers, PennCNV-
Seq was able to make calls of CNVs identifying correctly
zero-copy and one-copy deletions, three-copy and four-
copy duplications, as well as LOH events. We were able
to test PennCNV-Seq using real and simulated data, com-
paring the performance with existing CNV calling tools.
To make the simulation more realistic, different types of
variations such as SNPs, indels, deletions, and duplica-
tions are present in the simulated data. Also, GC-content
bias was added to the artificial reads. However, more
tests with simulated and other types of real data should
be necessary to tune the input parameters of coverage
mean and standard deviation for PennCNV-Seq, as the
program uses this information as prior knowledge to
make calls. The perfect scenario would be to have dif-
ferent types of validate calls with distinct number of
copies available for sequencing data, but this is still a
limitation.
Besides being able to generate CNV calls without

a priori knowledge, PennCNV-Seq is useful to vali-
date calls and find the zygosity of calls made by other
tools. Therefore, PennCNV-Seq can be combined with
other tools and integrated into existing pipelines. It is
also important to emphasize that PennCNV-Seq did
not commit any mistake in LOH calls for sequencing
data.

Abbreviations
BAF: B allele frequency; CNV: Copy-number variation; LOH:
Loss-of-heterozygosity; LRR: Log R ratio

Acknowledgements
The authors thank the lab members for helpful comments and suggestions.

Funding
The study was supported by National Institutes of Health / National Human
Genome Research Institute [grant number HG006465]. Funding for open
access charge: National Institutes of Health. The funding body did not play any
role in the design or conclusions of the study.

Availability of data andmaterials
PennCNV-Seq is publicly available at https://github.com/WGLab/PennCNV-
Seq. The dataset is available at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
NA12878/NIST_NA12878_HG001_HiSeq_300x. The steps to create the
simulated datasets with SVGen v1 (https://github.com/WGLab/SVGen/tree/
v1) are at https://github.com/WGLab/PennCNV-Seq/blob/master/svgen_
simulations_penncnvseq.sh.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 18
Supplement 11, 2017: Selected articles from the International Conference on
Intelligent Biology and Medicine (ICIBM) 2016: bioinformatics. The full
contents of the supplement are available online at https://bmcbioinformatics.
biomedcentral.com/articles/supplements/volume-18-supplement-11.

Authors’ contributions
KW designed the experiments and led the research. Both authors developed
the software and wrote the manuscript. LAL performed the tests of CNV calls.
Both authors have read and approve the manuscript.

https://github.com/WGLab/PennCNV-Seq
https://github.com/WGLab/PennCNV-Seq
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NIST_NA12878_HG001_HiSeq_300x
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NIST_NA12878_HG001_HiSeq_300x
https://github.com/WGLab/SVGen/tree/v1
https://github.com/WGLab/SVGen/tree/v1
https://github.com/WGLab/PennCNV-Seq/blob/master/svgen_simulations_penncnvseq.sh
https://github.com/WGLab/PennCNV-Seq/blob/master/svgen_simulations_penncnvseq.sh
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-11
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-11


The Author(s) BMC Bioinformatics 2017, 18(Suppl 11):383 Page 55 of 91

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Zilkha Neurogenetic Institute, University of Southern California, Los Angeles
90089, CA, USA. 2Present address: Gladstone Institute of Neurological Disease,
J. Gladstone Institutes, 1650 Owens St, San Francisco 94158, CA, USA. 3Present
address: Institute for Genomic Medicine, Columbia University, New York
10032, USA. 4Department of Biomedical Informatics, Columbia University, New
York 10032, USA.

Published: 3 October 2017

References
1. Pirooznia M, Goes FS, Zandi PP. Whole-genome CNV analysis: advances

in computational approaches. Front Genet. 2015;6:138.
2. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H,

Bucan M. PennCNV: an integrated hidden Markov model designed for
high-resolution copy number variation detection in whole-genome SNP
genotyping data. Genome Res. 2007;17(11):1665–74.

3. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, Conroy J,
Magalhaes TR, Correia C, Abrahams BS, Almeida J, Bacchelli E, Bader GD,
Bailey AJ, Baird G, Battaglia A, Berney T, Bolshakova N, Bolte S, Bolton PF,
Bourgeron T, Brennan S, Brian J, Bryson SE, Carson AR, Casallo G, Casey J,
Chung BH, Cochrane L, Corsello C, Crawford EL, Crossett A, Cytrynbaum C,
Dawson G, de Jonge M, Delorme R, Drmic I, Duketis E, Duque F, Estes A,
Farrar P, Fernandez BA, Folstein SE, Fombonne E, Freitag CM, Gilbert J,
Gillberg C, Glessner JT, Goldberg J, Green A, Green J, Guter SJ,
Hakonarson H, Heron EA, Hill M, Holt R, Howe JL, Hughes G, Hus V,
Igliozzi R, Kim C, Klauck SM, Kolevzon A, Korvatska O, Kustanovich V,
Lajonchere CM, Lamb JA, Laskawiec M, Leboyer M, Le Couteur A,
Leventhal BL, Lionel AC, Liu XQ, Lord C, Lotspeich L, Lund SC, Maestrini E,
Mahoney W, Mantoulan C, Marshall CR, McConachie H, McDougle CJ,
McGrath J, McMahon WM, Merikangas A, Migita O, Minshew NJ, Mirza GK,
Munson J, Nelson SF, Noakes C, Noor A, Nygren G, Oliveira G,
Papanikolaou K, Parr JR, Parrini B, Paton T, Pickles A, Pilorge M, Piven J,
Ponting CP, Posey DJ, Poustka A, Poustka F, Prasad A, Ragoussis J,
Renshaw K, Rickaby J, Roberts W, Roeder K, Roge B, Rutter ML, Bierut LJ,
Rice JP, Salt J, Sansom K, Sato D, Segurado R, Sequeira AF, Senman L,
Shah N, Sheffield VC, Soorya L, Sousa I, Stein O, Sykes N, Stoppioni V,
Strawbridge C, Tancredi R, Tansey K, Thiruvahindrapduram B,
Thompson AP, Thomson S, Tryfon A, Tsiantis J, Van Engeland H,
Vincent JB, Volkmar F, Wallace S, Wang K, Wang Z, Wassink TH, Webber C,
Weksberg R, Wing K, Wittemeyer K, Wood S, Wu J, Yaspan BL,
Zurawiecki D, Zwaigenbaum L, Buxbaum JD, Cantor RM, Cook EH,
Coon H, Cuccaro ML, Devlin B, Ennis S, Gallagher L, Geschwind DH, Gill M,
Haines JL, Hallmayer J, Miller J, Monaco AP, Nurnberger JI, Paterson AD,
Pericak-Vance MA, Schellenberg GD, Szatmari P, Vicente AM, Vieland VJ,
Wijsman EM, Scherer SW, Sutcliffe JS, Betancur C. Functional impact of
global rare copy number variation in autism spectrum disorders. Nature.
2010;466(7304):368–72.

4. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, Zhang H,
Estes A, Brune CW, Bradfield JP, Imielinski M, Frackelton EC, Reichert J,
Crawford EL, Munson J, Sleiman PM, Chiavacci R, Annaiah K, Thomas K,
Hou C, Glaberson W, Flory J, Otieno F, Garris M, Soorya L, Klei L, Piven J,
Meyer KJ, Anagnostou E, Sakurai T, Game RM, Rudd DS, Zurawiecki D,
McDougle CJ, Davis LK, Miller J, Posey DJ, Michaels S, Kolevzon A,
Silverman JM, Bernier R, Levy SE, Schultz RT, Dawson G, Owley T,
McMahon WM, Wassink TH, Sweeney JA, Nurnberger JI, Coon H,
Sutcliffe JS, Minshew NJ, Grant SF, Bucan M, Cook EH, Buxbaum JD,
Devlin B, Schellenberg GD, Hakonarson H. Autism genome-wide copy

number variation reveals ubiquitin and neuronal genes. Nature.
2009;459(7246):569–73.

5. Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, Salyakina D,
Imielinski M, Bradfield JP, Sleiman PM, Kim CE, Hou C, Frackelton E,
Chiavacci R, Takahashi N, Sakurai T, Rappaport E, Lajonchere CM,
Munson J, Estes A, Korvatska O, Piven J, Sonnenblick LI, Alvarez Retuerto AI,
Herman EI, Dong H, Hutman T, Sigman M, Ozonoff S, Klin A, Owley T,
Sweeney JA, Brune CW, Cantor RM, Bernier R, Gilbert JR, Cuccaro ML,
McMahon WM, Miller J, State MW, Wassink TH, Coon H, Levy SE,
Schultz RT, Nurnberger JI, Haines JL, Sutcliffe JS, Cook EH, Minshew NJ,
Buxbaum JD, Dawson G, Grant SF, Geschwind DH, Pericak-Vance MA,
Schellenberg GD, Hakonarson H. Common genetic variants on 5p14.1
associate with autism spectrum disorders. Nature. 2009;459(7246):528–33.

6. Jakobsson M, Scholz SW, Scheet P, Gibbs JR, VanLiere JM, Fung HC,
Szpiech ZA, Degnan JH, Wang K, Guerreiro R, Bras JM, Schymick JC,
Hernandez DG, Traynor BJ, Simon-Sanchez J, Matarin M, Britton A,
van de Leemput J, Rafferty I, Bucan M, Cann HM, Hardy JA, Rosenberg NA,
Singleton AB. Genotype, haplotype and copy-number variation in
worldwide human populations. Nature. 2008;451(7181):998–1003.

7. Shi L, Zhang X, Golhar R, Otieno FG, He M, Hou C, Kim C, Keating B,
Lyon GJ, Wang K, Hakonarson H. Whole-genome sequencing in an
autism multiplex family. Mol Autism. 2013;4(1):8.

8. Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, Weng Z, Liu Y,
Mason CE, Alexander N, Henaff E, McIntyre AB, Chandramohan D, Chen F,
Jaeger E, Moshrefi A, Pham K, Stedman W, Liang T, Saghbini M, Dzakula Z,
Hastie A, Cao H, Deikus G, Schadt E, Sebra R, Bashir A, Truty RM, Chang CC,
Gulbahce N, Zhao K, Ghosh S, Hyland F, Fu Y, Chaisson M, Xiao C, Trow J,
Sherry ST, Zaranek AW, Ball M, Bobe J, Estep P, Church GM, Marks P,
Kyriazopoulou-Panagiotopoulou S, Zheng GX, Schnall-Levin M, Ordonez HS,
Mudivarti PA, Giorda K, Sheng Y, Rypdal KB, Salit M. Extensive
sequencing of seven human genomes to characterize benchmark
reference materials. Sci Data. 2016;3:160025.

9. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R. The Sequence Alignment/Map format and
SAMtools. Bioinformatics. 2009;25(16):2078–9.

10. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE,
Kang HM, Marth GT, McVean GA, Altshuler DM, Durbin RM, Abecasis GR,
Bentley DR, Chakravarti A, Clark AG, Donnelly P, Eichler EE, Flicek P,
Gabriel SB, Gibbs RA, Green ED, Hurles ME, Knoppers BM, Korbel JO,
Lander ES, Lee C, Lehrach H, Mardis ER, Marth GT, McVean GA,
Nickerson DA, Schmidt JP, Sherry ST, Wang J, Wilson RK, Gibbs RA,
Dinh H, Kovar C, Lee S, Lewis L, Muzny D, Reid J, Wang M, Wang J,
Fang X, Guo X, Jian M, Jiang H, Jin X, Li G, Li J, Li Y, Li Z, Liu X, Lu Y,
Ma X, Su Z, Tai S, TangM, Wang B, Wang G, Wu H, Wu R, Yin Y, ZhangW,
Zhao J, Zhao M, Zheng X, Zhou Y, Lander ES, Altshuler DM, Gabriel SB,
Gupta N, Flicek P, Clarke L, Leinonen R, Smith RE, Zheng-Bradley X,
Bentley DR, Grocock R, Humphray S, James T, Kingsbury Z, Lehrach H,
Sudbrak R, Albrecht MW, Amstislavskiy VS, Borodina TA, Lienhard M,
Mertes F, Sultan M, Timmermann B, Yaspo ML, Sherry ST, McVean GA,
Mardis ER, Wilson RK, Fulton L, Fulton R, Weinstock GM, Durbin RM,
Balasubramaniam S, Burton J, Danecek P, Keane TM, Kolb-Kokocinski A,
McCarthy S, Stalker J, Quail M, Schmidt JP, Davies CJ, Gollub J, Webster T,
Wong B, Zhan Y, Auton A, Gibbs RA, Yu F, Bainbridge M, Challis D,
Evani US, Lu J, Muzny D, Nagaswamy U, Reid J, Sabo A, Wang Y, Yu J,
Wang J, Coin LJ, Fang L, Guo X, Jin X, Li G, Li Q, Li Y, Li Z, Lin H, Liu B,
Luo R, Qin N, Shao H, Wang B, Xie Y, Ye C, Yu C, Zhang F, Zheng H, Zhu H,
Marth GT, Garrison EP, Kural D, Lee WP, Leong WF, Ward AN, Wu J,
Zhang M, Lee C, Griffin L, Hsieh CH, Mills RE, Shi X, von Grotthuss M,
Zhang C, Daly MJ, DePristo MA, Altshuler DM, Banks E, Bhatia G,
Carneiro MO, del Angel G, Gabriel SB, Genovese G, Gupta N, Handsaker RE,
Hartl C, Lander ES, McCarroll SA, Nemesh JC, Poplin RE, Schaffner SF,
Shakir K, Yoon SC, Lihm J, Makarov V, Jin H, Kim W, Kim KC, Korbel JO,
Rausch T, Flicek P, Beal K, Clarke L, Cunningham F, Herrero J, McLaren WM,
Ritchie GR, Smith RE, Zheng-Bradley X, Clark AG, Gottipati S, Keinan A,
Rodriguez-Flores JL, Sabeti PC, Grossman SR, Tabrizi S, Tariyal R, Cooper DN,
Ball EV, Stenson PD, Bentley DR, Barnes B, Bauer M, Cheetham R, Cox T,
Eberle M, Humphray S, Kahn S, Murray L, Peden J, Shaw R, Ye K, Batzer MA,
Konkel MK, Walker JA, MacArthur DG, Lek M, Sudbrak R, Amstislavskiy VS,
Herwig R, Shriver MD, Bustamante CD, Byrnes JK, De La Vega FM,
Gravel S, Kenny EE, Kidd JM, Lacroute P, Maples BK, Moreno-Estrada A,
Zakharia F, Halperin E, Baran Y, Craig DW, Christoforides A, Homer N,
Izatt T, Kurdoglu AA, Sinari SA, Squire K, Sherry ST, Xiao C, Sebat J,



The Author(s) BMC Bioinformatics 2017, 18(Suppl 11):383 Page 56 of 91

Bafna V, Ye, K, Burchard, EG, Hernandez, RD, Gignoux, CR, Haussler,
D, Katzman, SJ, Kent, WJ, Howie, B, Ruiz-Linares, A, Dermitzakis,
ET, Lappalainen, T, Devine, SE, Liu, X, Maroo, A, Tallon, LJ, Rosenfeld, JA,
Michelson, LP, Abecasis, GR, Kang, HM, Anderson, P, Angius, A, Bigham,
A, Blackwell, T, Busonero, F, Cucca, F, Fuchsberger, C, Jones, C, Jun, G, Li,
Y, Lyons, R, Maschio, A, Porcu, E. An integrated map of genetic variation
from 1092 human genomes. Nature. 2012;491(7422):56–65.

11. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of
genetic variants from high-throughput sequencing data. Nucleic Acids
Res. 2010;38(16):164.

12. Quinlan AR. BEDTools: The Swiss-Army tool for genome feature analysis.
Curr Protoc Bioinforma. 2014;47:1–34.

13. Li H, Durbin R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

14. Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to
discover, genotype, and characterize typical and atypical CNVs from family
and population genome sequencing. Genome Res. 2011;21(6):974–84.

15. Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY: a probabilistic
framework for structural variant discovery. Genome Biol. 2014;15(6):84.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:


	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Methods
	Pre-processing of mapping (BAM) files
	Choice of SNP markers
	Log R ratio
	B allele frequency
	Hidden Markov model (HMM)

	Validation
	Simulated data
	Real data
	Comparison with other CNV calling tools
	Precision and recall calculation of CNV calls
	Individual validation of known calls


	Results
	LRR parameters for HMM
	Validation
	Comparison of simple deletions and duplications in simulated data
	CNV calling with different number of copies and LOH

	Calls in real data
	PennCNV's validation step of a priori known CNV regions

	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

