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Comprehensive characterization of pre- and post-treatment
samples of breast cancer reveal potential mechanisms of
chemotherapy resistance
Marlous Hoogstraat 1,2,8, Esther H. Lips 3,8✉, Isabel Mayayo-Peralta1, Lennart Mulder3, Petra Kristel3, Ingrid van der Heijden 3,
Stefano Annunziato3, Maartje van Seijen 3, Petra M. Nederlof 4, Gabe S. Sonke5, Wilbert Zwart1, Jelle Wesseling 3,4,6 and
Lodewyk F. A. Wessels2,7✉

When locally advanced breast cancer is treated with neoadjuvant chemotherapy, the recurrence risk is significantly higher if no
complete pathologic response is achieved. Identification of the underlying resistance mechanisms is essential to select treatments
with maximal efficacy and minimal toxicity. Here we employed gene expression profiles derived from 317 HER2-negative
treatment-naïve breast cancer biopsies of patients who underwent neoadjuvant chemotherapy, deep whole exome, and RNA-
sequencing profiles of 22 matched pre- and post-treatment tumors, and treatment outcome data to identify biomarkers of
response and resistance mechanisms. Molecular profiling of treatment-naïve breast cancer samples revealed that expression levels
of proliferation, immune response, and extracellular matrix (ECM) organization combined predict response to chemotherapy. Triple
negative patients with high proliferation, high immune response and low ECM expression had a significantly better treatment
response and survival benefit (HR 0.29, 95% CI 0.10–0.85; p= 0.02), while in ER+ patients the opposite was seen (HR 4.73, 95% CI
1.51–14.8; p= 0.008). The characterization of paired pre-and post-treatment samples revealed that aberrations of known cancer
genes were either only present in the pre-treatment sample (CDKN1B) or in the post-treatment sample (TP53, APC, CTNNB1).
Proliferation-associated genes were frequently down-regulated in post-treatment ER+ tumors, but not in triple negative tumors.
Genes involved in ECM were upregulated in the majority of post-chemotherapy samples. Genomic and transcriptomic differences
between pre- and post-chemotherapy samples are common and may reveal potential mechanisms of therapy resistance. Our
results show a wide range of distinct, but related mechanisms, with a prominent role for proliferation- and ECM-related genes.
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INTRODUCTION
Chemotherapy is currently the standard of care for primary breast
cancer with high risk of recurrence and can be administered in an
adjuvant or neoadjuvant setting. Neoadjuvant administration
increases the chances of breast- and axilla-conserving surgery by
downstaging of the tumor1. Moreover, it allows in vivo assessment
of the tumor’s response to the treatment and can therefore help
to more accurately determine a patient’s prognosis and guide
adjuvant treatment. If a pathological complete response (pCR) is
achieved, the prognosis is good, especially in high-grade and
triple negative tumors2. In cases of partial or non-response,
however, recurrences are frequent3.
Many studies have focused on the development of biomarkers

to predict response to chemotherapy in the neoadjuvant setting,
using pCR as primary outcome measure. Most studies report on
the predictive value of proliferation, but activation of the immune
system is also recurrently identified as a predictive factor4–7. It
should be noted that chemotherapy does not induce ‘all or
nothing’ responses. Rather, the vast majority of tumors shows a
partial, but incomplete, response. Methods to further characterize
response to neoadjuvant chemotherapy such as the Neoadjuvant
Response Index (NRI)8 and Residual Breast Cancer Burden (RCB)

index9 have shown that the extent of non-response is also
predictive of recurrence-free survival.
Importantly, a partial response to treatment suggests that only

part of the tumor may be resistant to treatment, or that a
resistance mechanism has appeared under treatment pressure. A
sample taken before treatment may thus contain both treatment
sensitive and resistant cells, which impedes the discovery of
biomarkers for treatment response. Studies that compared
samples obtained after treatment to pre-treatment samples have
shown considerable successes in revealing resistance mechanisms
to various targeted cancer drugs10–13. However, the success rates
have been more limited for identifying such mechanisms to
different chemotherapy regimens14,15. Here, we performed both
RNA sequencing of a large sample set of pre-treatment biopsies,
as well as deep DNA and RNA characterization of paired pre- and
post-treatment samples. In addition, we used a more quantitative
response measurement, the NRI, as primary outcome method. By
analyzing both treatment naïve and post treatment samples, as
well as assessing response precisely, we aimed to identify
biomarkers for response and decipher mechanisms of therapy
resistance.
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RESULTS
Overview patient cohort and therapy response
Expression data was collected from pre-treatment biopsies of 317
HER2-negative breast cancer patients, all treated with neoadjuvant
chemotherapy between 2000 and 2013. Both ER-positive (ER+, n
= 200) and ER-negative (‘triple negative, TN’, n= 117) patients
were included (Table 1). The majority of the patients were treated
with 6 courses of dose dense doxorubicin and cyclophosphamide
(ddAC, n= 186), or 3 courses of ddAC and 3 courses of
capecitabine and docetaxel (CD) (n= 49). Pathological complete
response (pCR; the absence of invasive tumor cells in the breast
and axilla) was used as primary measure of response to
chemotherapy, which could be determined for 301 patients. Of
the ER+ group, only 3.5% (n= 7) achieved a pCR. For TN, this was
39% (n= 46). Long-term follow-up was collected with a median
follow-up of 6.2 years. In TN patients, pCR was associated with
improved survival (p= 0.0056, HR= 0.223 (95% CI: 0.077–0.645))
(Supplementary Fig. 1). In ER+ patients, the same trend was
observed but it did not reach significance (p= 0.997, HR= 3.89e
−8 (95% CI: 0—inf) (Supplementary Fig. 2). The Neoadjuvant
Response Index (NRI), an alternative, semi-continuous measure of
response8, was determined for 253 patients and could be used to
further assess therapy response in patients who did not achieve a
pCR. As described previously16, NRI was significantly associated
with recurrence free survival in TN patients (p= 0.0003, HR= 0.12
(95% CI: 0.038–0.379)). NRI was significantly different between ER
+ and TN patients (median NRI 0.29 versus 0.67 for ER+ and TN
tumors, respectively, p= 2.61e−16).

Proliferation rate, immune response and ECM jointly predict
response to neoadjuvant chemotherapy
We then used our gene expression data to find markers of therapy
response. Because the response rates between ER+ and TN
samples were vastly different (Table 1), analyses to detect

biomarkers of response using all samples yielded many genes
associated with ER-status, potentially obscuring more subtle gene
expression differences between responders and non-responders.
We therefore analyzed the subtypes separately. NRI was our
primary outcome measure, although we also assessed if there was
an association with pCR and recurrence free survival.
Differential gene expression in ER+ samples with NRI as

outcome variable did not yield many genes showing significant
association with outcome: in only 48 genes, FDR rates were below
20% and functional enrichment analyses did not identify specific
biological processes. However, in TN samples the same approach
resulted in 778 genes positively and 826 genes negatively
associated with NRI, with an FDR of <20% (Supplementary data
file 1). Negatively associated genes included homeobox proteins,
ABC transporters, and genes involved in extracellular matrix
organization (ECM) (Supplementary data file 1). Functional
enrichment of positively associated genes revealed genes
predominantly associated with immune response and cell
proliferation, including CDKN2A and several cyclins.
Based on these results, we selected a ‘core enrichment’ set of

genes with the strongest association with NRI (FDR < 5%). We then
employed the expression levels of this core set to stratify TN
patient samples based on the activity of proliferation (n= 176),
immune response (n= 44) and ECM (n= 79) genes (see the
“Methods“ section) (Fig. 1a). When overlapping our list of genes
upregulated in responders with the reporter genes used in
CIBERSORT17, we observed a significant enrichment for genes
expressed in activated natural killer cells, M1 Macrophages,
activated dendritic cells and CD8+ T-cells (adjusted p < 0.001,
<0.001, <0.001 and =0.03, respectively) (Supplementary data file
1). These cell types are associated with cytolytic activity and
tumor-killing potential18. The median expression levels of the
proliferation-associated genes showed a positive correlation with
Ki67 immunohistochemistry scores (R= 0.673, Supplementary Fig.
3), indicating that high expression levels of these genes are

Table 1. Patient characteristics of the full cohort of 317 patients.

LUM (n= 200) TN (n= 117) LUM (100%) TN (100%)

Age Mean (sd) 48.7 (9.8) 44.3 (11.0)

Grade 1 10 0 5.00 0.00

2 102 25 51.00 21.37

3 48 70 24.00 59.83

Missing 40 22 20.00 18.80

T-stage 1 19 10 9.50 8.55

2 111 74 55.50 63.25

3 50 17 25.00 14.53

4 12 10 6.00 8.55

Missing 8 6 4.00 5.13

N-stage Negative 38 39 19.00 33.33

Positive 153 72 76.50 61.54

Missing 9 6 4.50 5.13

pCR No 183 65 91.50 55.56

Yes 7 46 3.50 39.32

Missing 10 6 5.00 5.13

Treatment 6× ddAC 117 69 58.50 58.97

6× CD 11 1 5.50 0.85

3× ddAC, 3× CD 39 10 19.50 8.55

Other 25 33 12.50 28.21

Missing 8 4 4.00 3.42

LUM luminal, TN triple negative, ddAC dose-dense adriamycin+ cyclophosphamide, CD capecitabine+ docetaxel.
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indicative of highly proliferative tumor cells. The highest response
rates were observed for TN patients that showed high expression
of both proliferation and immune response genes, and low
expression of ECM genes (Proliferation= H, Immune= H, ECM= L,
denoted as ‘HHL’). In contrast, patients at the other end of the
spectrum (Proliferation= L, Immune= L, ECM= H, denoted as
‘LLH’) showed the lowest response rates (measured as (n)pCR, p <
0.001). In line with this observation, HHL-patients showed
significantly higher 5-year recurrence-free survival rates, compared
to the LLH group (p= 0.02, HR 0.29 (95%CI 0.10–0.85), Fig. 1b).
Patients who could not be stratified in either the LLH or HHL
group (denoted hereafter as ‘other’) showed intermediate
response and survival rates.
To investigate the value of this stratification method in an

independent cohort, we stratified basal breast cancer patient
samples from the TCGA PanCancer cohort19 into an ‘HHL’, an ‘LLH’

and an ‘other’ group. We then assessed progression-free survival
rates in the three subgroups. Using all samples, a similar trend as
observed in the neoadjuvant cohort was visible, but not significant
(Supplementary Fig. 4A, p= 0.2). We subsequently performed
analyses stratified for clinical subgroups in the TCGA basal cohort,
defined as high-risk (lymph-node positive (N+) or T-stage 3/4)
(Supplementary Fig. 4B), lymph-node negatve versus positive
(Supplementary Fig. 4C, D), and T-stage 1/2 versus T-stage 3/4
(Supplementary Fig. 4E, F). In high-risk patients and in N+
patients, HHL-patients show significantly higher progression-free
survival rates compared to LLH- and other patients (P= 0.02 and
P= 0.004, respectively), while in node negative and T-stage 1/ 2,
no differences in survival rates were observed.
We then tested whether the genes identified in TN tumors also

have predictive power in ER+ breast cancer: 62 genes from the
core enrichment set were associated with (near) pCR in ER+
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Fig. 1 Biological processes associated with response to neoadjuvant chemotherapy. a Heatmap of expression levels of genes associated
with response to neoadjuvant chemotherapy in triple negative breast cancer patients. Cases are in columns, genes in rows. Biological
processes associated with the genes in this heatmap are indicated on the left; patient and sample information are indicated on the top: top
track indicates treatment response in the breast; second and third tracks indicate treatment response in the breast and lymph nodes. The
three bottom tracks indicate the average gene expression level of the genes associated with proliferation, immune response and ECM. The
orange and blue boxes respectively indicate the gene expression profiles of poor and good responders. Black bars at the bottom indicate
which samples were included in the pre/post chemotherapy analyses. ECM extracellular matrix, ND not determined, (n)pCR (near) pathological
complete response, NRI neoadjuvant response index. b Kaplan–Meier curves showing recurrence-free survival in subgroups of triple negative
patients as identified in (a). HHL (blue) High proliferation, High immune response, Low ECM, LLH (orange) Low proliferation, Low immune
response, High ECM, and other combinations (gray). c Heatmap of expression levels of genes associated with response to neoadjuvant
chemotherapy in ER+/HER2− breast cancer patients. Format is the same as in (a). d Kaplan–Meier curves showing recurrence-free survival in
subgroups of ER+/HER2− patients as identified in (c). *p < 0.05; **p < 0.01 (Kaplan–Meier estimate).
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tumors as well (Supplementary data file 1). The majority of these
genes were involved in proliferation, while genes involved in
immune response or ECM did not appear to have a large effect on
chemotherapy response in ER+ breast cancer. By clustering ER+
patients using the core enrichment genes identified in TN tumors
(see the “Methods” section), we observed a higher NRI (p= 0.053)
and a significantly higher (n)pCR rate (p= 0.014) for patients with
an HHL expression pattern, compared to those with an LLH profile
(Fig. 1c). However, in contrast to the TN patients, ER+ patients
falling in the LLH group had a significantly better prognosis than
patients with an HHL profile (p= 0.008, HR 4.73 (95% CI
1.51–14.81), Fig. 1d). For luminal-type breast cancer we could
not validate our results in the luminal TCGA cohort (Supplemen-
tary Fig. 5). We have to keep in mind here that the TCGA luminal
set is much more heterogenous than our neoadjuvant luminal
cohort, indicating that it is difficult to cross-validate our findings.

Decreased proliferation rates after chemotherapy are not
indicative of improved survival in ER-positive tumors
While we can now predict the response of tumors with HHL and
LLH profiles, the response of tumors falling outside of these
profiles is still uncertain. An incomplete response to chemotherapy
may in part be due to the presence or outgrowth of a resistant
subclone, not necessarily detectable in a pre-treatment biopsy. To
investigate therapy resistant samples further, we therefore
collected matched pre- and post-treatment samples and normal
blood as a germline control from 22 patients who did not achieve a
pCR on neoadjuvant chemotherapy. This dataset included six triple
negative (TN) tumors and sixteen ER+ ductal carcinomas (ER+)
(Table 2). We specifically selected samples with a tumor cell
percentage of 40% or higher, resulting in an enrichment of tumors
with a substantial amount of residual disease. Even though the
selection of these patients was determined by sample availability,
their pre-treatment samples were representative of non-responder
gene expression signatures in the full cohort (Fig. 1a, c). In all pre-
and post-treatment samples, we measured gene expression levels
and performed deep (>150× coverage) whole exome sequencing
(WES) to identify mutations and structural variants (see Supple-
mentary data file 2 for sequencing statistics).
Unsupervised hierarchical clustering of the gene expression

data revealed that the majority of post-treatment samples
clustered together with the matched pre-treatment samples
(Supplementary Fig. 6). Pathway enrichment analysis on differen-
tially expressed genes between pre- and post-treatment samples,
identified processes that were altered in multiple patients,
including proliferation, cell cycle and DNA repair, cellular
metabolism and extracellular matrix organization, and a strong
enrichment of two stem-cell-associated gene signatures in post-
treatment samples (Supplementary data file 3). ECM-related genes
were upregulated in post-treatment samples while proliferation-
related genes were downregulated, which supports our earlier
observation of the role of these processes in chemotherapy
response (Fig. 2a, b). Of note, ECM-related genes were upregu-
lated in both ER+ and TN tumors after treatment (Fig. 2c), while
the decrease in proliferation was most pronounced in ER+ tumors
(Fig. 2d).
Although a high proliferation pre-treatment is related to pCR, a

low proliferation rate after neoadjuvant treatment has been
associated with a better prognosis, particularly in ER+ breast
cancer where pCR is infrequent. We analyzed pre- and post-
treatment Ki67 scores of 111 patients in our cohort, 94 of which
were ER+/HER2−. All but one of the high-proliferative (Ki67 ≥
35%) ER+ patients showed a sharp decrease in proliferation rate
(Fig. 2e). Regardless of this decreased proliferation, pre-treatment
high-proliferative ER+ tumors were still associated with a poor
prognosis (Fig. 2f).

Genomic differences between pre- and post-treatment
samples may explain observed transcriptomic changes
Next, we analyzed the WES data to identify candidate genetic
mutations and copy number alterations responsible for the observed
transcriptomic changes (Supplementary data files 4 and 5). The most
frequently aberrated genes in our dataset were TP53 (5 TN and 3 ER
+), PIK3CA (2 TN and 6 ER+) and CCND1 (7 ER+) (Fig. 3a). Various
mutations, copy number losses and amplifications were detected in
the cell cycle checkpoint pathway (Fig. 3b). Most mutations in cancer
driving genes (as defined by presence in the Cancer Gene Census
2021)20 were shared between pre- and post-treatment samples
(Supplementary data file 4). However, we also observed some
interesting exceptions: in one of the triple-negative tumors, we
identified both a truncating APC and an activating β-catenin mutation
in the post-treatment sample only. Both mutations lead to an
increased activation of the Wnt-pathway21, which is in turn associated
with a cancer stem cell phenotype22. Thus, these genetic alterations
are in line with the strong enrichment of stem cell-like gene
expression profiles we identified in the post-treatment samples.
In two different tumors, we detected copy number losses

comprising CDKN1B in the pre-, but not in the matched post-
treatment samples. Notably, both tumors also harbored a CCND1
amplification (Fig. 3c, d). Since CDKN1B is a known tumor
suppressor responsible for the control of cell cycle progression,
we hypothesized that the loss of this gene would result in an
increased proliferation rate and that restoration of this loss would
reduce proliferation thus rendering the cells less sensitive to
chemotherapeutic treatment. Potentially, the effect of CDKN1B
loss is dependent on CCND1 status, as CCND1 is involved in the
same pathway. We therefore tested the effect of CDKN1B knock-
out in two cell lines: MDA-MB-415 (CCND1 amplified) and T47D
(CCND1 neutral). Western blots confirmed the efficacy of the
knock-out (Supplementary Fig. 7). In both cell lines, we observed a
significant increase in cell growth in the CDKN1B knock-out cells
compared to cells transfected with non-targeting gRNA
(Mann–Whitney < 0.05, Fig. 3e, f). Thus, the restoration of CDKN1B
copy number loss to a neutral stage in post-treatment samples
can, by itself, be responsible for the decreased proliferation as
observed in the post-treatment gene expression data of both
tumors where we observed this restoration (Fig. 2d). We then
investigated the effect of CDKN1B loss on chemotherapy response,
as we observed that CDKN1B loss was only observed in the pre-
treatment biopsies. This observation suggests that these pre-
treatment samples would constitute a sensitive tumor subclone,
which was eliminated in the post-treatment sample. We
hypothesized that either the loss of CDKN1B alone, or the
combination of CDKN1B loss and CCND1 amplification would
render cells more sensitive to therapy. To test this hypothesis, we
knocked out CDKN1B in CCND1 amplified (MDA-MB-415) and
CCND1 neutral (T47D) breast cancer cell lines. In neither cell line,
CDKN1B knock-out resulted in a significant increase in therapy
sensitivity (Fig. 3g, h), indicating that although CDKN1B knock-out
resulted in increased proliferation, this does not translate in
increased chemosensitivity. The relation between CDKN1B loss,
decreased proliferation and chemotherapy resistance is more
complex, with other—yet unknown—mechanisms at play.

Association between CCND1 amplification and therapy
resistance
In our search for genomic changes related to therapy resistance,
we compared the frequencies of recurrent aberrations in the pre-
and post treatment data to the frequencies of these events in an
unselected population (BASIS cohort23) and TCGA21. CCND1 was
amplified in 44% of the ER+ cases, which is significantly higher
than the reported frequencies in ER+ samples in the BASIS (20%,
p= 0.05) and TCGA (19%, p= 0.02) cohorts. Since the selected
pairs all represent samples that did not respond to treatment, we
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hypothesize that CCND1 amplification may induce therapy
resistance. To investigate this hypothesis, we first investigated
the effect of CCND1 copy number status and expression levels on
response to doxorubicin in the GDSC1000 dataset22 and in our
large neoadjuvant pre-treatment cohort (n= 317; described
above). CCND1 amplified breast cancer cell lines were more
resistant to doxorubicin (Fig. 4a), and high CCND1 expression
levels were associated with non-response in both ER+ and ER−
patient samples (Fig. 4b, c). To establish a potential cause-and-
effect relationship between CCND1 gene expression levels and
treatment sensitivity, we altered gene expression levels in CCND1
amplified (ZR-75) and CCND1 neutral cell lines (T47D). The efficacy
of the knock-down and overexpression experiments was con-
firmed using western blots (Supplementary Fig. 8). CCND1
overexpression was not sufficient to induce doxorubicin resistance
in CCND1-neutral breast cancer cell lines, nor did CCND1 knock-
down increase doxorubicin sensitivity in CCDN1-amplified cell
lines, suggesting that CCND1 is not the sole driver of doxorubicine
resistance in this setting. Importantly, both cell lines models
showed the opposite phenotype of what was expected (Fig. 4d, e),
which could potentially be explained by the cell cycle effects of
Cyclin 1, known to impact response to chemotherapeutics24.
Summarizing, we could confirm the association of CCND1 levels

with doxorubicin response in the GDSC1000 cell line data and our
large neoadjuvant cohort. However, we were not able to model
the effect of CCND1 expression on chemotherapy sensitivity in cell
lines as a single driver event, with or without CDKN1B loss,
illustrating that other biological mechanisms are also involved.

DISCUSSION
Here we showed, based on molecular profiling of 317 pre-NAC
breast cancer biopsies, that gene expression levels of proliferation,
immune response, and extracellular matrix organization, jointly
predict pathological complete response to chemotherapy in both
TN and ER+ breast cancer. Gene expression profiling of matched
pre- and post-treatment samples of 22 chemotherapy-resistant
tumors revealed a decrease in proliferation and a strong enrichment
in stem cell-related signatures in post-treatment samples, which was
most prominent in ER+ tumors. In addition, WES analysis implicated
CCND1 amplifications in chemotherapy resistance.
In most ER+ tumors, we observed a mild to strong decrease in

proliferation after chemotherapy, analogous to earlier studies25. It
has been shown that a low tumor cell proliferation after treatment is
a prognostic factor, specifically in ER+ breast cancer26, but we could
not validate this observation in our dataset. In fact, of the 13
recurrences in our dataset, 6 showed a post-treatment Ki67 score of
≤5%. We therefore hypothesize that some highly proliferative ER+
tumor cells enter a dormant- or senescent-like state under duress of
chemotherapy, but re-enter the cell cycle once the therapy is
removed. DNA damage-induced senescence and senescence
reversal in solid tumors have been studied extensively (as reviewed
in ref. 27). Tumor cells that escape, or reverse, senescence may be
more resistant to drugs and associated with a poor prognosis28.
Future studies should establish whether or not senescence is indeed
a key player in chemotherapy resistance in ER+ breast cancer.
Proliferation also plays a role in predicting response to

chemotherapy: high proliferation levels of treatment-naïve sam-
ples have been associated with an increased chance of response
to chemotherapy in various studies29,30. We could confirm this
association in our dataset of patients receiving neoadjuvant
chemotherapy as well. Additionally, we found associations
between chemotherapy response and genes involved in immune
response and extracellular matrix organization (ECM). These
associations have also been identified before, either through
pathology review/immunohistochemistry5,31 or gene expression
profiling7,15,29,32,33. Interestingly, Park et al. show that chemother-
apy induces dynamic changes in the immune microenvironment,

that are different between TN and ER+ tumors, where TN are the
most immunogenic, and could be primed by NAC for responding
to immuno-oncology therapies33. In contrast to Park et al. we did
not identify immune related gene sets as one of the key pathways
between pre and post-treatment samples, which might be due to
enrichment of luminal-type cancers in our pre–post chemotherapy
sample set. We observed that proliferation and ECM both appear
to be predictive of chemotherapy response in treatment-naïve
samples, and to change under duress of chemotherapy treatment.
Kim et al. show up to the single cell level that ECM degradation is
upregulated in chemoresistant tumor cells after NAC32. Although
the involvement of these pathways in chemotherapy response
have been shown before, we substantiate these findings in a large
samples series of both TN and ER+ treatment naïve biopsies.
Our WES data revealed associations between well-known

cancer genes and chemotherapy response, such as CTNNB1 and
APC, TP53, CDKN1B and CCND1. In one triple negative post
treatment sample both an activating CTNNB1 and a truncating APC
mutation were observed. These two mutations cause dissociation
of β-catenin from APC, leading to accumulation of β-catenin in the
nucleus and increased transcription of its target genes, including
CCND134,35. Unfortunately, gene expression data was not available
for this patients’ post-treatment sample to test the hypothesis of
increased expression of those target genes. Mutations in APC and
CTNNB1 are quite common in several tumor types, including
colorectal36, endometrial37, and hepatocellular carcinoma38, but
very rare in breast cancer, although deregulation of the Wnt/훽-
catenin pathway is relatively common39. Notably, the disease in
this patient progressed very rapidly even under treatment, and
the patient passed away within 6 months after the start of
treatment indicating a highly aggressive tumor. Interestingly,
Brastianos et al. identified an activating CTNNB1 mutation in a
brain metastasis of a HER2+ breast cancer patient, which was also
not detectable in the primary tumor or the other two brain
metastasis samples40. Various Wnt inhibitors are currently under
investigation for the treatment of different solid tumors (e.g.
clinical trials NCT01351103, NCT02521844, and NCT02675946). If
these inhibitors show potential and get approval, they may be
extremely valuable for a small subset of breast cancer patients.
We show that CCND1 amplification or overexpression is

associated with chemotherapy resistance in both ER+ and TN
breast tumors: we observed a significant enrichment of CCND1-
amplified tumors in our cohort of chemotherapy resistant
samples, CCND1 amplification was associated with higher
doxorubicin IC50s in breast cancer cell lines, and expression of
CCND1 was significantly higher in tumors that did not achieve a
pCR in our validation cohort. In a similar study by Balko et al.
CCND1 amplifications were also significantly enriched in
chemotherapy-resistant TN tumors, together with amplifications
of other Cyclin D-genes and CDK641. CCND1 amplification is one of
the most common drivers of (ER+) breast cancer, present in ~20%
of cases23, and it is associated with a poor prognosis42. CDK4/6
inhibitors, targeting the direct binding partners of CCND1, show
promise for ER+ breast cancer. However, its method of action
does not appear to be related to CCND1 amplification status. The
PALOMA-1 trial, randomizing ER+/HER2− patients between
hormone treatment+ palbociclib or hormone treatment only,
initially investigated the added effect of CDK-inhibition in two
separate cohorts. One cohort included patients with an expected
benefit of the drug, because of CCND1 amplification or loss of
CDKN2A, while the second cohort included all other patients. Even
though a significant survival benefit was observed in both cohorts,
the effect was much larger in the unselected group than in the
group with CCND1 amplifications43. With our in vitro studies, we
could not reconstitute the phenotype seen in our clinical data, i.e.
overexpression of CCND1 did not result in treatment resistence,
nor did CCND1 knockdown result in sensitivity. Interestingly,
similar studies into tamoxifen resistance, also showed that 11q13
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alterations are associated with drug resistance, however cyclin D1
was neither here the sole driver of resistance44,45.
This study has some strengths and limitations. A major strength

is that both gene expression analysis of a large cohort of
treatment naïve tumor samples has been performed, as well as a
deep genomic characterization of pre- and post-treatment
samples. Consequently, we could both study pre-treatment factors
as well as resistance mechanisms, and validate them over the two
datasets. Indeed, we could validate that high CCND1 amplification
confers treatment resistance with gene expression data of our
large treatment naïve cohort, showing an association to non-
response. Another strength is the focus on two breast cancer
subtypes. While many studies focus on triple-negative breast
cancer, we here see similar processes in luminal-type breast
cancer. A third strength is the deep whole exome characterization
of the pre-and post-treatment samples, on tumor-enriched
(minimum tumor percentage or 50%) samples. This study has
also some limitations. First, the number of pre–post treatment
samples is small. It is difficult to obtain post-treatment samples, as
tumor percentage is quite low, and tissue has often been

damaged by the neoadjuvant chemotherapy. However, we found
common mutations, and were able to validate some markers
in vitro and in clinical datasets, like CCND1 and CDKN1B. Second,
we only performed bulk sequencing. Therefore, we could not
precisely characterized mechanisms of gain or loss between pre-
and post-treatment samples. For example, we found a CTNNB1
mutation in a post treatment sample. We cannot exclude the fact
that this mutation was already present pre-treatment, and was
selected for in the post-treatment sample.
In conclusion, this study shows that comparing pre- and post-

treatment samples has the potential to reveal mechanisms of
therapy resistance. Our results show a wide range of distinct, but
related mechanisms, with a prominent role for proliferation-
related genes and CCND1 in particular.

METHODS
Patient cohort and sample selection
Biopsies of primary breast tumors were collected and snap-frozen in liquid
nitrogen prior to treatment from women with locally advanced breast
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cancer at the Netherlands Cancer Institute between 2000 and 2013. All
patients had received neoadjuvant treatment as part of ongoing clinical
trials (NCT00448266, NCT01057069), or were treated off protocol according
to the standard arms of one of these studies. Patient characteristics and
treatment strategies are listed in Tables 1 and 2. For the analysis of
matched samples before and after treatment, we used the following
additional selection criteria: (1) no pCR after receiving standard of care
neoadjuvant chemotherapy; (2) >50% tumor cells in all samples; (3)
availability of fresh frozen material of all samples; and (4) availability of
matched blood. The ethical committee of the Netherlands Cancer Institute
approved the studies and all patients gave informed consent.

Pathology
All tissue sections were reviewed by a consultant breast cancer pathologist
(J.W.). Samples were scored as positive for ER and/or PR by immunohis-
tochemistry (IHC), when at least 10% of the tumor cells nuclei showed
staining of the ER or PR, respectively. A sample was scored as being HER2
positive when either a strong membrane staining (3+) could be observed
by IHC or if CISH revealed amplification of HER2 in samples with moderate
(2+) membrane staining at IHC. Ki67 staining was performed with the MIB1
antibody (Dako, Glostrup, Denmark), dilution 1:250. Chemotherapy
response was assessed by microscopic examination of the surgery
resection specimen. We both used the neoadjuvant response index
(NRI)8 as well as pCR to assess response. The complete absence of any
invasive tumor cells in both the breast and the lymph nodes was
considered as a pCR.

Exome seq library prep and data processing
Isolation of DNA from fresh frozen specimen was performed with a DNA
mini kit (Qiagen, Venlo, the Netherlands). Matched normal DNA was
obtained from peripheral blood and extracted by DNAzol and purified with
Qiagen DNeasy kit. DNA libraries were constructed using the KAPA LTP
Library Preparation Kit (KK8234), enriched for exome sequences using the
Agilent SureSelect XT2 Human Exome Target Enrichment system
(5190–8872), quantified on a DNA7500 assay chip (5067–1506) on an
Agilent 2100 Bioanalyzer and subsequently sequenced 100 basepair
paired-end on a HiSeq 2500 System of Illumina (see Supplemental
methods for further details).
Reads were aligned to the human reference genome version 37.75

(hg19) using bwa v0.7.1746. Duplicate removal, base recalibration, variant
calling and annotation was done using the GATK Haplotype caller v3.447,
SNPEff v4.148 and SNPSift v4.149. Somatic variants were identified using
Strelka v2.9.1050, annotated using the Ensembl Variant Effect Predictor
v8351 and genotyped per patient in exome sequencing and RNAseq data
using samtools v1.10 pileup52 and custom perl scripts. Only somatic
variants with an allele frequency of >10% in either pre- or post-treament
sample and an effect on the protein coding sequence were retained for
further analyses. Copy number estimations were generated using CNVkit
v0.9.753, using all blood samples as a common reference. Copy number log
ratios and somatic allele frequencies were adjusted for estimated tumor
percentage (see Supplemental Methods for details). Following this
adjustment, copy number changes between matched pre- and post-
treatment samples were determined by subtracting the log ratio per probe
of the biopsy from the surgery specimen, and segmenting the obtained
values.

Microarray analyses, RNA-seq library prep and data
processing
The microarray data was generated and analyzed54 and made available
through the GEO database, accession GSE34138. Briefly, samples were
hybridized to Illumina WG6 v3 microarray chips. Genes that were not
detected above background level in at least one sample were excluded
from the analysis. The data were normalized by applying between array
simple scaling and a subsequent log2 transformation.
RNA was isolated from samples with a tumor percentage >50%, from

thirty 30-μm cryosections. A 5-μm section halfway through the biopsy was
stained for hematoxylin and eosin and analyzed by a pathologist for tumor
percentage. Total RNA was isolated with RNA-Bee (Bio-Connect, Huissen,
The Netherlands, Cat No. CS-100B), DNase-treated by using the Qiagen
RNase-free DNase Set (Qiagen, Venlo, The Netherlands, Cat No. 79254) and
RNeasy spin columns (Qiagen, Cat No. 74104) and dissolved in RNase-free
H2O.

Quality and quantity of the total RNA was assessed by the 2100
Bioanalyzer using a Nano chip (Agilent, Santa Clara, CA); samples having
RIN > 6.4 were subjected to library generation. mRNA libraries were
generated using the TruSeq RNA Library Preparation Kit v2 (Illumina Inc.,
San Diego, Cat. No. RS-122-2001/2) according to the manufacturer’s
instruction (Part # 15026495 Rev. B). The libraries were analyzed on a 2100
Bioanalyzer using a 7500 chip (Agilent, Santa Clara, CA, USA), diluted and
pooled equimolar into a 10 nM sequencing pool containing 9 libraries
each, and sequenced with 50 basepair single reads (pre-treatment samples
only) or 65 basepair single reads (pre–post treatment set) on a HiSeq2000
using V3 chemistry (Illumina Inc., San Diego).
Reads were aligned to the human transcriptome (Homo_sapiens.

GRCh37.75.gtf) using Tophat v2.155. Readcounts per gene were calculated
using lcount56, and normalized using DESeq2 v1.22.057. The SVA R package
v3.30.158 was used to combine and batch correct gene expression
datasets. Gene expression levels were associated with chemotherapy
response using samr v3.0;59 differential gene expression between pre- and
post-treatment samples was analyzed using DESeq2 v1.22.057. Subsequent
pathway/GO-term enrichment was performed using the Reactome
Cytoscape plugin v3.1.060,61 and geneset enrichment was performed using
GSEA v4.1.062.
The most significant genes from the samr analysis (FDR < 5%) were

selected for a ‘core enrichment’ set, based on unsupervised clustering and
pathway and GO-term enrichment (Supplementary data file 1). Metagene
scores for all three processes were created by calculating the median
expression of genes assigned to each cluster. Expression above or below
the metagene median was used to stratify patients into a HHL
(proliferation high, immune high, ECM low) or LLH (proliferation low,
immune low, ECM high) profile. Statistical analysis of recurrence-free
survival in these profiles was done using Kaplan–Meier estimates.
RNA-seq reads of the pre–post dataset were also aligned to the human

reference genome version 37.75 (hg19) using bwa 0.7.1746 to be able to
confirm somatic mutations and indels in the expression data.

CDKN1B and CCND1 knockout/knockdown and overexpression
experiments
The LentiCRISPRv2 vector was a kind gift from Feng Zhang (Addgene,
plasmid no. 52961). sgRNA sequences for CDKN1B knock-out63 and
negative control64 are listed in the Supplemental Methods. Cloning of
the sgRNAs was performed and vectors were validated by Sanger
sequencing63. We produced concentrated lentiviral stocks, pseudotyped
with the VSV-G envelope, by transient cotransfection of four plasmids in
293T cells65. Viral titers were determined using the quantitative PCR (qPCR)
lentivirus titration kit from Abm (LV900).
Culture conditions for 293T, T47D and MDA-MB-415 are listed in the

Supplemental methods. Transductions were performed by adding diluted
viral supernatant to the cells in the presence of 8 μg/mL polybrene (Sigma).
Cells were transduced at a multiplicity of infection (MOI) of 10 for 24 h,
after which the medium was refreshed. Harvesting of cells for genomic
DNA Genomic DNA from cell pellets was isolated using the Gentra
Puregene genomic DNA isolation kit from Qiagen. PCR amplification of
Cdkn1b exon 1 was performed with primers spanning the target site
(Supplemental methods) and 1 μg of DNA template using the Q5 high-
fidelity PCR kit from New England Biolabs. Amplicons were run on 1%
agarose gel, and gel purification was performed using the Isolate II PCR
and gel kit from Bioline. PCR products were Sanger-sequenced using the
FW primer, and CRISPR/Cas9-induced editing efficacy was quantified with
the TIDE algorithm (http://tide.nki.nl)66. Non-transduced cells were used as
a negative control in all genomic DNA amplifications, and only TIDE
outputs with R2 > 0.9 were considered.
Three short hairpin RNAs targeting CCND1 were selected from the TRC

Human v2.0 library (#1: TRCN0000295876; #3: TRCN0000288598; #5:
TRCN0000295874). Non-targeting short hairpin was used as a negative
control. Lentivirus were produced in 293T cells. Supernatant was collected
and transferred to ZR-75-1 cells together with polybrene (8 μg/mL).
Puromycin was added 48 h after infection for selection. Lentiviral plasmids
containing the CCND1 open reading frame were obtained from CCSB-
Broad Lentiviral Expression library (#1: #101926645) and from the Jonkers
laboratory at the Netherlands Cancer Institute (#2: Lenti737-ccnd1-P2A-
CRE). Medium was harvested, polybrene was added at a final concentration
of 8 μg/μL and it was transferred to T47D cells for virus infection. Medium
was refreshed 24 h after infection.
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Cytotoxicity and cell viability experiments
T47D-CDKN1BKO and MDA-MB-415-CDKN1BKO cells were seeded on 12-
well plates for mafosfamide and doxorubicin cytotoxicity assays at
densities of 2000 cells/well (T47D) or 2500 cells/well (MDA-MB-415). One
day after seeding, ranges of concentrations of mafosfamide (Niomech,
0–100 μM) or doxorubicin (Sigma, 0–33 μM) were added to the cells in
triplicate. After 3 days of drug treatment, cell viability was measured with
CellTiter-Blue (Promega) using a 96-well plate reader (Tecan). Cells were
then washed with PBS, fixed with 4% paraformaldehyde and stained with
0.1% crystal violet. Plates were imaged and cell densities were measured
using Image J Colony Area plugin.
For shCCND1-ZR-75-1 cells and T47D cells overexpressing CCND1, cells

were seeded at a density of 500 cells/well in a 384-well plate. 24 h after
seeding, cells were treated with ranging concentrations (0–10 μM) of
doxorubicin (MedChemExpress: HY-15142) for a period of 7 days and cell
viability was measured using Cell-Titer Glow (Promega).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The WES data is available through EGA: EGAS 0000100587 (dataset
EGAD00001008442).
The microarray RNA data is available through GEO: GSE34138.
The RNAseq data is available through EGA (raw data): EGAS 00001005876
(EGAD00001008421 and EGAD00001008433) and GEO (processed data): GSE191127
and GSE192341.

CODE AVAILABILITY
The code used in this study can be accessed at: https://github.com/NKI-CCB/
prepost_neoadjuvant.

Received: 6 September 2021; Accepted: 12 April 2022;

REFERENCES
1. Golshan, M. et al. Impact of neoadjuvant chemotherapy in stage II–III triple

negative breast cancer on eligibility for breast-conserving surgery and breast
conservation rates: surgical results from CALGB 40603 (Alliance). Ann. Surg. 262,
434–439 (2015). discussion 438–439.

2. Spring, L. M. et al. Pathologic complete response after neoadjuvant chemother-
apy and impact on breast cancer recurrence and survival: a comprehensive meta-
analysis. Clin. Cancer Res. 26, 2838–2848 (2020).

3. Cortazar, P. et al. Pathological complete response and long-term clinical benefit
in breast cancer: the CTNeoBC pooled analysis. Lancet 384, 164–172 (2014).

4. Bertucci, F. et al. Gene expression profile predicts outcome after anthracycline-
based adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat.
127, 363–373 (2011).

5. Denkert, C. et al. Tumor-associated lymphocytes as an independent predictor of
response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 28,
105–113 (2010).

6. Loibl, S., von Minckwitz, G., Untch, M., Denkert, C. & Group, G. B. Predictive factors
for response to neoadjuvant therapy in breast cancer. Oncol. Res. Treat. 37,
563–568 (2014).

7. Stover, D. G. et al. The role of proliferation in determining response to neoad-
juvant chemotherapy in breast cancer: a gene expression-based meta-analysis.
Clin. Cancer Res. 22, 6039–6050 (2016).

8. Rodenhuis, S. et al. A simple system for grading the response of breast cancer to
neoadjuvant chemotherapy. Ann. Oncol. 21, 481–487 (2010).

9. Symmans, W. F. et al. Measurement of residual breast cancer burden to predict
survival after neoadjuvant chemotherapy. J. Clin. Oncol. 25, 4414–4422 (2007).

10. Hoogstraat, M. et al. Detailed imaging and genetic analysis reveal a secondary
BRAF(L505H) resistance mutation and extensive intrapatient heterogeneity in
metastatic BRAF mutant melanoma patients treated with vemurafenib. Pigment
Cell Melanoma Res. 28, 318–323 (2015).

11. Juric, D. et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα
inhibitor. Nature 518, 240–244 (2015).

12. Kemper, K. et al. BRAF(V600E) kinase domain duplication identified in therapy-
refractory melanoma patient-derived xenografts. Cell Rep. 16, 263–277 (2016).

13. Ter Brugge, P. et al. Mechanisms of therapy resistance in patient-derived xeno-
graft models of BRCA1-deficient breast cancer. J. Natl Cancer Inst. 108, djw148
(2016).

14. Balko, J. M. et al. Profiling of residual breast cancers after neoadjuvant che-
motherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat.
Med. 18, 1052–1059 (2012).

15. Kim, C. et al. Chemoresistance evolution in triple-negative breast cancer deli-
neated by single-cell sequencing. Cell 173, 879–893.e13 (2018).

16. Jebbink, M. et al. The prognostic value of the neoadjuvant response index in
triple-negative breast cancer: validation and comparison with pathological
complete response as outcome measure. Breast Cancer Res Treat. 153, 145–152
(2015).

17. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression
profiles. Nat. Methods 12, 453–457 (2015).

18. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and
genetic properties of tumors associated with local immune cytolytic activity. Cell
160, 48–61 (2015).

19. Hoadley, K. A. et al. Cell-of-origin patterns dominate the molecular classification
of 10,000 tumors from 33 types of cancer. Cell 173, 291–304.e6 (2018).

20. Sondka, Z. et al. The COSMIC Cancer Gene Census: describing genetic dysfunc-
tion across all human cancers. Nat. Rev. Cancer 18, 696–705 (2018).

21. Network, C. G. A. Comprehensive molecular portraits of human breast tumours.
Nature 490, 61–70 (2012).

22. Iorio, F. et al. A landscape of pharmacogenomic interactions in cancer. Cell 166,
740–754 (2016).

23. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-
genome sequences. Nature 534, 47–54 (2016).

24. Kohn, K. W., Jackman, J. & O’Connor, P. M. Cell cycle control and cancer che-
motherapy. J. Cell. Biochem. 54, 440–452 (1994).

25. Magbanua, M. J. et al. Serial expression analysis of breast tumors during
neoadjuvant chemotherapy reveals changes in cell cycle and immune pathways
associated with recurrence and response. Breast Cancer Res. 17, 73 (2015).

26. von Minckwitz, G. et al. Ki67 measured after neoadjuvant chemotherapy for
primary breast cancer. Clin. Cancer Res. 19, 4521–4531 (2013).

27. Gordon, R. R. & Nelson, P. S. Cellular senescence and cancer chemotherapy
resistance. Drug Resist. Updat. 15, 123–131 (2012).

28. Puig, P. E. et al. Tumor cells can escape DNA-damaging cisplatin through DNA
endoreduplication and reversible polyploidy. Cell Biol. Int. 32, 1031–1043 (2008).

29. Prat, A. et al. Predicting response and survival in chemotherapy-treated triple-
negative breast cancer. Br. J. Cancer 111, 1532–1541 (2014).

30. Stover, D. G. et al. The role of proliferation in determining response to neoad-
juvant chemotherapy in breast cancer: a gene expression-based meta-analysis.
Clin. Cancer Res. 22, 6039–6050 (2016).

31. Miyashita, M. et al. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes in triple-
negative breast cancer: its correlation with pathological complete response to
neoadjuvant chemotherapy. Breast Cancer Res. Treat. 148, 525–534 (2014).

32. Kim, C. et al. Chemoresistance evolution in triple-negative breast cancer deli-
neated by single-cell sequencing. Cell 173, 879–893.e13 (2018).

33. Park, Y. H. et al. Chemotherapy induces dynamic immune responses in breast
cancers that impact treatment outcome. Nat. Commun. 11, 6175 (2020).

34. Jang, G.-B. et al. Blockade of Wnt/β-catenin signaling suppresses breast cancer
metastasis by inhibiting CSC-like phenotype. Sci. Rep. 5, 12465 (2015).

35. Zhang, H. et al. Expression profile and clinical significance of Wnt signaling in
human gliomas. Oncol. Lett. 15, 610–617 (2018).

36. Muzny, D. M. et al. Comprehensive molecular characterization of human colon
and rectal cancer. Nature 487, 330–337 (2012).

37. Levine, D. A. et al. Integrated genomic characterization of endometrial carcinoma.
Nature 497, 67–73 (2013).

38. Schulze, K. et al. Exome sequencing of hepatocellular carcinomas identifies new
mutational signatures and potential therapeutic targets. Nat. Genet. 47, 505–511
(2015).

39. Geyer, F. C. et al. β-Catenin pathway activation in breast cancer is associated with
triple-negative phenotype but not with CTNNB1 mutation. Mod. Pathol. 24,
209–231 (2011).

40. Brastianos, P. K. et al. Genomic characterization of brain metastases reveals
branched evolution and potential therapeutic targets. Cancer Discov. 5,
1164–1177 (2015).

41. Balko, J. M. et al. Molecular profiling of the residual disease of triple-negative
breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic
targets. Cancer Discov. 4, 232–245 (2014).

42. Roy, P. G. et al. High CCND1 amplification identifies a group of poor prognosis
women with estrogen receptor positive breast cancer. Int. J. Cancer 127, 355–360
(2010).

M. Hoogstraat et al.

11

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2022)    60 

https://github.com/NKI-CCB/prepost_neoadjuvant
https://github.com/NKI-CCB/prepost_neoadjuvant


43. Finn, R. S. et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combi-
nation with letrozole versus letrozole alone as first-line treatment of oestrogen
receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a
randomised phase 2 study. Lancet Oncol. 16, 25–35 (2015).

44. Bostner, J. et al. Amplification of CCND1 and PAK1 as predictors of recurrence
and tamoxifen resistance in postmenopausal breast cancer. Oncogene 26,
6997–7005 (2007).

45. Lundgren, K., Holm, K., Nordenskjöld, B., Borg, A. & Landberg, G. Gene products of
chromosome 11q and their association with CCND1 gene amplification and
tamoxifen resistance in premenopausal breast cancer. Breast Cancer Res. 10, R81
(2008).

46. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler
transform. Bioinformatics (Oxford, Engl.) 25, 1754–1760 (2009).

47. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303
(2010).

48. Cingolani, P. et al. A program for annotating and predicting the effects of single
nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melano-
gaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

49. Cingolani, P. et al. Using Drosophila melanogaster as a model for genotoxic
chemical mutational studies with a new program, SnpSift. Front. Genet. 3, 35
(2012).

50. Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from
sequenced tumor–normal sample pairs. Bioinformatics (Oxford, Engl.) 28,
1811–1817 (2012).

51. Ruffier, M. et al. Ensembl core software resources: storage and programmatic
access for DNA sequence and genome annotation. Database 2017, 860 (2017).

52. Li, H. A statistical framework for SNP calling, mutation discovery, association
mapping and population genetical parameter estimation from sequencing data.
Bioinformatics (Oxford, Engl.) 27, 2987–2993 (2011).

53. Talevich, E., Shain, A. H., Botton, T. & Bastian, B. C. CNVkit: genome-wide copy
number detection and visualization from targeted DNA sequencing. PLoS Com-
put. Biol. 12, e1004873 (2016).

54. de Ronde, J. J. et al. SERPINA6, BEX1, AGTR1, SLC26A3, and LAPTM4B are markers
of resistance to neoadjuvant chemotherapy in HER2-negative breast cancer.
Breast Cancer Res. Treat. 137, 213–223 (2013).

55. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of
insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

56. Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-
throughput sequencing data. Bioinformatics (Oxford, Engl.) 31, 166–169 (2015).

57. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

58. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package
for removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics (Oxford, Engl.) 28, 882–883 (2012).

59. Li, J. & Tibshirani, R. Finding consistent patterns: a nonparametric approach for
identifying differential expression in RNA-Seq data. Stat. Methods Med. Res. 22,
519–536 (2013).

60. Fabregat, A. et al. The Reactome pathway Knowledgebase. Nucleic Acids Res. 44,
D481–D487 (2016).

61. Shannon, P. et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

62. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci.
USA 102, 15545–15550 (2005).

63. Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide
libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

64. Annunziato, S. et al. Modeling invasive lobular breast carcinoma by CRISPR/Cas9-
mediated somatic genome editing of the mammary gland. Genes Dev. 30,
1470–1480 (2016).

65. Follenzi, A., Ailles, L. E., Bakovic, S., Geuna, M. & Naldini, L. Gene transfer by
lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol
sequences. Nat. Genet. 25, 217–222 (2000).

66. Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative
assessment of genome editing by sequence trace decomposition. Nucleic Acids
Res. 42, e168–e168 (2014).

ACKNOWLEDGEMENTS
We would like to thank the NKI Genomics Core Facility, the NKI Core Facility
Molecular Pathology & Biobanking and the NKI High Performance Computing Facility
for facilitating and supporting this work. We also want to thank Sjoerd Rodenhuis,
Stef van Lieshout, and Peter Bouwman for advice. This research was supported by a
Dutch Cancer Society grant (2014-6007).

AUTHOR CONTRIBUTIONS
Conception and study design: M.H., E.H.L., W.Z., J.W., and L.F.A.W. Development of
methodology: M.H., E.H.L., W.Z., and L.F.A.W. Acquisition of data: M.H., E.H.L., I.M.P., L.
M., P.K., I.H., S.A., M.S. Analysis and interpretation of data: M.H., E.H.L., I.M.P., P.N., G.S.
S., W.Z., J.W., and L.F.A.W. Writing and review of the manuscript: M.H., E.H.L., I.M.P., W.
Z., J.W., and L.F.A.W. Critical revision of the manuscript: all authors.

COMPETING INTERESTS
G.S.S. has received institutional research funding from AstraZeneca, Merck, Novartis,
and Roche, all outside the current project. All other authors declare that they have no
competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41523-022-00428-8.

Correspondence and requests for materials should be addressed to Esther H. Lips or
Lodewyk F. A. Wessels.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

M. Hoogstraat et al.

12

npj Breast Cancer (2022)    60 Published in partnership with the Breast Cancer Research Foundation

https://doi.org/10.1038/s41523-022-00428-8
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Comprehensive characterization of pre- and post-treatment samples of breast cancer reveal potential mechanisms of chemotherapy resistance
	Introduction
	Results
	Overview patient cohort and therapy response
	Proliferation rate, immune response and ECM jointly predict response to neoadjuvant chemotherapy
	Decreased proliferation rates after chemotherapy are not indicative of improved survival in ER-positive tumors
	Genomic differences between pre- and post-treatment samples may explain observed transcriptomic changes
	Association between CCND1 amplification and therapy resistance

	Discussion
	Methods
	Patient cohort and sample selection
	Pathology
	Exome seq library prep and data processing
	Microarray analyses, RNA-seq library prep and data processing
	CDKN1B and CCND1 knockout/knockdown and overexpression experiments
	Cytotoxicity and cell viability experiments
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




