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Innate immunity and microbial
dysbiosis in hidradenitis
suppurativa – vicious cycle of
chronic inflammation
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Hidradenitis Suppurativa (HS) is a chronic multifactorial inflammatory skin

disease with incompletely understood mechanisms of disease pathology. HS

is characterized by aberrant activation of the innate immune system, resulting

in activation of pathways that aim to protect against pathogenic

microorganisms, and also contribute to failure to resolve inflammation.

Imbalance in innate immunity is evident in deregulation of host antimicrobial

peptides (AMPs) and the complement system associated with the microbiome

dysbiosis. The pathology is further complicated by ability of pathogens

associated with HS to overcome host immune response. Potential roles of

major AMPs, cathelicidin, defensins, dermcidin, S100 proteins, RNAse 7 and

complement proteins are discussed. Dysregulated expression pattern of innate

immunity components in conjunction with bacterial component of the disease

warrants consideration of novel treatment approaches targeting both host

immunity and pathogenic microbiome in HS.

KEYWORDS

hidradenitis suppurativa, acne inversa, innate immunity, skin – immunology,
antimicrobial peptides (AMPs), complement - immunological terms, microbiome

and dysbiosis, biofilm
Introduction

Hidradenitis suppurativa (HS), also known as acne inversa, is a chronic, highly

burdensome, inflammatory cutaneous disease that is associated with systemic

manifestations. HS has a global prevalence ranging between 0.00033% to 4.10% (1).

The onset of HS usually occurs in young adulthood to middle adulthood (1–3). Patients
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generally develop one or a few painful nodules or abscesses in

intertriginous areas, such as armpits, groin and perianal area, in

the early stages. The disease often progresses to form tunnels

(also called sinus tracts or fistulas) and scars in more advanced

stages. HS is recognized as a multifactorial disease; current

evidence points to genetic predisposition, hormonal imbalance,

lifestyle factors, and some unique features of the affected skin

areas contribute to disease development (1, 2, 4).

Aberrant activation of the innate immune system is another

major trait of HS. The intertriginous areas affected by HS are

prone to increased mechanical friction causing cutaneous

microinjuries in skinfolds which can lead to stimulation of

innate immune responses and allow for the invasion of

microorganisms to hair follicle and dermis (1, 2, 5). HS lesions

commonly cause disfigurement, itch, malodorous pus, and

movement restrictions, impacting patients’ quality of life (1–3,

6). The therapeutic options of HS are currently limited, including

medical and surgical therapy, and are supported by limited data.

Only a single drug has completed the US Food and Drug

Administration approval process based on two large randomized

controlled trials. Therefore, HS remains challenging to treat due to

the complexity of the disease pathology, limited therapies and an

enormous impact of the quality of life of patients (2, 5, 7).

Antimicrobial peptides (AMPs) are major component of the

cutaneous innate immunity produced by epithelial and immune

cells and possess direct bactericidal activity (7). Multiple AMPs

are made in the skin, providing the cutaneous barrier with broad

spectrum antimicrobial activity making them an essential aspect

of the innate immune system. Some AMPs are constitutively

expressed to keep the skin microbiota in balance while others are

induced by the presence of pathogens or wounding and are also

found deregulated in pathologic conditions including HS (8–12).

Furthermore, the complement system, an immune effector

system involved in the host response to microbes, is also

dysregulated in HS (13, 14). Here we review the role of innate

immunity in HS with focus on antimicrobial peptides and the

complement system and their role in the pathogenesis of the

disease. The interplay between microbial dysbiosis and

deregulation of components of the innate immune system in

HS pathology is discussed, with the focus on understanding the

mechanistic contributions of both host response and microbiota

to disease pathology.
Microbial dysbiosis in HS

The balance between commensal microbiota contributes to,

and is a hallmark of cutaneous homeostasis (15). In contrast,

microbial dysbiosis is a well-established feature of HS (16, 17).

Compared to other skin loci, intertriginous areas affected in HS

have a high density of pilosebaceous-apocrine units, higher

temperature and moisture, but lower oxygen availability all

contributing to specific microbiome composition and increased
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risk of dysbiosis (1, 2, 5, 18). Systemic factors such as obesity,

diabetes and nicotine use can also contribute to microbial dysbiosis

and HS pathogenesis (1, 19, 20), andmay correlate with the altered

gut microbiome found in HS patients (21, 22). Although it remains

to be resolved if dysbiosis is a primary trigger or a consequence of

HS, multiple studies provide insights into the microbiome

composition at early and advanced stages of the disease. The

predominance of commensal coagulase-negative staphylococci

(CoNS) and Propionibacterium has been associated with early

HS lesions (23, 24). However, in advanced stages of HS, CoNS and

additional commensals including Cutibacterium and P. acnes, are

significantly diminished, while pathogenic Staphylococcus aureus

persists (24–26). Gram-negative anaerobic pathogens

Porphyromonas spp, Peptoniphilus spp and Prevotella spp become

predominant in HS tunnels and advanced stages of the disease (24,

27, 28). These pathogens are proposed to contribute to biofilm

formation found inlesional skin and tunnels (29–31).

Chronic HS lesions and tunnels contain keratin debris and

hair fragments that may serve as surfaces for pathogenic

anaerobes to anchor and initiate biofilm growth (29).

Polymicrobial biofilms containing Porphyromonas and S. aureus

have been associated with pathogenesis of periodontal disease

(32); however interspecies interactions and their crosstalk with the

host innate immunity in HS remain to be elucidated. Biofilms may

not only cause an inappropriate host response contributing to

perpetual inflammation but are also challenging to treat due to

antibiotic and antimicrobial resistance (31, 33). Bacterial biofilms

can also evade components of the innate immune system,

including complement and AMPs (34–36).
The role of AMPs in HS pathology

AMPs are a key part of the innate immune system of the skin

with a critical role in preventing overgrowth of commensal

microbiota, preventing invasion by pathogens, and initiating

an inflammatory cascade aimed at wound healing (37). AMPs

are especially important in the intertriginous regions as the

environment is prime for microorganism growth. Without the

appropriate expression of AMPs, the intertriginous skin may be

overwhelmed by local commensals and is left vulnerable to

colonization by pathogens. Importantly, dysregulation of

AMPs that is observed in HS can contribute to the chronicity

of inflammation, and microbial dysbiosis. Herein, we outline the

role of the major AMPs, cathelicidin, defensins, dermcidin, S100

proteins and RNases in cutaneous homeostasis and their

associated roles in HS pathology (Table 1).
Cathelicidin role and function in skin
and HS

A single cathelicidin gene in humans, cathelicidin

antimicrobial peptide (CAMP) encodes for a precursor protein,
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human cationic antimicrobial protein, hCAP18, which is

proteolytically processed by serine proteases into multiple

different peptides, including LL-37 (10). Cathelicidins have

broad spectrum antimicrobial activity and are constitutively

expressed by follicular keratinocytes and mast cells in healthy

skin. The production of LL-37 is induced by cutaneous

inflammation, often at the hands of pathogens (10, 38, 39).

LL-37 is also present in sweat and wound fluid (38, 78).

Specifically, LL-37 is induced in acute wounds with a

diminishing concentration as the inflammation resolves and

wound progresses to healing (79). Several factors determine

expression of LL-37. CAMP is under transcriptional control by

Vitamin D response element, and CAMP expression is strongly

induced by Vitamin D in all skin cell types (10, 40). Vitamin D

deficiency has been associated with multiple inflammatory skin

diseases including psoriasis, rosacea, atopic dermatitis, and

systemic lupus erythematous (80–82), while association with

HS has been reported (83) but remains to be thoroughly

investigated. The enzymatic processing of hCAP18 in the skin

is controlled by serine proteases kallikrein 5 and kallikrein 7

(KLK5, KLK7), which are also induced by Vitamin D and pH

changes (41, 84, 85). KLK and its substrates are found in the dark

cells in eccrine sweat glands but not sebaceous glands, hair

follicles, keratinocytes, or elsewhere in the pilosebaceous

unit (86).

Multiple studies have found LL-37 expression to be increased

in the skin of HS patients on both mRNA and protein levels (42–

44) (Table 1). In addition to its antimicrobial activity, LL-37 has

prominent immunomodulatory activity, including chemotaxis of
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neutrophils, monocytes, mast cells, and T cells, and can influence

Th1/Th17 cell maturation (37, 45). Neutrophils drawn to the

inflammation further promote the process by releasing additional

cathelicidin from granules (37). Chemotactic function of LL37

attracts CD4 T cells and dendritic cells, which further release

TNF-a, IL-6, and Il-12. The upregulation of these inflammatory

markers results in the Th1/Th17 phenotype, independent of

antigen-presenting cells (43), while LL-37 may also act as T-cell

autoantigen in psoriasis (87). Additional studies have found the

progression of HS severity to be correlated with increased levels of

these pro-inflammatory cytokines promoted by LL-37, including

IL-17 and TNF-a (46, 88–90), suggesting the potential therapeutic

targeting of LL-37. LL-37 also promotes proliferation of

keratinocytes by an anti-apoptotic mechanism (91), which may

be contributing to epidermal hyperplasia and proliferation of

epithelial strands further stimulating formation of tunnels.

Bacterial aggregates in these tunnels may form biofilms

stringently attaching to epithelial tunnels and amplifying

inflammation both locally and systemically (4, 12), though

various mechanisms including increase of lipocalin-2 (6, 92, 93).

Overall consistent upregulation of LL-37 in HS may allow for the

local inflammation to progress to a systemic disease creating a

positive feedback loop due to deregulated inflammation and

microbial dysbiosis.

Recent findings revealed a contribution of LL-37 to bacterial

antibiotic tolerance in S. aureus. LL-37 induced S. aureus

tolerance to daptomycin by activating staphylococcal GraRS

two-component system, leading to increased peptidoglycan

formation, a key component of biofilm formation (94). LL-37
TABLE 1 Overview of major AMPs associated with HS pathology.

AMP Charge Antimicrobial
activity

Expression in
normal skin

Expression in HS Methods
of detec-
tion in HS

Chemokinetic
activity

Ref.

LL-37 Cationic Broad spectrum Constitutive low
levels in
keratinocytes and
mast cells

Induced in follicular keratinocytes and
neutrophils

qPCR, IHC,
ELISA,
microarray

Neutrophils, dendritic,
mast and T cells

(10, 37–
45)

Defensins Cationic hBD-1 and -2 mainly
Gram-negative bacteria,
hBD-3 broad spectrum

hBD-1 constitutive
low expression;
hBD-2 and hBD-3
low expression in
keratinocytes

hBD-1 suppressed/not regulated in
keratinocytes;
hBD-2 induced in keratinocytes and
dermal macrophages; hBD-3 induced/
not regulated in keratinocytes

qPCR, IHC,
ELISA

Dendritic and T cells,
promotes histamine
release from mast cells

(44, 46–
63)

DCD Anionic Mainly Gram-negative
bacteria

Constitutive
expression in
eccrine sweat glands

Suppressed in eccrine sweat glands qPCR, IHC,
ELISA

N/A (9, 59, 60,
64–68)

S100 Cationic Broad spectrum Rarely detected in
healthy skin

Induced in epidermal keratinocytes qPCR, IHC,
ELISA,
proteomics

Neutrophils and
macrophages

(46, 51,
52, 54, 59,
60, 69–76)

Rnase7 Cationic Broad spectrum Constitutive
expression in
keratinocytes

Repressed/Induced/not regulated in
keratinocytes

qPCR, IHC,
ELISA

N/A (44, 46,
59, 77)
fron
The main AMPs with altered expression in HS include LL-37, hBD-1, hBD-2, hBD-3, DCD, S100s proteins, and RNAse 7. Multiple different methods have been utilized to assess their
expression, including quantitative PCR (qPCR), immunohistochemistry (IHC), enzyme-linked immunoassay (ELISA) and proteomics. Some AMPs are consistently found deregulated
including LL-37, hBD-2, DCD, and S100s proteins. However, the deregulation and directionality were not consistent for hBD-1, hBD-3, and RNAse 7 across studies. Ref.=references.
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has also been identified to reduce S. aureus susceptibility to

vancomycin (95). These findings underscore complexity of host-

pathogen interaction in inflammatory conditions associated with

AMP upregulation and warrants further investigation in HS

considering the prevalence of S. aureus (96, 97).
The role of defensins in cutaneous
immunity and deregulation in HS

Defensins are cysteine-rich cationic peptides grouped into a
or b; a-defensins are mainly expressed in leukocytes and Paneth

cells while b-defensins are found in various epithelial cells,

including keratinocytes (47, 48). There are multiple b-defensins;
most important are human b-defensin-1 (hBD-1), hBD-2 and

hBD-3, all of which are expressed by keratinocytes in response to

inflammation or in response to pathogens (49). Unlike

cathelicidins, defensins are not proteolytically processed to

generate different defensin-peptides, rather they are encoded by

multiple defensin genes. hBD-1, -2, and -3 are encoded for by

DEFB1, DEFB4 and DEFB103, respectively. DEFB2, like CAMP, is

also under transcriptional regulation of vitamin D (50) andDEFB4

is significantly upregulated in HS lesional skin (44, 46, 51, 52).

hBD-1 and hBD-2 are mainly effective against Gram-

negative organisms while hBD-3 has broad spectrum activity

(49, 53). Fewer studies have focused on hBD-1; however, it has

been consistently found to be decreased in HS lesions (Table 1)

(54, 55). As hBD-1 is constitutively expressed in healthy skin

(56), it forms an important part of the cutaneous innate immune

system. Without sufficient hBD-1 patients may be susceptible to

commensal overgrowth in early stages of the disease, allowing

for microbial dysbiosis as the disease progresses.

hBD-2 and hBD-3 are not constitutively expressed but

upregulated at a transcriptional level in response to

microorganisms and also increased levels of TNF-a, a

hallmark proinflammatory cytokine of HS (Table 1) (13,

49, 53). Increased lesional hBD-2 was strongly correlated with

higher levels of IL-20 and IL-22 (54). hBD-2 has well-described

chemotactic abilities, as it attracts dendritic cells, memory T

cells, and promotes histamine release from mast cells (57, 58),

therefore primarily contributing to prolonged inflammation

unable to clear bacterial biofilms in HS tunnels. In addition,

both mRNA and protein levels of hBD-2 were released by

dermal macrophages at a significantly higher level in HS

lesions, further amplifying pro-inflammatory signature of HS

(51). In contrast to upregulation of hBD-2, conflicting data were

reported on hBD-3 indicating either upregulation (42, 46, 54, 55,

59) or lack of regulation compared to non-lesional skin (44, 60).

Both hBD-2 and hBD-3 can stimulate keratinocyte proliferation

(98). As the levels of these AMPs increase in HS lesions,

keratinocytes multiply within the pilosebaceous unit, leading

to hyperkeratosis and plugging of the hair follicle which may

serve as fuel for microbial dysbiosis and biofilm formation.
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Overall, hBDs may primarily contribute to HS pathogenesis by

promoting keratinocyte proliferation and inflammatory

cell chemotaxis.
Dermcidin function in skin and
suppression in HS

Like cathelicidin, dermcidin originates from a single gene,

dermcidin (DCD), which encodes for an AMP with broad-

spectrum activity. DCD is proteolytically processed by

cathepsin D (CatD) into DCD-1 and DCD-1L, and others

(9, 99, 100). DCD is constitutively and specifically expressed

by eccrine sweat glands, especially on the face and hands, but

could not be isolated from apocrine sweat glands (9, 64). Unlike

most other AMPs, DCD is anionic and has been shown to form

large pores in the membranes of Gram-negative bacteria (65,

66). Interestingly, DCD-1 is amphipathic, forming a large

complex alongside the bacterial membrane, which is stabilized

by zinc ions in sweat, allowing ion channel formation on the

pathogens ’ membrane (8). DCD is not expressed by

keratinocytes in the presence of inflammation like the other

AMPs, leaving the current understanding of its function as

maintenance of commensal skin microbiota and prevention of

pathogens invasion largely unknown (67).

DCD was significantly downregulated in HS lesional skin on

mRNA and protein level (Table 1) (60, 101), suggesting that

insufficient levels of DCD may allow overgrowth of Gram-

negative bacteria in HS tunnels. However, like the other

AMPs, DCD-derived peptides can promote epidermal

inflammation via TNF-a, IL-8, CXCL 10 and CCL20 (102),

limiting the opportunity for therapeutic targeting of DCD in HS.

Further investigation of the role of DCD in HS is needed to shed

a light on this AMP and its potential contribution to microbial

dysbiosis at different stages of disease.
The role of S100 proteins in HS

The S100 protein family, also known as alarmins, consist of

at least 21 calcium-binding cytosolic proteins which can be

divided into 3 divisions: those with intracellular function only,

those with extracellular function only, and those with both. By

altering calcium signaling, S100 proteins can serve as

intracellular regulators and extracellular signaling molecules in

either a paracrine or autocrine manner (103). The S100 protein

family has a wide range of function including regulating cell

migration, proliferation, differentiation, and apoptosis as well as

modulating inflammation and energy metabolism (104, 105),

and are made by keratinocytes, dendritic cells, neutrophils, and

macrophages (69, 106).

In healthy skin, S100A7, S100A8 and S100A9 are rarely

detected at the protein level, while increased levels are well
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documented in many inflammatory skin conditions such as

psoriasis, atopic dermatitis, and mycosis fungoides. Among the

S100 protein family, S100A7 (psoriasin), S100A8 (calgranulin

A), S100A9 (calgranulin B), S100A12 (calgranulin C) and

S100A15 (koebnerisin) have well documented antimicrobial

activity (107). S100A7 and S100A15 have strong bactericidal

activity against Escherichia coli with weaker preference for

Gram-positive bacteria while S100A8/S100A9 and S100A12

have preferential activity against fungi and viruses (70, 107,

108). S100A8 and S100A9 also form a heterodimer known as

S100A8/S100A9 or calprotectin which plays an integral role in

acute and chronic inflammation (11).

Multiple studies have confirmed increased levels of S100

proteins in HS (Table 1). Increased expression of S100A7 at both

the mRNA and protein levels was found in lesional HS skin (46,

51, 52, 60, 71). S100A8, S100A9, S100A12 and S100A15 have

also been shown to be increased in lesional skin in HS (13, 46, 52,

54, 60, 109). Overexpression of S100A15 and S100A12 was noted

in perilesional skin as well, which suggests a possible role in early

pathogenesis of HS by stimulating keratinocyte proliferation in

the perifollicular region (13, 109). The increase of S100 proteins

may occur in response to elevated inflammatory cytokines such

as interleukin (IL)-17 and IL-22, as in psoriasis (110, 111). The

overall increased levels of S100 proteins in HS can further elevate

level of inflammation due to known chemotactic function of

S100A7 and S100A8/S100A9 complex, subsequently increasing

expression of proinflammatory cytokines and inducing a

positive feedback loop, while microbial dysbiosis persists. The

family of S100 proteins exerts its antimicrobial function through

sequestration of Mn+ and Zn+ ions required for bacterial

metabolism (112); however, excessive sequestration can also

negatively affect host response e.g. impact Zn+-dependent

DCD function (8) and further diminish antimicrobial response.
Dysregulation of RNAse 7 in HS

RNAse 7 is one of eight enzymes in the RNAse A

superfamily. The members of this family have been

demonstrated to have a wide range of action including diverse

immunomodulatory, angiogenic, and neurotoxic effects (113). A

few members of this family also exert antimicrobial action

including RNAse 3, 4, 7, 8, and 9 (114). RNAse 7 has a broad-

spectrum antimicrobial activity against Gram -positive and

-negative bacteria (113). RNAse 7 is constitutively expressed in

keratinocytes and exists in high quantities in all layers of the

epidermis with a particular concentration in the stratum

corneum and in follicular epithelium (77, 115, 116), indicating

its role in HS.

Currently, the relationship of RNAse 7 in HS skin has not

been clearly defined and was primarily evaluated at mRNA levels

(Table 1). RNAse 7 mRNA has been shown to be increased (46),.

or decreased (59) in HS lesional skin when compared to heathy
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skin; not different between lesional and non-lesional HS skin

(44), and increased in lesional HS skin compared to perilesional

skin (117). There was significantly increased RNAse 7 mRNA in

HS lesional skin compared to chronic venous leg ulcers (44).

Overall induced expression of RNAse 7 can be attributed to

higher levels IL-1b, IL-17, and IFN-g in HS known to induce

expression of this his AMP (77, 113). RNAse 7 can also promote

rapid sensing of bacterial and human DNA by plasmacytoid

dendritic cells resulting in enhanced production of TNF-a and

IFN-a (118) contributing to perpetual cycle of inflammation

in HS.
Complement system and its role in
disease pathogenesis

The complement system is a part of innate immunity that

acts as first line defense against pathogens and altered host cells

by augmenting opsonization of pathogens and promoting

inflammatory processes. This system is largely composed of

plasma proteins synthesized in the liver but also includes

inactive precursor proteins on cell membranes (119). Because

serum is restricted in areas were complement activation is

needed, these proteins can also be made by a variety of cells

including epithelial cells, endothelial cells, and immune cells

(120, 121).

Activation of the complement system can be achieved by

three distinct pathways – classical (CP), lectin (LP), and

alternative (AP), each leading to a common terminal

(cytolytic) pathway initiated by different recognition molecules

(122, 123). All three pathways ultimately form C3 convertases to

cleave C3 into C3a and C3b. C3a is an anaphylatoxin with a

largely proinflammatory response including induction of

oxidative burst in macrophages and neutrophils, histamine

production via basophils to induce vasodilation, and increased

vascular permeability (124). C3b acts as an opsonin which will

target apoptotic cells, pathogens, and immune complexes for

phagocytosis. Once levels of C3b have reached a threshold of

activation, C3b can bind to a C3 convertase, either C4bC2a or

C3bBb, to form C5 convertase which will cleave C5 to produce

C5a. C5a in combination with the membrane attack complex

(MAC) which consists of a polymer of C5b, C6, C7, C8, and C9

initiates a terminal pathway to bacterial cell lysis (120, 122, 125).

As a very dangerous cytolytic system, complement activation

in the CP and LP pathways are tightly regulated in physiological

conditions by many plasma proteins to ensure that only

infection will stimulate a full response (122). Both inefficient

activation and over stimulation of complement have been found

to be associated with increased susceptibility to infections, while

the imbalance of complement activation contributes to

development of chronic inflammation (122, 126).

Complement is essential in maintaining cutaneous health by

maintaining healthy skin microbiome and modulating
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inflammatory responses (127–129). Human keratinocytes

produce several complement proteins including C3, C4, and

complement factor B (FB) which is induced by IL- 1a, IFN-g,
and TNF-a (121). Keratinocytes also play a significant role in

regulating response of complement proteins. Keratinocytes can

synthesize soluble complement inhibitors like factor H and

factor I, complement receptors CR1, cC1qR, C5aR1, and CR2

and cell-bound complement regulator proteins membrane

cofactor protein (MCP/CD46), decay-accelerating factor

(DAF), and protectin (CD59) (14). FH and FI production can

be stimulated locally by IFN-g which can then protect the

epidermis from damage caused by C3, C4, and FB (130, 131).

Complement activation in HS is thought to be primarily

systemic response (132). All three pathways, CP, LP, and AP,

are thought to contribute the complement activation in HS (133).

Ghias et al. suggested that the initial stimulus was follicular

rupture releasing microbes and keratin which would trigger

production of C3a, C3b, and C5a (127). This would in turn lead

to bacterial opsonization, keratin phagocytosis, neutrophil

chemotaxis, mast cell degranulation, and cell lysis through the

MAC complex. Additionally, complement activation triggers

inflammasomes to produce IL-1ß. IL-1ß further induces a

cascade of proinflammatory cytokine release, AMP production,

and DC activation (46, 127). A transcriptome study of the HS skin

showed C1q, C2, and factor B genes were upregulated, whereas

factor H, factor D, and C7 were downregulated. In the serum

proteome, C5a was found upregulated, and C4b, C3, C3b, and

iC3b were downregulated (133). Levels of C5a and the

components of the MAC, C5b-C9, are significantly elevated in

HS patients when compared to healthy subjects. When stratified

amongst Hurley stages, levels of C5a and C5b-C9 were highest in

patients with mild disease than those with more severe disease.

However, results from a recent study reported no evidence of

elevated plasma levels of C5b-9 in patients with HS despite

decreased C3/C3d ratio (134). These results suggest that

complement hyperactivation which is likely a consequence of

initial dysbiosis of microbiota (Figure 1), plays an important role

in early disease development in HS rather than being a sequela of

chronic inflammation in more progressed disease (132), although

it is also possible that there is increased activity of complement

including opsonization due to increased C3b levels but without

increased systemic terminal complement pathway (135).

Importantly, C5a is a critical stimulator of TNF-a release. In

studies, purified blood mononuclear cells (PBMCs) from HS

patients did not produce proinflammatory cytokines upon

stimulation with bacterial ligands (136) but did overexpress

TNF-a when in the presence of patients’ plasma. These

findings support the idea of HS stemming from dysregulated

innate immunity in conjunction with microbial dysbiosis. TNF-

a in turn stimulates upregulation of C3 (137), FB in the

alternative pathway (138), and surface regulatory proteins like

CD59 (139). TNF-a overexpression was attenuated after

introduction of an anti-C5a monoclonal antibody, suggesting
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an important relationship between C5a and TNF-a in worsening

inflammatory responses in HS (132) and supporting therapeutic

targeting of C5Aa (127).

Pathogens have developed complement evasion strategies to

escape host innate immunity. Methods of complement evasion are

highly conserved across the classes of pathogens including

bacteria, virus, and fungi. Common strategies are inactivation

via protease secretion, complement disguise using regulatory

molecules, and expression of direct inhibitors (140).

Streptococcus pyogenes and S. aureus have adapted to develop

methods for complement evasion. S. pyogenes utilizes the M

protein, a cell membrane-bound polymorphic protein, to defend

against complement-mediated phagocytosis by binding regulatory

proteins such as FH and C4BP to the bacteria surface.

Additionally, MAC-mediated bacterial lysis is inhibited by S.

pyogenes due to the thick outer peptidoglycan layer (141).

Furthermore, the MAC complex is rendered useless directly by

streptococcal inhibitor of complement (SIC) expression (142) and

indirectly by expression of vitronectin-binding proteins (143).

Similarly, S aureus evades complement through use of regulatory

proteins such as FH and inactivation via a staphylococcal

complement inhibitor (SCIN). S aureus secretes extracellular

protein B (Ecb) and staphylococcal binder of IgG (Sbi) to

enhance deposition of FH onto staphylococcal membrane (144,

145). SCIN targets C3BbBb to inhibit formation of C3a, C3b, and

C5a and thus preventing bacterial opsonization and decreasing

phagocytic cell chemotaxis. S. aureus has also developed

mechanisms capable of evading killing by additional host MAC-

domain protein, Perforin-2, responsible for elimination of

intracellular S. aureus (146–149). Perforin-2 is found suppressed

in chronic diabetic wounds associated by microbial dysbiosis and

persistent inflammation allowing for intracellular accumulation of

S. aureus in epidermal keratinocytes (146). Collectively, these

findings warrant further investigation into ability of HS pathogens

to escape host innate immunity.
Genetic component of HS

There are multiple genetic factors that correlate with a

patient’s susceptibility to develop HS. Approximately 30% of

HS patients have a positive family history (2, 5, 150, 151). A

recent Dutch nationwide twin cohort study reported a 77%

calculated narrow sense heritability in HS which suggests a

strong genetic component in pathogenesis of the disease (152).

Mutations in genes encoding g-secretase, a protease that

targets several type-1 transmembrane proteins such as amyloid

precursor proteins and the Notch protein family, are considered

the most common in HS (153) although HS can be also classified

as polygenic condition (151). About 36 mutations in genes

encoding g-secretase, including NCSTN, PSEN1, and PSENEN,

were identified in specific patient populations with severe HS (2,

150, 154). These mutations impair g-secretase activity impairment
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which may lead to alterations in keratinocytes proliferation and

differentiation via impaired Notch signaling. Deregulated Notch

signaling in HS may contribute to many of the major pathogenic

events in HS. Notch signaling also plays a role in suppressing

proinflammatory cytokine release via negative feedback inhibition

of TLR4-triggered macrophages usually induced by bacterial

lipopolysaccharides (155). Increased proinflammatory cytokine

release contributes to activation of Th17-driven inflammation, a

major immunologic characteristic of HS (156). Natural killer cells

(NKs) whose development is mediated by Notch signaling are

diminished in HS (157, 158). Besides Notch signaling, g-secretase
mutations may also induce dysregulation of the complement

system. g-secretase can cleave CD46, a regulatory cofactor of

protease Factor I responsible for cleaving C4b and C3b

deposited on cells into more benign products to protect host

cells (159, 160). Binding of CD46 to C3b dimers induces

production of regulatory T cell phenotypes such as T-regulatory

cell 1 which then secretes large quantities of IL-10 (161, 162).

CD46 expression and function is well documented to be impaired

in cutaneous autoimmune disorders such as systemic lupus

erythematous and bullous pemphigoid (163). Inhibited g-
secretase may allow for disruption of the protective regulatory

function of CD46 and therefore inflammation via augmented

complement and T-cell activity (127).

Several other genetic associations have been observed in HS,

including NOD2 mutations (164). In addition, RNA expression

of NOD2 has been demonstrated to be increased in lesional HS
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skin as compared to perilesional skin. This response was

positively correlated with other AMPs such as hBD2, S100A7,

and RNAse 7 (117). However, genomic analysis targeting NOD2

polymorphisms has not yet isolated any of significant correlation

to HS (165). Additionally, the presence of over six copies of the

DEFB gene cluster, was shown to hold a significantly increased

risk of developing more severe HS disease (61). This is

hypothesized to be a consequence of the loss of hBD-2’s

protective action against bacterial superinfection of the skin,

specifically against S. aureus. This same association is not unique

for HS as it is also present in psoriasis, a disease that has well-

established ties with dysregulation of AMPs including hBD-2

and hBD-3 (61). However, as the most HS patients with a

positive family history (>90% in white individuals) do not

have g-secretase or other mutations (2, 5), genetic features

contributing to HS development still need to be investigated.
Treatment strategies

Considering the role of bacteria and the immune system in

the pathogenesis of HS, the use of antibiotics and biologics with

anti-inflammatory effect is a direct extension. Antibiotics, both

topical and systemic, are often used as a first line therapy in

treating HS. Systemic tetracycline therapy is amongst the most

prescribed therapy along with clindamycin, rifampin, and

dapsone (166). These classes of antibiotics have well
FIGURE 1

Proposed pathways of AMPs and complement deregulation in HS. Follicular inflammation, microbial dysbiosis and biofilm stimulate
keratinocytes to overexpress LL-37 (cathelicidin), S100A7, S100A8/A9, hBD-2, and hBD-3. Immunomodulatory function of these AMPs includes
chemotaxis of macrophages, monocytes, neutrophils, T cells, and dendritic cells (DC) and production of cytokines. Complement pathways are
hyperactivated in HS causing elevated C5a and C9 levels. Constitutive production of hBD-1 from keratinocytes and DCD production from
eccrine sweat glands is inhibited in HS skin which may result in microbial dysbiosis. Overall, these events lead to a persistent vicious cycle of
chronic inflammation, which is ineffective in eliminating pathogens and biofilms.
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documented anti-inflammatory action that, along with their

antibacterial activity, is crucial in treating HS.

Biologic therapies that target specific immune pathways are

an emerging class of treatment in HS. Biologics have shown

efficacy in several inflammatory conditions such as

inflammatory bowel disease (IBD) and psoriasis. Adalimumab,

an anti-TNFa monoclonal antibody, that demonstrated efficacy

in large placebo controlled trials and is currently the only FDA-

approved biologic for HS treatment (167). In addition, several

biologics are currently being investigated for efficacy in HS.

Anakinra, an IL-1 receptor antagonist, has been demonstrated to

decrease disease severity and improve quality of life in two

clinical studies (168, 169). Bermekimab is a human IgG1k

monoclonal antibody that also targets Il-1 that has been

shown to be effective in treating HS patients that have failed

anti-TNFa therapy likely due decreased neovascularization and

modulation of IL-8 and hBD-2 production (170, 171).

Secukinumab, a monoclonal antibody against IL-17, reported

achievement of HS clinical response in 67% of patients in a pilot

trial (172). A retrospective series and anecdotal data

demonstrated that guselkumab, an anti-IL-23 monoclonal

antibody, may be efficacious in treating HS (173).

Biologics can be used in conjunction with surgical therapy in

patients with severe disease to maximize clinical response (174).

Surgical procedures can be focused, such as deroofing

procedures or skin-sparing excision with electrosurgical

peeling, or more extensive such as wide excisions, and wound

management in HS remains a large burden for patients (175).

Currently, there is a paucity of HS-specific wound dressing

options available. Given the interplay between the immune

system and the dysbiosis that is present in HS, combination of

therapies that target both of these disease elements

simultaneously is likely to have a synergetic effect. However,

currently such combination therapy protocols do not exist and

quality data to prove the efficacy of this strategy is missing.
Discussion

HS lesional skin is characterized by activation of both innate

and adaptive immune response in conjunction with microbial

dysbiosis reflected in upregulation of multiple AMPs,

complement system proteins, and numerous cytokines

(Figure 1). However, it remains to be fully understood whether

the dysregulation of immune responses is causative of or

consequence of microbiota dysbiosis. In HS, progressive

microbial dysbiosis likely drives AMP and complement

dysregulation associated with activation of the innate immune

response. These features all contribute to excessive

inflammation, that is ineffective in eliminating pathogens

(Figure 1). The net result is a vicious cycle that results in local

tissue destruction, disease progression and potentially, systemic

elaboration of cytokines that spreads the disease in genetically,
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microbiologically, and immunologically susceptible individuals.

Future studies should tease out the primary event and the setting

required for this vicious progressive cycle to develop, clarify the

directionality of this relationship, and identify molecular

pathways through which this is mediated. Advancing our

understanding of the interplay between microbial dysbiosis

and immune dysregulation may provide direction into

developing new therapeutics for treating HS.

Initial findings based on aberrant complement activation at

the systematic level (132), have resulted in two ongoing clinical

trials targeting the C5a–C5aR1 axis (135, 176, 177). However,

the variability of results in complement levels amongst studies

also suggests benefit in correlating results with patients’

genotype and/or microbiome shifts in response to therapy. In

addition, the only US-FDA approved biologic therapeutic

adalimumab, an anti-TNF-a monoclonal antibody, has shown

limited efficacy (178). Lower efficacy of biologic drugs may in

part be a consequence of persistent microbial dysbiosis,

particularly bacterial biofilms of anerobic Gram-negative

bacteria in HS tunnels at advanced stages of the disease. Like

HS, IBD has demonstrated altered expression of AMPs, aberrant

inflammatory response, and microbial dysbiosis that has been

hypothesized to contribute to resistance to biologic therapy. For

example, dysbiosis of bacteria that produce short chain fatty

acids (SCFAs) in the gut microbiota of IBD patients has been

associated with resistance to anti-TNFa therapy (179). While

SCFAs inhibit biofilm formation (180, 181), diminished

concentrations of SCFA-producing bacteria in biologic-

resistant IBD patients suggests that resistance to therapy has

microbial mediated mechanism. The findings in patients with

IBD and similar immunologic features of IBD and HS (182)

support the importance of prospective studies on microbiome in

HS and its changes in patients undergoing biologic therapy.

Future research should also aim to investigate combination of

therapies targeting the deregulated immune response and

microbial dysbiosis should be evaluated.

Based on deregulation of innate immune responses and

initial changes in HS microbiome, antibacterial therapy may

have important role in limiting progression of early HS.

However, considering the rise in antibiotic resistance,

antimicrobials may primarily manage disease by stalling

inflammation, rather than eliminating pathogens. Additionally,

the data presented in this review can reasonably predict the

efficacy of a carbapenem antibiotic ertapenem in HS as well as its

inability to maintain long term results (183).

Therefore, it is not surprising that the standard of care for

moderate to severe disease (i.e. the presence of tunnels) is

moving towards a combination of medical and surgical

therapy (174). Deroofing is a common surgical procedure in

which tunnels are selectively removed. In two large uncontrolled

series, the ability of deroofing to prevent recurrence seems to

decrease with disease progression. Milder HS was associated

with 17% recurrence after deroofing (184), and more severe
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disease with 41% recurrence (185). The efficacy of deroofing may

be related to the elimination of biofilms and reversal of the

vicious cycle discussed above. Emerging clinical data suggests

that topical anti-biofilm therapy that is administered without

removing the diseased skin can eliminate isolated tunnels (186),

and new biofilm-eliminating approaches should be considered

(187, 188). Future metagenomics studies should examine the

antimicrobial resistance in HS lesions and tunnels at advanced

stages of the disease and characterize the interaction between the

microbiome, biofilms, and innate immunity.

This review has summarized the potential contributions of

innate immune system activation and microbial dysbiosis to HS

pathogenesis. While studies utilizing single cell omics

approaches have already revealed insight into HS pathology

and deregulation of host responses (189–191) advancements in

spatial transcriptomics and proteomics should be utilized to

further understanding of deregulated innate immunity at the

host-pathogen interphase. Future longitudinal studies

simultaneously evaluating the focal genetic makeup, innate

immunity, microbial dysbiosis and bacterial biofilms will

provide detailed insights in HS pathogenesis and progression.
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72. Eşer E, Engin B, Yüksel P, Kocazeybek BS, Kutlubay Z, Serdaroğlu S, et al.
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