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A growing number of studies document circadian phase-shifting after exposure to

millisecond light flashes. When strung together by intervening periods of darkness,

these stimuli evoke pacemaker responses rivaling or outmatching those created by

steady luminance, suggesting that the circadian system’s relationship to light can be

contextualized outside the principle of simple dose-dependence. In the current review,

we present a brief chronology of this work. We then develop a conceptual model

around it that attempts to relate the circadian effects of flashes to a natural integrative

process the pacemaker uses to intermittently sample the photic information available at

dawn and dusk. Presumably, these snapshots are employed as building blocks in the

construction of a coherent representation of twilight the pacemaker consults to orient

the next day’s physiology (in that way, flash-resetting of pacemaker rhythms might be

less an example of a circadian visual illusion and more an example of the kinds of gestalt

inferences that the image-forming system routinely makes when identifying objects within

the visual field; i.e., closure). We conclude our review with a discussion on the role

of cones in the pacemaker’s twilight predictions, providing new electrophysiological

data suggesting that classical photoreceptors—but not melanopsin—are necessary for

millisecond, intermediate-intensity flash responses in ipRGCs (intrinsically photosensitive

retinal ganglion cells). Future investigations are necessary to confirm this “Cone Sentinel

Model” of circadian flash-integration and twilight-prediction, and to further define the

contribution of cones vs. rods in transducing pacemaker flash signals.

Keywords: light, circadian, rhythms, photostimulation, flash, retina, photoreceptors, ipRGC

INTRODUCTION

The retina integrates light signals detected across a tripartite network of photoreceptors to
convey time-of-day information related to the Earth’s rotation and solar cycle directly to the
brain’s circadian pacemaker, the suprachiasmatic nucleus (SCN) (1–5). Grounded within the
crossroads of this light-detection system is a subset of intrinsically photosensitive retinal ganglion
cells (ipRGCs) containing the vitamin A-based photopigment, melanopsin (6–14). ipRGCs are
recurrently configured in the eye. By virtue of melanopsin expression, these cells are themselves
photo-excitable and can operate as independent relays to the SCN, but—nevertheless—also receive
synaptic connections from rods and cones (15–24), and participate in a centrifugal feedback
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pathway involving several types of retinal amacrine interneurons
(25, 26). As an emergent unit, the whole of the retinal circuitry
that comprises the (non-image forming) input to the SCN
is extremely flexible in its reading of ambient light across
various intensities, spectra, and patterns of contrast. While it
is appreciated that all photoreceptor classes make contributions
to irradiance detection and are activated across an overlapping
range of wavelengths (27–31), there is particular specialization
with regards to each’s role in signaling contact with steady (i.e.,
non-flickering) vs. intermittent light.

For example, ipRGCs provide a sustained signal to the SCN
throughout the duration of exposure to a discrete light stimulus
lasting up to several hours (32–38); cones, on the other hand,
amplify signaling only at the beginning of the exposure owing to
their transient response within the first <1 s of light-onset (39–
44). This functional dissociation is evident in electrophysiological
retinal recordings of ipRGCs (8, 17, 19), single-unit recordings of
SCN neurons (33, 41), as well as behavioral comparisons between
rodents with selective loss of cones vs. wildtype animals. In
the latter case, cone-deficient mice exhibit full-magnitude phase
shifts to 15-min but not 1-min light administration (480 nm)
(40). Conversely, cone-activating light fails to phase-shift the
rodent pacemaker as a continuous 15-min stimulus but does so
when presented intermittently along 15 separated 1-min steps
over an hour (42). These aggregated data suggest a wider truth
about the circadian pacemaker’s timekeeping estimates. They are
based on two superimposed changes in incident light: (1) the slow
intensity variation of sunlight that marks the day’s movement
through the morning and afternoon and that which separates
the day from the night (∼10–12 h; weighted toward melanopsin
function); and (2) the higher-frequency changes in irradiance
and spectrum that punctuate twilight interludes at dawn/dusk
(∼30–60min; weighted toward cone function).

The pacemaker’s phase responses to the same light stimulus
(e.g., a 15-min pulse) change systematically across the subjective
night along a sigmoidal-like wave (45). In the vast majority
of species that have been surveyed, light administration in the
first half of the night will produce phase delays in behavioral-
physiological rhythms commensurate with the difference in
timing between the photic stimulation and the timing of dusk in
the solar cycle or lights-out within an indoor light-dark schedule
[e.g., in humans, lab rodents and Drosophila, introduction of the
light stimulus 2 h after subjective sunset will delay rhythms by
up to 2 h; (46–48)]. The reciprocal is observed in the second half
of the night, where light administration will advance rhythms in
proportion to howmuch earlier the light was seen with respect to
expected sunrise [e.g., stimulation 2 h before sunrise or lights-on
will fast-forward the onset of diurnal physiology and behavior by
up to 2 h; (46–48)]. When describing the circadian pacemaker’s
phase response curve (PRC) to light, many commentators note
the technical shape of the PRC in passing or the relationship it
might bear to a biological phenomenon of interest. Few point out
the bigger picture: the circadian PRC to light is arguably the most
demonstrable example of the brain’s prediction coding.

Predictive processing is a mature field of inquiry in
psychology and cognitive neuroscience (49–52), where diverse
methodologies have established the brain as a prospection device

that interprets sensory information with the express purpose
of generating expectations—and thereby obtaining a level of
preparedness—for the immediately relevant future (49–61). Early
studies of prediction coding or “sensory anticipation” were
primarily motivated by experiments that attempted to resolve
fundamental questions about how the visual field manages to
remain stable with the constant image-displacement introduced
by physical activity, head and eye movements, and blinking
(62, 63). At about the same time as these models of primary
vision were conceived, species-generalizable PRCs-to-light had
been developed across several experimental organisms occupying
different ecological and temporal niches within the biosphere
(45, 64, 65). Ironically, study of the non-image forming visual
system had produced a wealth of empirical data (not to
mention the resounding image of the PRC itself) attesting
to the brain’s prediction-making capabilities and its raison
d’être in reducing the ongoing discrepancies occurring between
expectation and actual experience. Yet, it was in the field
of perceptual vision research that inference, prediction, and
information-seeking became topics of intense scrutiny and now
look to embody cutting-edge algorithms for machine vision and
artificial intelligence [e.g., (66)].

Organisms were pressured to evolve a circadian timekeeping
system that could make predictions about the environment
because, ultimately, an inability to do so meant life or death vis-
à-vis finding food, staying temperature-regulated, and avoiding
predators. While direct responses to light independent of such a
timekeeping mechanism (e.g., masking) would effectively restrict
animals to a nocturnal or diurnal niche (67), they would not be
sufficient for preparing and optimizing vast, interconnected areas
of organismal physiology for times-of-day when—for example—
food might be most readily available and digested or sleep
might be most biologically restorative. Regarding entrainment,
we have lost sight of these stakes and the inferences that came
along with them—namely, that photodetection mechanisms in
the service of the circadian pacemaker are likely to be highly
flexible in the light information they use to localize sunset or
sunrise. Evolutionary pressure not only coaxed the advent of
an entrainable clock but also created a race to the bottom
for sunlight detection. Organisms who won-out were able to
use the least amount of light information in the service of
entrainment and could interpret that information accurately
whether it resulted from consistent or erratic contact with
sunlight. Successful entrainment did not require a prolonged
“sitting” audience with midday or twilight and, for some animals,
could be achieved (well-enough) within their natural habitats by
a few minutes’ exposure once or twice a day (68, 69).

DYNAMIC LIGHT AND THE CIRCADIAN
PACEMAKER

Research has established the lower floors of circadian
photoentrainment in laboratory models such as Drosophila and
mice (70–72). Data suggest that most animals can synchronize
and maintain a stable phase relationship to a 12-h light-
dark schedule with an irradiance of <1 nW/cm2 or with
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skeleton photoperiods consisting of ∼11-h intervals of darkness
bookended by a pair of 30-min light pulses simulating dusk
and dawn (70–75). Despite the appreciation that entrainment
requires little in the way of photic energy, there is still a lingering
assumption among chronobiologists that light-induced phase
shifting demands a relatively large energy investment to trigger
complete resetting of endogenous rhythmicity. This perspective
is best couched by the reciprocity hypothesis, which asserts
that the size of any phase-shift is directly proportional to the
time-integrated illuminance the pacemaker registers from a
light signal (76, 77). However, extant data suggest that light’s
association with circadian timekeeping is more complicated.

Emission technology in the 20th and early 21st centuries
rarely offered control systems equipped to deliver light in a
rapid, intermittent, and multidimensional fashion, where all
physical exposure variables could be manipulated at once in
quick successive steps. Within the technology milieu, however,
were movie/photography studio devices that could produce
microsecond and millisecond xenon flashes at fixed frequencies.
These devices are still used today in order to illuminate and
visualize color in dark scenes (e.g., Metz Mecablitz and DynaLite
units). Over the past 60 years, several investigators have also used
them to examine the phase-shifting effects of flashes in organisms
as diverse as Drosophila, hamsters, rats, mice, and humans (78–
86). The findings collated from these studies have established
that the metazoan circadian pacemaker responds to intermittent
millisecond flashes with phase shifts comparable to those that
would have been generated with continuous, uninterrupted light
administration, provided that the stimuli are delivered at regular
intervals every few seconds or each minute. What’s more, each
circadian hour of the subjective night is equally amenable to
flash stimulation; xenon-flash PRCs have been compiled for the
eclosion rhythm of Drosophila pseudoobscura (79) and the flight
activity of the Schneider’s roundleaf bat (Hipposideros speoris)
(80, 81), and this patterned stimulation has proven effective in
both the delay and advance zones of C57BL/6 mice (82), the most
common mouse strain bred in biomedical science.

Employing electrophysiology amplifiers and LED Ganzfeld
lamps, researchers have summarized a few other observations
germane to the pacemaker’s reaction to (sub)millisecond
light. First, the energy-efficiency with which flashes phase-
shift the clock are maximized by shortening exposure, with
optimization accruing all the way down to at least 10
µs (87–89). Ergo, it is likely that the circadian system
responds to instantaneous light contact, habituates immediately
thereafter, and then cycles through a rapid re-sensitization
process. Second, flashes that reset the clock do so with a
combinatorial logic that integrates the responses of these flashes
with shorter and longer episodes of light (87). This means
that flashes do not require delivery in some invariant or
artificial sequence (e.g., with a fixed pulse duration, metered
along a specific frequency) to impact the circadian system’s
timekeeping (90, 91). Third, the action spectra for flash resetting
of circadian rhythms follows the action spectra that’s been
documented for visible light. Analogous to broad-spectrum
xenon flashes, narrowband blue and green LED flashes can
operate as stand-ins for continuous blue/green light exposure

(92). Finally, the lower energy bounds for photic induction
of circadian resetting reside within the micro-to-nanojoule
range (92).

These observations lend support to a model where the
pacemaker creates wholistic representations of twilight—thereby
predicting the timing of the next day’s dawn and dusk—
by intermittently sampling bits of photic information that
strike the retina as an organism navigates its environment.
Presumably, sampling is done in rapid succession by capturing
snapshots of incident light, integrating these snapshots across
seconds/minutes, and favoring this integration process for the
parts of the day when the sun’s movement in the sky will
invoke the greatest rates of change in ambient illumination
intensity and spectral composition (i.e., the 30–60min of
twilight perceived when the sun is ascending or descending
the horizon). Under this scenario, the pacemaker’s intermittent
reading frame is (1) optimized with photic information
in its most dynamic state, and (2) withstands stochastic
changes in light quantity and quality transiently introduced by
clouds, wind and atmospheric turbidity (e.g., light scattering
from wind-borne particles, haze), and by the behavior of
the organism itself as it moves back-and-forth underground
or underneath a discontinuous awning of trees and green
vegetation (93).

It is worth noting that this model of circadian photoreception
recapitulates an important gestalt principle of the image-
forming visual system referred to as closure, which describes
the brain’s ability to perceive objects as a whole in their
completeness even when the objects appear in the visual
field lacking one or more constituent parts (94). The image-
forming brain is not a stickler for the discrepancies that
arise in detecting and identifying figures when they are
obstructed, appear at an alternative angle, or when constituent
parts may be physically absent. It compensates for the lack
of information, interpolates what is missing, makes (mostly)
correct deductions about the object or person in front of
it, and actively “re-creates” the image of it. Compression
algorithms are applied as soon as light contacts the retina,
continue their processing as the signal traverses the thalamus
and visual cortex, and culminate as the signal breaches the
visual streams (95–97). Gestalt principles of visual perception
detail how the image-forming system creates structure—
and structure within space—by default. Analogous “gestalt”
principles might be valuable toward explaining how the
pacemaker creates automatic representations of time using
twilight as a palette and compression algorithms requiring
operation only within the circumscribed circuitry binding the
retina and SCN.

FLASHES, CONES, AND CIRCADIAN
PREDICTIONS ABOUT TWILIGHT

Throughout millennia, the pacemaker has been conditioned
to track light transitions enveloping sunrise and sunset.
The aggregated literature on flash-induction of circadian
resetting suggests that this timekeeping mechanism occurs

Frontiers in Neurology | www.frontiersin.org 3 February 2021 | Volume 12 | Article 627550

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Wong and Fernandez Circadian Flash

intermittently, using but a quantum of contact with light,
to set in motion an integrative process that results in the
synthetic construction of a ∼60-min episode of twilight from
just milliseconds of photic information; integration might
occur throughout all stages of signal transduction across
the retina and retinohypothalamic tract (RHT), SCN, and
SCN outputs. With an engram of this temporarily stored
in the SCN circuitry, the representation is then consulted
to orient the synchronization of the SCN’s output signal
to the rest of the brain and periphery, thus phase-locking
the next day’s physiology and behavior. The literature that
has burgeoned from Van den Pol and Heller’s original
observations (82)—that the circadian pacemaker orients to
sequenced intermittent light exposures and not just individual
flashes of oversaturating light (78, 80)—was facilitated by
co-opting studio equipment but has since been enabled by
the advent of semiconductor LEDs. These luminaires provide
spectral/temporal photoemission control at the microsecond-
level and offer the prospect of engineering dynamic patterns
of flash exposure that quickly (and repeatedly) transition from
one set of physical-exposure variables to another (98, 99).
Despite this technology breakthrough, which is now ushering a
fundamental shift in lighting practices around the world, many
investigators still regard flash induction of circadian resetting
as a lab curiosity—an example of a “circadian visual illusion”
worth noting but not necessarily formalizing within studies
of circadian photoreception (100). Perhaps what is needed is
a better mechanistic characterization of the phenomenon and
identification of the relative importance of each photoreceptor
class to these types of physiological responses.

Prior to any experiment, one might hypothesize that classic
photoreceptor cells would be important conduits for transducing
flashes that will feed the pacemaker’s twilight predictions. Both
rods and cones contribute to RHT responses at light onset
and provide short-latency inputs to ipRGCs. If the relative
contribution of rods vs. cones were weighed, however, more
data than not would suggest that cones are the more relevant
photoreceptor class for flash conveyance. Cones with overlapping
ranges of wavelength sensitivity: (1) Are the chief contributors
to retinal responses driven by short-duration light, generating
transient signals that account for most of the RHT activity evoked
by a series of brief light pulses (8, 17–19, 33, 40–43); (2) Are
disproportionately responsible for the upstream ability of the
SCN to track one or more sudden fluctuations in light intensity
and spectral contrast (e.g., akin to the salient changes in ambient
illumination that characterize dawn and dusk) (33, 42, 44); (3)
Differ from melanopsin or rods in that cones cannot drive
sustained RHT activity during continuous, uninterrupted light
exposure; accordingly, they are neither necessary nor sufficient
for photoentrainment of behavioral activity rhythms to recurring
solar or electric light-dark cycles (where light is presented
in a relatively unwavering fashion for 10–12 straight hours)
(27, 29, 33–37, 42); and (4) Are better than melanopsin or
rods at adjusting their sensitivity to background illuminance
(101–103), thus enabling them to operate as twilight detectors
irrespective of how bright or long the photoperiod feeding
into dusk. In short, cones are not “circadian-alignment” tools

à la melanopsin or rods, which signal the enduring presence
of light with fidelity thereby marking the day from the night
and providing an estimation of daylength. Rather, they are
critical sentinels for detecting the flickering kinds of light that
signal the initiation of a sunset or sunrise has migrated to a
time later or earlier than anticipated. In this role, they might
or might not work together with rods, which already have
established roles supporting photoentrainment and quantitative
assessments of irradiance alongside melanopsin (10, 11, 27, 29,
42, 104).

Retinally degenerate and knockout mice offer powerful
platforms for gauging the relative contribution of each
photoreceptor class to a clock light-response of interest.
As a proof-of-concept test of our suggestion that classic
photoreceptors mediate the circadian effects of millisecond
light flashes, one of the authors (KYW) recorded ex vivo ipRGC
responses from Opn4Cre/Cre melanopsin-knockout (105) vs.
Pde6brd1/rd1rod/cone-degenerate mice. The stimuli were 150-s
trains of 2-ms flashes (full-field; 470 nm, 14.0 log photons cm−2

s−1 or roughly 300 lux) with various interstimulus intervals
(ISI, 2.5–10 s; Figure 1). These experiments were motivated by
previous observations suggesting that: (1) Melanopsin responds
better to 20 1-s flashes with certain ISIs than to a continuous 20-s
light step, indicating temporal summation (106); and (2) Flashes
50-ms in duration could, occasionally, evoke a melanopsin
response in ipRGCs (34), indicating that melanopsin might
respond to short as well as prolonged illumination. Given these
properties, and the lack of any preexisting data on temporal
summation of shorter flashes (i.e., <1 s) by melanopsin, it
was not immediately obvious that there would be a clear
dichotomy between an ipRGC’s outer retinal photoreceptor-
driven and melanopsin-mediated responses to millisecond flash
stimulation. Such a dichotomy did emerge, however. Upon flash
exposure, wildtype mouse ipRGCs with fully-intact rod/cone
input showed increases in ipRGC spiking that scaled inversely
with ISI (Figure 1B, left panel). Melanopsin-deficient ipRGCs
(Opn4Cre/Cre) exhibited similar ISI-dependent patterns of flash
response, but ipRGCs in retinas largely devoid of rods and
cones (Pde6brd1/rd1) mounted virtually no response (Figure 1B,
middle and right panels, respectively). Subsequent head-to-head
analysis of wildtype and Opn4Cre/Cre ipRGC light-evoked
spiking indicated that the decay in the spike rate over the
stimulation window was not statistically different for any of the
ISI conditions, suggesting that melanopsin did not contribute to
any temporal summation of the 2-ms flashes (Figure 1C).

Like all data collected from retinal-degenerate mice, these
results need to be interpreted with caution. These models do
not allow us to visualize what would occur within an intact
system where all photoreceptor classes influence the activity of
one another, nor control for the possibility of compensatory
reorganization of the circuit loops in which these photoreceptors
operate [e.g., (107)]. There is also the caveat that melanopsin
might have responded to flashes had they been delivered with
higher-intensity stimulation protocols [moderate regimens were
tested here, instead, because they are more physiologically
relevant for nocturnal rodents and better conform to the flash
intensities that have been studied in humans; (91)]. All that
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FIGURE 1 | Spiking responses of mouse ipRGCs to a 150 s train of 2ms flashes (2.5–10 s intervals) are mediated almost exclusively by rod/cone input. (A) Example

response of a wild-type ipRGC to 30 flashes with a 5 s interstimulus interval (upper recording). This cell was identified as an ipRGC by its sustained response to a

subsequent prolonged light step (lower recording), which evokes transient responses in all non-intrinsically photosensitive RGCs [Wong 2012; (35)]. Spike recording

methods were identical to those described in the “Multielectrode-array recording” section in Wong 2012 except that all stimuli, including the 20 s light step, were 14.0

log photons cm−2 s−1 (∼300 lux) full-field light produced by an LED with peak emission at 470 nm. (B) The light-induced elevation in spike rate averaged across the

flicker plus 30 s of post-flicker darkness (to include responses outlasting the flicker) for C57BL/6 wild-type mice (n = 26 ipRGCs; left plot), Opn4Cre/Cre

melanopsin-knockout mice originally created by Ecker et al. (105) (n = 24 ipRGCs; middle plot), and Pde6brd1/rd1 rod/cone-degenerate mice (n = 43 ipRGCs; right

plot); note the expanded y-axis in the right plot. All mice in each group were about 7 months old and included both sexes. Though flashes delivered with a 2.5 s

interstimulus interval appear to cause a greater spike rate increase in wild-type vs. melanopsin-knockout mice, this difference is not statistically significant (p = 0.156).

The wild-type vs. melanopsin-knockout differences for the other three intervals are also statistically insignificant (p-values between 0.689 and 0.818), suggesting that

melanopsin does not enhance the flicker responses. Asterisks represent p-values calculated using one-way ANOVA with post-hoc Tukey test: *, p < 0.05; **, p <

0.01; ***, p < 0.001. (C) For all four interstimulus intervals, the gradual decay in light-evoked spike rate during the 150 s flicker is comparable between wild-type and

melanopsin-knockout mice, suggesting that melanopsin does not contribute to any temporal summation of successive flash responses. Error bars are S.E.M.

said, the clarity of the data and the conclusion they offer
remain striking: rods and/or cones enable ipRGC detection and
integration of light flashes independent of melanopsin, whose
contribution—if any—is predicated on initial processing by the
outer retinal photoreceptors. The results are consistent with
the suppositions made in the current review and with the
idea that cones (with or without the input of rods) will prove
to be key regulators of flash-induced resetting of pacemaker
rhythms. Future experiments using mice with intact retinal
circuitry (e.g., Opn1mwR) or with selective loss in rod vs.

cone photosensitivity [e.g., Gnat1−/− and Gnat2cpfl3 mice (108–
110)] will be necessary to isolate the relative contributions
of cones to this phenomenon and to determine whether the
retina processes staccatos of narrowband light with any circadian
phase-dependence. Using principles of silent substitution, flash
stimuli differing in the amount of cone-and-rod excitation might
also be probed for their circadian effects in retinally-intact
humans compared to humans with congenital achromatopsia
(i.e., people without a functional cone system; prevalence one in
30,000–50,000) (111).
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CONCLUSION

The way we illuminate our world is changing, moving away
from unidimensional forms of illumination provided by gas-
discharge fluorescent lamps to highly customizable solid-state
lighting with semiconductor LEDs. Data suggest that this
watershed is material to understanding the circadian pacemaker’s
phase-responses to electric light exposure, which are likely
rooted within a natural process where the pacemaker “flash-
samples” the photic information available at twilight to create
predictions about the timing of the next day’s dusk and dawn.
While the mechanisms subserving flash photoreception and the
SCN’s twilight predictions require further study, it is becoming
clear that classical photoreceptors, including cones, operate
as sensors in this process. The “Cone Sentinel Model” we
articulate here [and hinted at by Zeitzer; (91)] raises many
considerations for how different combinations of narrowband
LED stimulation can be strung together in phototherapy
protocols to improve mental and physical health (112). The
gestalt inferences made in this model will be challenging to
demonstrate experimentally. However, prudent first steps might
include the design of studies examining the differential phase-
shifting effects of flashes patterned after twilight progressions—
vs. more randomly generated sequences—in parallel to those
examining the neurophysiological responses arising from flash
regimens highly-optimized (or ill-suited) for driving cone input
to ipRGCs.
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