

Age-Related Changes in the Plasticity of Neural Networks Assessed by Transcranial Magnetic Stimulation With Electromyography: A Systematic Review and Meta-Analysis

OPEN ACCESS

Edited by:

Zhang Pengyue, Yunnan University of Chinese Medicine, China

Reviewed by:

Sulukkana Noiprasert, Mae Fah Luang University, Thailand Hong Xu, University of Pennsylvania, United States

*Correspondence:

Nenggui Xu Ngxu8018@gzucm.edu.cn Lin Wang Wanglin16@gzucm.edu.cn Liming Lu Lulimingleon@126.com

[†]These authors have contributed equally to this work as co-first authors

Specialty section:

This article was submitted to Cellular Neurophysiology, a section of the journal Frontiers in Cellular Neuroscience

Received: 19 July 2019 Accepted: 01 October 2019 Published: 24 October 2019

Citation:

Tang X, Huang P, Li Y, Lan J, Yang Z, Xu M, Yi W, Lu L, Wang L and Xu N (2019) Age-Related Changes in the Plasticity of Neural Networks Assessed by Transcranial Magnetic Stimulation With Electromyography: A Systematic Review and Meta-Analysis. Front. Cell. Neurosci. 13:469. doi: 10.3389/fncel.2019.00469 Xiaorong Tang^{1†}, Peidong Huang^{2†}, Yitong Li¹, Juanchao Lan¹, Zhonghua Yang¹, Mindong Xu¹, Wei Yi¹, Liming Lu^{3*}, Lin Wang^{3*} and Nenggui Xu^{1*}

¹ Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China, ² Acupuncture and Massage Rehabilitation Institute, Yunnan University of Chinese Medicine, Kunning, China, ³ Clinical Research Center, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China

Objective: The excitability of cerebral cortical cells, neural pathway, and neural networks, as well as their plasticity, are key to our exploration of age-related changes in brain structure and function. The combination of transcranial magnetic stimulation (TMS) with electromyography (EMG) can be applied to the primary motor cortex; it activates the underlying neural group and passes through the corticospinal pathway, which can be quantified using EMG. This meta-analysis aimed to analyze changes in cortical excitability and plasticity in healthy elderly individuals vs. young individuals through TMS-EMG.

Methods: The Cochrane Library, Medline, and EMBASE databases were searched to identify eligible trials published from database inception to June 3, 2019. The Cochrane Risk of Bias Tool and improved Jadad scale were used to assess the methodological quality. A meta-analysis of the comparative effects was conducted using the Review Manager 5.3 software and Stata 14.0 software.

Results: The pooled results revealed that the resting motor threshold values in the elderly group were markedly higher than those reported in the young group (mean difference [MD]: -2.35; 95% confidence interval [CI]: -3.69 to -1.02]; p < (0.00001). The motor evoked potential amplitude significantly reduced in the elderly group vs. the young group (MD: 0.18; 95% CI: 0.09–0.27; p < 0.0001). Moreover, there was significantly longer motor evoked potential latency in the elderly group (MD: -1.07; 95% CI: -1.77 to -0.37]; p = (0.003). There was no significant difference observed in the active motor threshold between the elderly and young groups (MD: -1.52; 95% CI: -3.47 to -0.42]; p = (0.13). Meanwhile, only two studies reported the absence of adverse events.

1

Conclusion: We found that the excitability of the cerebral cortex declined in elderly individuals vs. young individuals. The findings of the present analysis should be considered with caution owing to the methodological limitations in the included trials. Additional high-quality studies are warranted to validate our findings.

Keywords: plasticity of neural networks, age-related, transcranial magnetic stimulation, resting motor threshold, meta-analysis

INTRODUCTION

As the birth rate decreases and life expectancy increases, the aging problem of the global population becomes more prominent (Tatti et al., 2016). One of the most striking features of human motor behavior is the ability to respond rapidly and appropriately to environmental changes. However, this ability gradually declines with age. In particular, the decline in cognitive and motor abilities is associated with advancing age (Hunter et al., 2001). This agerelated decline is a precursor of various diseases. An enhanced understanding of the impact of aging on cortical functioning may provide us more insight into understanding of age-related diseases (Seidler et al., 2010).

The human motor cortex is capable of undergoing persistent morphological or functional changes depending on stimuli from the environment; this is termed neuroplasticity (Boroojerdi et al., 2001). Cortical plasticity decreases with extensive changes in neurochemistry and neurophysiology during physiological aging (Brunso-Bechtold et al., 2000; Rossini et al., 2007). Although the regulatory mechanisms of related brain neurons are unclear, an increasing body of evidence suggests that aging is associated with alterations in the neural projections. Normal aging is associated with impairments in dendritic morphology, loss of synaptic contact cellular connectivity, and gene expression, which subsequently cause a relative decrease in the excitability of the cortex (Godde et al., 2002; Sawaki et al., 2003; Burke and Barnes, 2006; Hortobágyi et al., 2006; Oliviero et al., 2006). This eventually leads to a decrease in sensation, motor performance, and cognitive function (Mora et al., 2007; Ward et al., 2008).

Several studies showed that the decline in cognitive, memory, and behavioral abilities in healthy elderly individuals are closely related to vascular damage and amyloid deposition (DeCarli et al., 2012). Further research indicated that ischemia and amyloid deposition are connected through the utilitarian bunch of cerebrovascular cells, supporting glial tissue and neurons. Moreover, as a potential mediator of reactive aging, amyloid deposition may lead to changes in neural networks and circuits (Iadecola, 2010). In this way, the interaction of blood vessels and neurodegenerative injuries may influence the cortical and subcortical neural systems. Importantly, this damage may alter the local field potentials. In other words, we can assess agerelated cognitive decline by measuring changes in the local field potentials. Recently, neuroscience research has explored the opportunity to apply Non-Invasive Brain Stimulation technology, which measures changes in the local field potentials of the cerebral cortex, to healthy elderly populations. This approach aims to explore aging-related mechanisms and the changes of cerebral cortex under physiological conditions.

The combination of transcranial magnetic stimulation with electromyography may provide information regarding the local and global potentials of the cerebral cortex, and may be used to measure changes in cortical properties following age-related changes in the plasticity of neural networks. A few studies have investigated age-related changes in the plasticity of neural networks among young and elderly individuals (Godde et al., 2002; Sawaki et al., 2003; Oliviero et al., 2006). Owing to the small sample sizes, device characteristics, parameter settings, and experimental procedures of these studies, the current excitability of the cerebral cortex at different ages remains inconclusive. We conducted a systematic review and meta-analysis of the available data to further examine this trend. Therefore, this metaanalysis aimed to analyze changes in cortical excitability and plasticity in healthy elderly individuals vs. young individuals through TMS-EMG.

METHODS

This study was performed according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Metaanalysis checklist. The checklist and flowchart are shown in **Figure 1**, Appendix 1 in **Supplementary Material**.

Search Strategy

We searched the Cochrane Library, Medline, and EMBASE databases for eligible trials published from database inception to June 3, 2019 without language restriction. The search terms are shown in Appendix 2 (**Supplementary Material**). In addition, we searched the websites of the international clinical trial registry provided by the U.S. National Institutes of Health to avoid missing unpublished studies. Furthermore, the references cited in the searched articles were also carefully reviewed. The search terms were listed in the Appendix 2 (**Supplementary Material**).

Inclusion Criteria

(1) Patients: healthy individuals aged >18 years. (2) Interventions: all studies that used the TMS to detect

Abbreviations: AMT, active motor threshold; EMG, electromyography; APB, the abductor pollicis brevis muscle; ECR, the extensor carpi radialis muscle; FDI, the first dorsal interosseous muscle; FCR, the flexor carpi radialis muscle; FPB, the flexor pollicis brevis muscle; LTP, long-term potentiation; LTD, long-term depression; NIBS, Non-Invasive Brain Stimulation; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-analysis checklist; RMT, resting motor threshold; TMS, transcranial magnetic stimulation; TP, thenar and plantar muscle; TES, transcranial electrical stimulation; MEP, motor evoked potential.

brain cortical excitability and plasticity were included. (3) Comparison: healthy elderly (\geq 50 years) vs. healthy young (<50 years) individuals. (4) Outcomes: primary outcome measures included resting motor threshold (RMT); secondary outcome measures included any of the following: (a) motor evoked potentials (MEPs) amplitude or latency, (b) active motor threshold (AMT), and (c) adverse events. (5) Trial design: cohort or case-control studies.

Exclusion Criteria

(1) Patients with a history of neurological or psychiatric disease, or currently receiving treatment with psychoactive drugs (i.e., sedatives, antipsychotics, antidepressants, etc.). (2) Studies with insufficient data or irrelevant outcomes.

Study Selection and Data Extraction

All potentially eligible studies were independently selected by two reviewers (JL and YL) based on the titles and abstracts. The full text of the selected articles was subsequently obtained and independently reviewed by the reviewers based on the inclusion and exclusion criteria. The following information was independently extracted from the included trials by these two reviewers: title and authors, year of publication, sample size, age and sex of participants, target muscle and hemisphere for TMS, and outcomes (i.e., outcome measures and adverse events). Any disagreements were resolved through discussion with the third reviewer (WY) or further evaluation. The original investigators of studies with missing or incomplete data were contacted to request the data.

Assessment of Risk of Bias (ROB)

The ROB tool of Cochrane (Savović et al., 2014) was used to assess the methodological quality. In addition, the quality of the study was evaluated using the improved Jadad scale. The full score is 7 points, and the threshold for high-quality research is \geq 4 points. Two reviewers (JL and YL) independently judged the quality; any disagreements were resolved through discussion with the third reviewer (WY) acting as an arbiter. Moreover, we completed the Standards for Reporting Interventions in Controlled Trials checklist to assess the risk of bias.

Statistical Analysis

The RevMan software (version 5.3; Cochrane Collaboration, Oxford, UK) and Stata software (version 12.0; Stata Corp LP, College Station, TX, USA) were used for statistical analysis. Dichotomous outcomes were expressed with the odds ratio and 95% confidence intervals (CI), while continuous outcomes were expressed with the mean difference (MD, indicators changed from baseline) with 95% CI. Cochran's Q test and I^2 statistic were used to assess the homogeneity; the I^2 test was performed for further analysis. A random-effects model was used to calculate the pooled effect size for the presence of significant heterogeneity $(p \le 0.1, I^2 \ge 50\%)$, and a fixed-effects model was applied for the absence of significant heterogeneity (Higgins et al., 2003). We explored the possible sources of heterogeneity through a subgroup analysis, and repeated the sensitivity analysis to study its effect on the overall effect size. A $p \le 0.05$ denoted statistically significant difference.

RESULTS

Study Selection

We initially retrieved 3,445 publications, and 566 duplicate citations were removed. After screening the abstracts and titles, a total of 2,729 publications were excluded. A total of 121 publications from the 150 publications further identified as potentially eligible trials according to the review of the full text were excluded for the following reasons: 14 were conference abstracts, 76 did not report a relevant outcome, and 15 had ineligible study design and comparison. We did not identify any other studies for evaluation after reviewing the bibliographies of the full-text articles collected during the initial search. Finally, 29 studies (Rossini et al., 1992; Kossev et al., 2002; Sale and Semmler, 2005; Hortobágyi et al., 2006; Fujiyama et al., 2009, 2011, 2012, 2014; Pellicciari et al., 2009; Rogasch et al., 2009; Smith et al., 2009, 2011; Cirillo et al., 2010, 2011; Fathi et al., 2010; Todd et al., 2010; Degardin et al., 2011; Levin et al., 2011; Bernard and Seidler, 2012; Young-Bernier et al., 2012, 2014; Cuypers et al., 2013; Bashir et al., 2014; Opie and Semmler, 2014; Dickins et al., 2015, 2017; Opie et al., 2017, 2018; Emonson et al., 2019) fulfilled our inclusion criteria and were selected. Figure 1 depicts the search process and trial selection.

Description of Included Studies

The studies included in the analysis involved a total of 914 participants. The age ranged 18–84 years. The brain cortical excitability and plasticity were examined by TMS-EMG in these

studies. The muscles which evoked motor potentials in these studies included the first dorsal interosseous muscle, the abductor pollicis brevis muscle, the extensor carpi radialis muscle, the flexor carpi radialis muscle, the flexor pollicis brevis muscle, and the thenar and plantar muscles. The outcomes used to assess cortical excitability and plasticity included RMT, AMT, MEP amplitude, and MEP latency. The detailed characteristics are shown in **Table 1**.

Methodological Quality of Included Studies

Randomization was not used in the 29 selected studies, and none of the studies described concealment of allocation. Nine studies (Fathi et al., 2010; Todd et al., 2010; Fujiyama et al., 2011, 2014; Young-Bernier et al., 2012, 2014; Opie and Semmler, 2014; Dickins et al., 2015, 2017) used appropriate blinding methods for the participants, and nine studies (Fathi et al., 2010; Cirillo et al., 2011; Fujiyama et al., 2012, 2014; Opie and Semmler, 2014; Dickins et al., 2017; Opie et al., 2017, 2018; Emonson et al., 2019) blinded the outcome assessments. All studies reported complete outcome data. Overall, the methodological quality all the included studies was low. The details are listed in the Appendix 3 (**Supplementary Material**). The summary of bias in each domain across the included studies is shown in **Figures 2**, **3**.

Primary Outcomes

A total of 28 studies (Rossini et al., 1992; Kossev et al., 2002; Sale and Semmler, 2005; Hortobágyi et al., 2006; Pellicciari et al., 2009; Rogasch et al., 2009; Smith et al., 2009, 2011; Cirillo et al., 2010, 2011; Fathi et al., 2010; Todd et al., 2010; Degardin et al., 2011; Fujiyama et al., 2011, 2012, 2014; Levin et al., 2011; Bernard and Seidler, 2012; Young-Bernier et al., 2012, 2014; Cuypers et al., 2013; Bashir et al., 2014; Opie and Semmler, 2014; Dickins et al., 2015, 2017; Opie et al., 2017, 2018; Emonson et al., 2019) assessed the changes in RMT between the elderly and young groups (**Figure 4**). Owing to the significant heterogeneity among the studies (I^2 : 85%; p < 0.00001), we selected the random-effects model. The pooled results revealed that the RMT values in the elderly group were markedly higher than those observed in the young group (MD: -2.65; 95% CI: -3.97 to -1.33; p = 0.008).

Subgroup Analysis of Primary Outcomes

Owing to the high heterogeneity among the pooled results of RMT evaluation ($I^2 = 85\%$; p < 0.00001), we divided the studies according to the year of publication and region, and the varied stimulated muscles were examined through a subgroup analysis (**Table 2**, **Figure 4**, Appendices 4, 5 in **Supplementary Material**). The subgroup analysis showed that the muscle, region, or year of publication may be the sources of high heterogeneity.

Subgroup Analysis Based on Different Stimulated Muscles

The pooled results showed that the excitability of the cerebral cortex in the elderly group was significantly reduced compared with that reported in the young group. However, subgroup differences were detected, and when the stimulated muscle was the abductor pollicis brevis muscle (MD: -1.10; 95% CI:

TABLE 1 | Characteristics of trials included in this review.

References	Region	Participants (Y/O)	Age Y (years)	Age O (years)	Gender T (F/M)	Gender C (F/M)	Muscle	Hemisphere	Outcome indicator	Risk of bias
Rossini et al., 1992	Italy	25/40	25.3 ± 5.3	66.0 ± 10.4	15/10	26/14	TP	All	RMT\MEP Amplitude\MEP Latency	UUUULLU
Kossev et al., 2002	Germany	10/10	28.5 ± 5.2	56.1 ± 4.9	6/4	7/3	ECR	Left	RMT\MEP Amplitude\MEP Latency	UUUULHU
Sale and Semmler, 2005	Australia	10/10	26.6 ± 1.3	67.6 ± 2.3	5/5	5/5	FDI	Left	RMT\MEP Amplitude	UUUULLU
Hortobágyi et al., 2006	USA	6/6	27.2 ± 3.7	72.7 ± 6.3	4/2	5/1	FCR	Left	RMT\MEP Amplitude	UUUULLU
Rogasch et al., 2009	Australia	14/14	20.7 ± 1.9	68.3 ± 5.6	6/8	6/8	APB	Left	RMT\AMT\MEP Amplitude	UUUULLU
Pellicciari et al., 2009	Italy	16/16	26.2 ± 0.8	62.1 ± 1.5	8/8	8/8	APB	Left	RMT\MEP Latency	UUUULLU
Fujiyama et al., 2009	Australia	15/15	18–33	61–75	9/6	9/6	ECR	Left	MEP Amplitude	UUUULLU
Smith et al., 2009	Australia	13/17	20.0 ± 2.0	63.1 ± 4.2	0/13	0/17	FDI	Left	RMT\MEP Amplitude\AMT	UUUULLU
Fathi et al., 2010	Japan	16/16	21–39	60–79	2/14	5/11	APB	Left	RMT\MEP	UULLLLU
Cirillo et al., 2010	Australia	12/14	22 ± 2	67 ± 4	7/5	7/7	APB	Left	RMT\AMT\MEP Amplitude	UUUULLU
Todd et al., 2010	Australia	15/15	25 ± 4	67 ± 5	6/9	6/9	FDI	Left	RMT\MEP\AMT	UULULLU
Cirillo et al., 2011	Australia	16/16	23 ± 3	67 ± 5	9/7	9/7	FDI	Left	RMT\AMT\MEP Amplitude	UUULLLU
Degardin et al., 2011	France	14/14	26.4 ± 2.7	62.4 ± 7.1	6/8	8/6	APB	N/A	RMT\AMT	UUUULLU
Fujiyama et al., 2011	Australia	13/13	18–34	62-74	9/4	9/4	FPB	Left	RMT	UULULLU
Levin et al., 2011	Belgium	6/5	23.7 ± 2.3	63.8 ± 1.8	N/A	N/A	APB	Left	RMT\MEP Amplitude	UUUULLU
Smith et al., 2011	Australia	15/15	20.1 ± 2.1	65.5 ± 3.9	0/15	0/15	FDI	Left	RMT\AMT	UUUULLU
Bernard and Seidler, 2012	USA	16/17	21 ± 1.83	69.53 ± 4.07	12/4	10/7	FDI	Left	RMT\MEP Amplitude\MEP Latency	UUUULLU
Fujiyama et al., 2012	Australia	15/15	18–29	58–84	8/7	9/6	ECR	Left	RMT\MEP Amplitude	UUULLLU
Young-Bernier et al., 2012	Canada	25/31	22.5 ± 3.5	70.3 ± 3.8	14/11	18/13	FDI	Left	RMT\MEP Amplitude\MEP Latency	UULULLU
Cuypers et al., 2013	Belgium	14/10	22.8 ± 1.7	69.3 ± 2.8	8/6	8/2	FDI	Left	RMT\MEP Amplitude	UUUULLU
Bashir et al., 2014	USA	10/8	23.40 ± 3.50	57.38 ± 9.61	4/6	5/3	FDI	Left	RMT\MEP Amplitude	UUUULLU
Fujiyama et al., 2014	Australia	20/20	22.7 ± 3.3	68.3 ± 7.9	13/7	10/10	FCR	Left	RMT	UULLLLU
Opie and Semmler, 2014	Australia	22/18	22.3 ± 3.1	70.8 ± 5.0	N/A	N/A	FDI	N/A	RMT\AMT\MEP Amplitude	UULLLLU
Young-Bernier et al., 2014	Canada	20/18	22.3 ± 3.2	70.1 ± 5.6	13/7	9/9	FDI	N/A	RMT\MEP Amplitude\MEP Latency	UULULLU
Dickins et al., 2015	Australia	20/20	22.95 ± 2.52	70.15 ± 3.07	10/10	10/10	APB	N/A	RMT\MEP	UULULLU
Dickins et al., 2017	Australia	20/20	24.4 ± 3.86	69.55 ± 3.99	10/10	10/10	APB	N/A	RMT\MEP	UULLLLU
Opie et al., 2017	Australia	15/15	22.9 ± 0.5	70.8 ± 1.6	8/7	7/8	FDI	Left	RMT\MEP	UUULLLU
Opie et al., 2018	Australia	15/18	22.5 ± 2.9	70.1 ± 6.0	8/7	12/6	FDI	Left	RMT\MEP\AMT	UUULLLU
Emonson et al., 2019	Australia	20/20	24.5 ± 4.48	65.47 ± 5.62	N/A	N/A	N/A	N/A	RMT	UUULLLU

Y, young group; O, old group; F, female; M, male; N/A, not applicable; TP, thenar and plantar muscles; ECR, the extensor carpi radialis muscle; APB, the abductor pollicis brevis muscle; FDI, the first dorsal interosseous muscle; FCR, the flexor carpi radialis muscles; FPB, the flexor pollicis brevis muscle.

-4.54-2.33; p = 0.53), extensor carpi radialis (MD: -0.49; 95% CI: -2.79-1.80; p = 0.67), and flexor carpi radialis (MD: -0.72; 95% CI: -2.24-0.80; p = 0.35), there was no significant difference between two groups (**Figure 4**). This indicates that the measurement effects of different muscles vary. Therefore, different muscles may be representative of high heterogeneity.

Subgroup Analysis Based on Different Regions

We divided the regions of study into Oceania, Europe, Asia, and America. The results showed that the excitability of the cerebral cortex in the elderly group was significantly reduced compared with that recorded in the young group. However, one study in Asia showed a decrease in RMT in the control group (Appendix 4 in **Supplementary Material**). It is possible that the statistical power was inadequate due to the small number of studies performed in Asia.

Subgroup Analysis Based on the Year of Publication

We divided the studies according to the year of publication (i.e., in and prior to 2011, and after 2011). The results showed that the excitability of the cerebral cortex in the elderly group was markedly lower than that reported in the young group. However, we did not find significant differences in the two groups among the studies performed in and prior to 2011 (MD: -1.65; 95% CI: -3.97-0.68; p = 0.17) (Appendix 5 in **Supplementary Material**). This may be related to device characteristics (e.g., type of coil and accuracy of the EMG) or the level of operational proficiency.

Sensitivity Analysis

We excluded one study at a time to determine the effect of each study on the estimated pooled effect size. The results did not show instability (**Figure 5**).

Secondary Outcomes MEP Amplitude

A total of 20 studies (Rossini et al., 1992; Sale and Semmler, 2005; Fujiyama et al., 2009, 2012; Rogasch et al., 2009; Smith et al., 2009; Cirillo et al., 2010, 2011; Fathi et al., 2010; Todd et al., 2010; Levin et al., 2011; Bernard and Seidler, 2012; Young-Bernier et al., 2012, 2014; Cuypers et al., 2013; Bashir et al., 2014; Dickins et al., 2015, 2017; Opie et al., 2017, 2018) providing numerical data for the MEP amplitude were included. Owing to the heterogeneity, a random-effects model was applied (I^2 : 89%; p < 0.00001). The pooled data analysis showed that the MEP amplitude was markedly reduced in the elderly group vs. the young group (MD: 0.18; 95% CI: 0.09–0.27; p < 0.00001) (**Figure 6A**).

MEP Latency

Seven studies (Rossini et al., 1992; Kossev et al., 2002; Pellicciari et al., 2009; Todd et al., 2010; Bernard and Seidler, 2012; Young-Bernier et al., 2012, 2014) providing numerical data for the MEP latency were included. Owing to the heterogeneity, a random-effects model was used (I^2 : 79%; p < 0.00001). The pooled results showed that there was a significantly longer MEP latency in the elderly group (MD: -1.07; 95% CI:-1.77 to -0.37; p = 0.003) (**Figure 6B**).

AMT

Nine studies (Rogasch et al., 2009; Smith et al., 2009, 2011; Cirillo et al., 2010, 2011; Todd et al., 2010; Degardin et al., 2011; Opie and Semmler, 2014; Opie et al., 2018) providing numerical data for the AMT were included. Owing to the heterogeneity, a random-effects model was used (I^2 : 82%; p < 0.00001). There was no significant difference observed in the AMT between the two groups (MD: -1.52; 95% CI: -3.47 to -0.42; p = 0.13) (**Figure 6C**).

Adverse Outcomes

Only two (Hortobágyi et al., 2006; Opie et al., 2017) studies did not report adverse events related to TMS. The remaining studies did not report adverse outcomes.

Publication Bias

According to Egger's test, there was no evidence of publication bias among the primary outcome (RMT outcome, Egger's test p = 0.257).

DISCUSSION

Summary of the Main Findings

We conducted a meta-analysis including 29 studies with 914 patients. We used TMS-EMG, including RMT, AMT, MEP amplitude, and MEP latency to evaluate the age-related changes in the plasticity of neural networks among young and elderly individuals. The results indicated that the excitability of the cerebral cortex declined in elderly individuals vs. young individuals. Three important points were noted. Firstly, the RMT and MEP latency in the elderly group was higher than that in the young group. In contrast, the MEP amplitude in the elderly group was lower than that in the young group. Secondly, there was no significant difference in the AMT between the two groups. Third, there were no common adverse reactions reported in the included studies, suggesting that TMS-EMG technology is relatively safe.

Age-Related Changes in the Plasticity of Neural Networks

Driven by a decline in birth rates and an increase in life expectancy, the global demographic structure is rapidly aging. Demographic projections show that the proportion of individuals aged ≥ 65 years is expected to increase by >150% in 35 years (Tatti et al., 2016). According to this projection, the number of individuals aged >65 years will exceed 1.6 billion by 2050. Age-related diseases profoundly impact the daily activities and quality of life of the elderly (Logsdon et al., 2002; Craik and Bialystok, 2006), posing a great and urgent challenge to society (Ballard, 2010). Therefore, it is essential to fully understand the mechanisms involved in aging.

Aging is associated with functional decline in numerous cognitive areas, such as attention, memory, language, and executive functions (Morrison and Baxter, 2012). The structure and function of many brain regions undergo extensive changes with aging, including reduction in cerebral cortex thickness (Tatti et al., 2016), decreases in neurotransmitter binding potential, and synaptic receptor density and efficacy (Celsis, 2000), change in cortical and cerebellar metabolism (Dukart et al., 2013), gray matter atrophy, white matter loss ventricular enlargement, etc. (Scahill et al., 2003; Bolandzadeh et al., 2012; Bennett and Madden, 2014).

Research on the mechanism of aging and the related physiological and pathological changes is insufficient. However, in recent years, numerous studies investigating age-related changes in the plasticity of neural networks have achieved breakthroughs in this field. A number of studies have shown that elderly individuals with normal cognition mainly showed functional changes in the neural network during memory coding, especially in the posterior medial cortex (Wellman and Sengelaub, 1995; Ahmed et al., 2018). Converging evidence from positron emission tomography studies indicates that nearly one-third of clinically normal elderly individuals harbor fibrillar β -amyloid deposition (Dickerson et al., 2009; Sperling et al., 2009). Animal experiments confirmed that with increasing age, fibrous β -amyloid is gradually deposited, and functional changes in the default network were observed in the posterior medial

	Lybe	erimenta	al	C C	onuor			Weall Difference	Wear Difference
study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
.1.1 FDI									
shleigh E. Smith 2009	36.45	7.1	13	39.35	6.6	17	3.1%	-2.90 [-7.87, 2.07]	
shleigh E. Smith 2011	44.5	10	15	44.7	9.2	15	2.2%	-0.20 [-7.08, 6.68]	
Babrielle Todd 2010	43	8	15	45	10	15	2.4%	-2.00 [-8.48, 4.48]	
George M. Opie 2014	46.4	1.525	22	48.2	2.475	18	5.4%	-1.80 [-3.11, -0.49]	
George M. Opie 2017	43.3	1.4	15	48.8	2.24	15	5.4%	-5.50 [-6.84, -4.16]	
George M. Opie 2018	45.8	2.4	15	47.2	2.4	18	5.2%	-1.40 [-3.04, 0.24]	
essica A. Bernard 2012	57.6	4.91	16	62.75	11.83	17	2.6%	-5.15 [-11.27, 0.97]	
ohn Cirillo 2011	41.6	10	16	47.4	8.2	16	2.5%	-5.80 [-12.14, 0.54]	
Coen Cuypers 2013	39.6	4.5	14	51.8	4.8	10	3.9%	-12.20 [-16.00, -8.40]	
Aarielle Young-Bernier 2012	65.8	11.3	25	72.6	12.7	31	2.5%	-6.80 [-13.09, -0.51]	
Aarielle Young-Bernier 2014	42.6	9.3	20	46.2	11.2	18	2.4%	-3.60 [-10.19, 2.99]	
lartin V 2005	40	1	10	42	2	10	5.3%	-2.00 [-3.39, -0.61]	
Shahid Bashir 2014	40	5.95	10	46	6.2	8	2.8%	-6.00 [-11.66, -0.34]	
Subtotal (95% CI)			206			208	45.6%	-4.04 [-5.73, -2.36]	•
leterogeneity: Tau ² = 5.18; Chi est for overall effect: Z = 4.70	i² = 48.9 (P < 0.0	7, df = 1 0001)	2 (P <	0.0000	1); l² = 1	75%			
.1.2 APB									
drian Degardin 2011	41 1	6	14	44 1	63	14	3.4%	-3.00 [-7.56, 1.56]	
Daina S. F. Dickin 2017	40.7	1.62	20	43.2	1 72	20	5.5%	-2 50 [-3 54 -1 46]	-
aina S. F. Dickins 2015	38 5	6.33	20	40 95	6 65	20	3.7%	-2 45 [-6 47 1 57]	
)ina Eathi 2010	56	0.00	16	-0.55	0.00	16	5 2%	6 00 [4 23 7 77]	
ohn Cirillo 2010	45.1	86	10	11.0	67	14	2.6%	0.00 [4.20, 7.77]	
	4J.1	1.0	16	59.3	2.2	14	5.3%	5 80 [7 10 4 41]	
ligel C. Regesch 2009	32.5	7.0	14	30.5	2.2	14	2.5%	-3.60 [-7.19, -4.41]	
ran Lovin 2011	44	1.2	14	44	0.4	14	3.0 %		
Subtotal (95% CI)	44.0	5.0	118	40	9.4	110	30.8%	-1.20 [-10.30, 0.10]	
est for overall effect: Z = 0.63	(P = 0.5	3)	, (01), 1	0470			
nden B. Kessey 2002	E2 67	0.0	10	E1 72	6.6	10	2 20/	1 04 [4 02 0 04]	
Andon R. Kossev 2002	53.67	8.9	10	51.73	0.0	10	2.2%	1.94 [-4.93, 8.81]	
akuel Fujiyama 2012	41.8	3.2	15	42.6	3.59	15	4.8%	-0.80 [-3.23, 1.63]	
leterogeneity: Tau ² = 0.00; Chi rest for overall effect: 7 = 0.42	i² = 0.54 (P = 0.6	, df = 1 ((P = 0.	46); l² =	0%	25	1.076	-0.49 [-2.79, 1.00]	
	(1 - 0.0	•)							
.1.4 FCR									
lakuei Eujivama 2014	48.37	2 87	20	49.1	2.03	20	5.3%	-0.73 [-2.27, 0.81]	
ibor Hortobagyi 2006	42	6.1	6	42.3	10.5	6	1.4%	-0.30 [-10.02, 9.42]	
Subtotal (95% CI)		0.1	26	12.0	10.0	26	6.7%	-0.72 [-2.24, 0.80]	
Heterogeneity: $Tau^2 = 0.00$; Chi rest for overall effect: Z = 0.93	i² = 0.01 (P = 0.3	, df = 1 (5)	(P = 0.	93); l² =	: 0%				
1 5 FPB									
lakuoi fujiyama 2011	12 75	1 47	10	17 00	2 57	40	5 20/	2 22 [/ 0/ 1 72]	
akuel lujiyama 2011 Subtotal (95% CI)	43./5	1.47	13	47.08	2.57	13	5.2%	-3.33 [-4.94, -1.72]	•
leterogeneity: Not applicable fest for overall effect: Z = 4.06	(P < 0.0	001)	15			15	J.2 /0	-5.55 [-4.54, -1.72]	•
.1.6 TP		0.0 0 0000000	Sectore -		per es		a contractor		
P.M. Rossini 1992	39.4	3.5	25	43.9	6.4	40	4.8%	-4.50 [-6.91, -2.09]	
Subtotal (95% CI)			25			40	4.8%	-4.50 [-6.91, -2.09]	-
leterogeneity: Not applicable est for overall effect: Z = 3.66	(P = 0.0	003)							
otal (95% CI)			112			121	100 0%	2 65 [-3 07 4 22]	•
	2 _ 170	10 15	413		041, 12	431	100.0%	-2.05 [-3.97, -1.35]	▼
	- = 1/8	49, dt =	20 (P	< 0.000	UT); I* =	05%			
leterogeneity. Tau- = 7.97, Ch		004							-10 -5 0 5 10

cortex of rats (Becker et al., 2011; Sousa et al., 2017). These studies suggested that many of the age-related changes in neural network function may be attributed to amyloid deposition (Iadecola, 2010).

Multi-dimensional observations of changes in the neural networks of the brain may deepen our understanding of aging, and its physiological and pathological mechanisms. Noninvasive brain stimulation techniques (e.g., TMS) are used in

TABLE 2	Subaroup	analysis	based	on t	he	RMT
	Joubgroup	anaryoio	basca	Ont	10	1 11 1 1

Group	No. of studies	No. of participants	MD	95% CI	Ζ	p (Effect)	I² (%)	χ²
Muscle								
FDI	13	414	-4.04	[-5.73, -2.36]	4.70	< 0.00001	75	48.97
APB	8	237	-1.10	[-4.54, 2.33]	0.63	0.53	94	109.78
ECR	2	50	-0.49	[-2.79, 1.80]	0.42	0.67	0	0.54
FCR	2	52	-0.72	[-2.24, 0.80]	0.93	0.35	0	0.01
FPB	1	26	-3.33	[-4.94, -1.72]	4.06	< 0.00001		
TP	1	65	-4.50	[-6.91, -2.09]	3.66	0.0003		
Publication region	n							
Oceania	16	515	-1.90	[-2.95, -0.85]	3.56	0.0004	69	48.82
Europe	6	180	-5.10	[-7.95, -2.25]	3.51	0.0005	74	19.21
Asia	1	32	6	[4.23, 7.77]	6.66	< 0.00001		
America	5	157	-4.99	[-7.91, -2.06]	3.34	0.0008	0	1.51
Publication year								
≤2011	15	422	-1.65	[-3.97, 0.68]	1.38	0.17	88	118.78
>2011	13	462	-2.94	[-4.55, -1.33]	9.35	0.0004	84	73.13

ECR, the extensor carpi radialis muscle; APB, the abductor pollicis brevis muscle; FDI, the first dorsal interosseous muscle; FCR, the flexor carpi radialis muscles; FPB, the flexor pollicis brevis muscle; TP, thenar and plantar muscles.

numerous studies to detect changes in the neural networks. Recently, neuroscience research has explored the possibility of applying this technology to examine the elderly population. Early detection of changes may enable the development of new treatments, thereby increasing the likelihood of effectively preventing or delaying the occurrence of disease.

Diagnostic Applications of TMS for the Plasticity of Neural Networks

Since its introduction by Professor Anthony Barker of the University of Sheffield in 1985 (Barker et al., 1985), TMS has

been used to activate the human motor cortex, non-invasively assess the net level of cortical excitability, and determine the integrity of the central motor pathways (Tatti et al., 2016). TMS removes short and powerful magnetic pulses from the skull and generates a secondary electrical current according to the principle of electromagnetic induction of Faraday. The current generated in the cerebral cortex changes the excitability of the underlying neurons and induces neuronal firing. This ultimately results in movement of the corresponding muscles through the corticospinal, corticonuclear, callosal fiber, nerve roots, and peripheral motor pathways (Sanes and Donoghue,

Α		Ex	perimen	tal	(Control			Mean Difference	Mean Difference
	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% CI	IV. Random, 95% CI
	Ashleigh E. Smith 2009	4.32	2.53	13	4.47	2.19	17	0.3%	-0.15 [-1.87, 1.57]	•
	Daina S. E. Dickin 2017	0.94	0.07	20	0.86	0.06	20	7.1%	0.08 [0.04, 0.12]	
	Daina S. E. Dickins 2015	1.12	0.35	20	1.02	0.35	20	5.1%	0.10 [-0.12, 0.32]	
	Dina Fathi 2010	1.06	0.1	16	0.71	0.07	16	7.0%	0.35 [0.29, 0.41]	~
	Gabrielle Todd 2010	1.1	0.2	15	0.9	0.4	15	4.9%	0.20 [-0.03, 0.43]	
	George M. Opie 2017	1.3	0.2	15	1.5	0.2	15	6.1%	-0.20 [-0.34, -0.06]	
	George M. Opie 2018	1.44	0.19	15	1.42	0.17	18	6.3%	0.02 [-0.10, 0.14]	
	Hakuei Fujiyama 2009	1.37	0.11	15	1.09	0.15	15	6.7%	0.28 [0.19, 0.37]	
	Hakuei Euliyama 2012	1.92	0.46	15	1.06	0.2	15	4.6%	0.86 [0.61 1.11]	
	Jessica & Remard 2012	0.14	0.07	16	0.21	0.14	17	6.8%	-0.07 [-0.14, 0.00]	-
	John Cirillo 2010	0.94	0.24	12	0.61	0.24	14	4 0%	0.22 (0.00, 0.46)	
	John Cirillo 2010	0.04	0.34	10	0.01	0.24	10	4.370	0.23 [0.00, 0.40]	
	John Cinilo 2011	0.5	0.19	10	0.42	0.17	10	0.3%	0.08 [-0.04, 0.20]	
	Koen Cuypers 2013	1.55	0.83	14	1.04	0.67	10	1.7%	0.51 [-0.09, 1.11]	
	Marielle Young-Bernier 2012	0.96	0.78	25	0.43	0.54	31	3.3%	0.53 [0.17, 0.89]	
	Marielle Young-Bernier 2014	0.9	0.83	20	0.51	0.48	18	2.7%	0.39 [-0.04, 0.82]	
	Martin V 2005	0.55	0.12	10	0.31	0.04	10	6.8%	0.24 [0.16, 0.32]	
	Nigel C. Rogasch 2009	0.79	0.3	14	0.51	0.2	14	5.4%	0.28 [0.09, 0.47]	
	Oron Levin 2011	0.42	0.26	6	0.32	0.27	5	3.8%	0.10 [-0.22, 0.42]	
	P.M. Rossini 1992	5.262	3.422	25	4.126	2.236	40	0.3%	1.14 [-0.37, 2.65]	
	Shahid Bashir 2014	1.274	0.278	10	1.184	0.267	8	4.6%	0.09 [-0.16, 0.34]	
	Tibor Hortobagyi 2006	0.42	0.11	6	0.47	0.21	6	5.4%	-0.05 [-0.24, 0.14]	
	Total (95% CI)			318			340	100.0%	0.18 [0.09, 0.27]	•
	Heterogeneity: Tau ² = 0.03; 0	Chi ² = 17	4.03, df =	= 20 (P	< 0.000	01); l ² =	89%			
	Test for overall effect: Z = 3.9	95 (P < 0	0001)							-1 -0.5 0 0.5 1
		,	,							Favours [Old] Favours [Young]
в		Experi	mental		Cont	rol			Aean Difference	Mean Difference
	Study or Subgroup	Mean	SD To	tal Me	an s	SD To	tal W	eight I	V. Random. 95% CI	IV. Random, 95% Cl
	Study or Subgroup Adrian Degardin 2011	Mean 37.7	SD To 3.6	tal Me 14 3	an 3	SD To	tal We	eight [2.9%	V. Random. 95% CI -0.50 [-3.44, 2.44]	IV. Random. 95% CI
	Adrian Degardin 2011 Ashleigh F. Smith 2009	Mean 37.7 28.15 1	SD To 3.6 22	tal Me 14 3 13 32	8.2 4	<u>SD To</u> 1.3 52	tal We 14 1 17 1	2.9% 7.5%	V. Random. 95% CI -0.50 [-3.44, 2.44] -4 20 [-5 18, -3 22]	IV. Random. 95% Cl
	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2011	Mean 37.7 28.15 1 30.8	<u>SD To</u> 3.6 .22 6.9	tal Me 14 3 13 32 15 3	8.2 4 .35 1.	SD To 1.3 52	tal We 14 1 17 1	eight 1 2.9% 7.5% 8.1%	V. Random, 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78]	IV. Random. 95% Cl
	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2011	Mean 37.7 28.15 1 30.8	SD To 3.6 .22 6.9	tal Me 14 3 13 32 15 3	8.2 4 .35 1. 2.1 7	5D To 1.3 52 7.3	tal We 14 1 17 1 15	<u>eight 1</u> 2.9% 7.5% 8.1%	V. Random. 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] 2.00 [40.20 4.20]	IV. Random. 95% Cl
	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2011 Gabrielle Todd 2010	Mean 37.7 28.15 1 30.8 43	SD To 3.6 .22 6.9 8	tal Me 14 3 13 32 15 3 15 3	8.2 4 .35 1. 2.1 7 46	SD To 1.3 52 7.3 12 55	tal We 14 1 17 1 15 15	eight 1 2.9% 7.5% 8.1% 5.1%	V. Random. 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30]	IV. Random. 95% Cl
	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2011 Gabrielle Todd 2010 George M. Opie 2014	Mean 37.7 28.15 1 30.8 43 38.2	<u>SD To</u> 3.6 .22 6.9 8 1.5	tal Me 14 3 13 32 15 3 15 3 15 22 3	8.2 4 .35 1. 2.1 7 46 8.4 2.	<u>SD To</u> 1.3 52 7.3 12 05	tal We 14 1 17 1 15 15 18 1	<u>eight 1</u> 2.9% 7.5% 8.1% 5.1% 7.2%	V. Random. 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94]	IV. Random. 95% Cl
	Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2010 George M. Opie 2014 George M. Opie 2018	Mean 37.7 28.15 30.8 43 38.2 38.5	<u>SD To</u> 3.6 .22 6.9 8 1.5 2.4	tal Me 14 3 13 32 15 3 15 3 15 3 15 3	8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 2	<u>SD To</u> 1.3 52 7.3 12 05 2.3	tal We 14 1 17 1 15 15 18 1 18 1	<u>eight 1</u> 2.9% 7.5% 8.1% 5.1% 7.2% 6.3%	V. Random. 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51]	IV. Random. 95% Cl
	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2011 Gabrielle Todd 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010	Mean 37.7 28.15 1 30.8 43 38.2 38.2 38.5 37.3	<u>SD To</u> 3.6 .22 6.9 8 1.5 2.4 8.9	tal Me 14 3 13 32 15 3 15 3 15 3 15 3 15 3 12 3	8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 2 7.6 7	SD To 4.3 52 7.3 12 05 2.3 7.5	tal We 14 1 17 1 15 15 18 1 18 1 18 1	<u>eight 1</u> 2.9% 7.5% 8.1% 5.1% 7.2% 6.3% 6.2%	V. Random. 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09]	IV. Random. 95% Cl
	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2011 Gabrielle Todd 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2011	Mean 37.7 28.15 1 30.8 43 38.2 38.5 37.3 33.7	SD To 3.6 .22 6.9 8 1.5 2.4 8.9 8.4	tal Me 14 3 13 32 15 3 15 3 15 3 15 3 12 3 16 3	8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 7 8.6	SD To 1.3 52 7.3 12 05 2.3 7.5 7	tal Wi 14 1 17 1 15 15 18 1 18 1 18 1 14 16	eight 1 2.9% 7.5% 8.1% 5.1% 7.2% 6.3% 6.3% 6.2% 7.7%	V. Random. 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46]	IV. Random. 95% Cl
	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2011 Gabrielle Todd 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009	Mean 37.7 28.15 30.8 43 38.2 38.5 37.3 33.7 36	SD To 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8	tal Me 14 3 13 32 15 3 15 3 15 3 15 3 12 3 16 3 14	xan 3 8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 7 8.6 38 5	<u>SD To</u> 4.3 52 7.3 12 05 2.3 7.5 7 5.6	tal Wi 14 1 17 1 15 15 15 18 1 18 1 18 1 14 16 14	eight 1 2.9% 7.5% 8.1% 5.1% 7.2% 6.3% 6.2% 7.7% 9.0%	V. Random. 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61]	IV. Random. 95% Cl
	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2011 Gabrielle Todd 2010 George M. Opie 2014 George M. Opie 2014 John Cirillo 2010 John Cirillo 2010 Nigel C. Rogasch 2009	Mean 37.7 28.15 1 30.8 43 38.2 38.5 37.3 33.7 36	SD To 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8	tal Me 14 3 13 32 15 3 15 3 15 3 15 3 12 3 16 3 14	xan 3 8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 2 7.6 7 8.6 38 5	<u>SD To</u> 1.3 52 7.3 12 05 2.3 7.5 7 5.6	tal We 14 1: 17 1 15 15 18 1 18 1 18 1 14 16 14	eight 1 2.9% 7.5% 8.1% 5.1% 7.2% 6.3% 6.2% 7.7% 9.0%	V. Random. 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61]	IV. Random. 95% Cl
	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2011 Gabrielle Todd 2010 George M. Opie 2014 George M. Opie 2014 John Cirillo 2010 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009 Total (95% CI)	Mean 37.7 28.15 1 30.8 43 38.2 38.5 37.3 33.7 36	SD To 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8 1	tal Me 14 3 13 32 15 3 15 3 15 3 15 3 15 3 16 3 14 36	xan 3 8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 2 7.6 7 8.6 38 5	<u>SD To</u> 1.3 52 7.3 12 05 2.3 7.5 7 5.6 14	tal Wi 14 1: 17 1 15 15 18 1 18 1 18 1 14 16 14 14 14 10	eight 1 2.9% 7.5% 8.1% 5.1% 7.2% 6.3% 6.2% 7.7% 9.0% 0.0%	V. Random. 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61] -1.52 [-3.47, 0.42]	IV. Random. 95% Cl
	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2011 Gabrielle Todd 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009 Total (95% CI) Heterogeneity: Tau ² = 5.37	Mean 37.7 28.15 30.8 43 38.2 38.5 37.3 33.7 36 ; Chi ² = 4	SD To 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8 1 3.75, df	tal Me 14 3 13 32 15 3 15 3 15 3 15 3 15 3 16 3 14 36 = 8 (P	xan 3 8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 2 7.6 7 8.6 38 5 < 0.000	<u>SD To</u> 1.3 52 7.3 12 05 2.3 7.5 7 5.6 14 001); I ²	tal Wi 14 1: 17 1 15 15 18 1 18 1 18 1 14 16 14 14 16 14 14 10 = 82%	eight 1 2.9% 7.5% 8.1% 5.1% 5.1% 6.3% 6.2% 6.2% 7.7% 9.0% 0.0%	V. Random. 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61] -1.52 [-3.47, 0.42]	IV. Random. 95% Cl
	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2011 Gabrielle Todd 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009 Total (95% CI) Heterogeneity: Tau ² = 5.37 Test for overall effect: Z = 1	Mean 37.7 28.15 30.8 43 38.2 38.5 37.3 33.7 36 Chi ² = 4 .53 (P =	SD To 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8 1 3.75, df 0.13)	tal Me 14 3 13 32 15 3 15 3 15 3 12 3 16 3 14 36 = 8 (P	xan 3 8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 7 8.6 38 5 < 0.000	<u>SD To</u> 1.3 52 7.3 12 05 2.3 7.5 7 5.6 14 001); I ²	tal Wi 14 1: 17 1 15 15 18 1 18 1 18 1 14 16 14 14 14 14 14 14 14 14 10 = 82%	eight 1 2.9% 7.5% 8.1% 5.1% 6.3% 6.2% 7.7% 9.0% 0.0%	V. Random. 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61] -1.52 [-3.47, 0.42]	IV. Random, 95% Cl
	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2011 Gabrielle Todd 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009 Total (95% CI) Heterogeneity: Tau ² = 5.37; Test for overall effect: Z = 1	Mean 37.7 28.15 30.8 43 38.2 38.5 37.3 33.7 36 Chi ² = 4 .53 (P =	<u>SD To</u> 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8 1 3.75, df 0.13)	tal Me 14 3 13 32 15 3 15 3 15 3 15 3 16 3 16 3 14 36 = 8 (P	xan 3 8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 2 7.6 7 8.6 38 5 < 0.000	SD To 1.3 52 7.3 12 05 2.3 7.5 7 5.6 14 001); P	tal Wi 14 1: 17 1 15 15 18 1 14 16 14 14 16 14 14 16 14 14 10 = 82%	eight 1 2.9% 7.5% 8.1% 5.1% 7.2% 6.3% 6.2% 7.7% 9.0% 0.0%	V. Random. 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61] -1.52 [-3.47, 0.42]	IV. Random. 95% Cl
C	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2011 Gabrielle Todd 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009 Total (95% CI) Heterogeneity: Tau ² = 5.37; Test for overall effect: Z = 1	Mean 37.7 28.15 43 38.2 38.5 37.3 33.7 36 Chi ² = 4 .53 (P =	<u>SD To</u> 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8 1 3.75, df 0.13)	tal Me 14 3 13 32 15 3 15 3 15 3 15 3 16 3 14 3 36 = 8 (P tal	8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 7 8.6 38 5 < 0.000	SD_To 1.3 52 7.3 12 05 2.3 7.5 7 5.6 14 001); I ² ontrol	tal Wi 14 1 17 1 15 15 18 1 18 1 14 16 14 14 16 14 14 16 14 14 10 = 82%	eight 1 2.9% 7.5% 8.1% 7.2% 6.3% 6.2% 7.7% 9.0% 0.0%	V. Random. 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61] -1.52 [-3.47, 0.42] - Mean Difference	IV. Random, 95% Cl
С	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2011 Gabrielle Todd 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009 Total (95% CI) Heterogeneity: Tau ² = 5.37; Test for overall effect: Z = 1	Mean 37.7 28.15 43 38.2 38.5 37.3 33.7 36 Chi ² = 4 .53 (P = Ext Mean	SD To 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8 1 3.75, df 0.13) periment SD	tal Ma 14 3 13 32 15 3 15 3 15 3 15 3 16 3 14 36 = 8 (P tal Total	8an 3 8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 7 8.6 38 5 < 0.000 C Mean	SD To 3.3 52 7.3 12 05 2.3 7.5 7 5.6 14 001); I ² ontrol	tal Wi 14 1 17 1 15 15 18 1 18 1 14 16 14 14 16 14 14 16 14 14 16 14 14 10 = 82%	Eight I 2.9% 7.5% 8.1% 7.2% 6.3% 6.2% 7.7% 9.0% 0.0%	V. Random. 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61] -1.52 [-3.47, 0.42] Mean Difference [V. Random, 95% CI	IV. Random, 95% CI
С	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009 Total (95% CI) Heterogeneity: Tau ² = 5.37; Test for overall effect: Z = 1 <u>Study or Subgroup</u> Andon R. Kossev 2002	Mean 37.7 28.15 1 30.8 43 38.2 38.5 37.3 33.7 36 : Chi ^p = 4 .53 (P = Ex. Mean 17.4:	SD To 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8 1 3.75, df 0.13) periment SD 2 0.85	tal Ma 14 3 13 32 15 3 15 3 15 3 15 3 12 3 16 3 14 36 = 8 (P tal Total 10	san 3 8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 2 7.6 7 8.6 38 5 < 0.000 C <u>Mean</u> 17.69	SD To SD To S2 S2 S2 S2 S2 S2 S2 S2 S2 S2	tal Wi 14 1: 17 1 15 15 18 1 15 18 1 14 16 14 14 16 14 14 10 10	eight I 2.9% 7.5% 5.1% 5.1% 6.3% 6.2% 7.7% 9.0% 0.0% 0.0% Weight 16.2%	V. Random, 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61] -1.52 [-3.47, 0.42] - Mean Difference IV. Random, 95% CI -0.27 [-1.14, 0.60]	IV. Random. 95% CI
с	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009 Total (95% Cl) Heterogeneity: Tau ² = 5.37 Test for overall effect: Z = 1 Study or Subgroup Andon R. Kossev 2002 Gabrielle Todd 2010	Mean 37.7 28.15 30.8 43 38.2 38.5 37.3 33.7 36 Chi ² = 4 .53 (P = Ext Mean 17.4, 21.4	SD To 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8 1 3.75. df 0.13) periment SD 2 0.85 3 1.4	tal Ma 14 3 13 32 15 3 15 3 15 3 15 3 16	xan 3 8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 2 7.6 7 8.6 38 5 < 0.000 C Mean 17.69 23.5	SD To 1.3 52 7.3 12 05 2.3 7 5.6 1. 001); I ² ontrol SD 1.11 1.9	tal Wi 14 1 17 1 15 15 15 15 15 15 15 15 18 1 16 16 14 14 11 10 15	Eight I 2.9% 7.5% 8.1% 7.2% 6.3% 6.2% 7.7% 9.0% 0.0% 0.0% Weight 16.2% 13.2%	V. Random, 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61] -1.52 [-3.47, 0.42] -1.52 [-3.47, 0.42] -1.52 [-3.47, 0.42] -0.27 [-1.14, 0.60] -1.70 [-2.89, -0.51]	IV. Random. 95% CI
C	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009 Total (95% CI) Heterogeneity: Tau ² = 5.37; Test for overall effect: Z = 1 Study or Subgroup Andon R. Kossev 2002 Gabrielle Todd 2010 Jessica A. Bernard 2012	Mean 37.7 28.15 1 30.8 43 38.2 38.5 37.3 33.7 36 Chi ² = 4 .53 (P = Exi Mean 17.4 21.4 21.4	SD To 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8 1 3.75, df 0.13) periment SD 2 0.85 2 0.85 3 1.4	tal Met 14 3 13 32 15 3 15 3 15 3 15 3 15 3 15 3 15 3 15 3	xan 3 8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 7 8.6 38 5 < 0.000 C Mean 17.69 23.5 20.61	SD_To 1.3 52 7.3 12 05 2.3 7.5 7 5.6 14 001); I ² ontrol <u>SD</u> 1.11 1.9 3.25	tal Wi 14 1 17 1 15 15 15 15 15 15 15 15 15 15 16 14 14 14 14 14 14 14 14 14 14 14 15 15 17	Eight I 2.9% 7.5% 8.1% 7.2% 6.3% 6.2% 7.7% 9.0% 0.0% 0.0% Usight 16.2% 13.2% 7.0%	V. Random. 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61] -1.52 [-3.47, 0.42] -1.52 [-3.47, 0.42] -0.27 [-1.14, 0.60] -1.70 [-2.89, -0.51] 0.83 [-1.34, 3.00]	IV. Random. 95% CI
с	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009 Total (95% CI) Heterogeneity: Tau ² = 5.37; Test for overall effect: Z = 1 <u>Study or Subgroup</u> Andon R. Kossev 2002 Gabrielle Todd 2010 Jessica A. Bernard 2012 M. C. Pellicciari 2009	Mean 37.7 28.15 1 30.8 43 38.2 38.5 37.3 36 : Chi ² = 4 .53 (P = Exi Mean 17.4 21.4 19.0	SD To 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8 1 3.75, df 0.13) periment SD 2 0.85 3 1.4 4 3.11 5 0.24	tal Met 14 3 13 32 15 3 15 3 15 3 15 3 15 3 15 3 15 3 15 3	tan 3 8an 3 8.8.2 4 .35 1.7 .46 8.4 .87.6 2 .76.6 7 .88.6 38 < 0.000	SD To SD To 1.3 52 7.3 12 05 2.3 7.5 7 5.6 14 001); I ² ontrol SD 1.11 1.9 3.25 0.29	tal Wi 14 1. 17 1 15 15 18 1 15 15 18 1 15 15 15 15 15 15 15 16 15 17 16	tight 1 2.9% 7.5% 8.1% 5.1% 7.2% 6.3% 6.2% 7.7% 9.0% 0.0% 0.0% 0.0% 16.2% 13.2% 7.0% 21.2%	V. Random, 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61] -1.52 [-3.47, 0.42] - Mean Difference IV. Random, 95% CI -0.27 [-1.14, 0.60] -1.70 [-2.89, -0.51] 0.83 [-1.34, 3.00] -1.19 [-1.37, -1.01]	IV. Random. 95% CI
С	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009 Total (95% CI) Heterogeneity: Tau ² = 5.37; Test for overall effect: Z = 1 <u>Study or Subgroup</u> Andon R. Kossev 2002 Gabrielle Todd 2010 Jessica A. Bernard 2012 M. C. Pellicciari 2009	Mean 37.7 28.15 130.8 43 38.2 38.5 37.3 33.7 36 Chi ^P = 4 .53 (P = Ex) Mean 17.4 21.4 21.4 21.9 222	SD To 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8 1 3.75, df 0.13) periment SD 2 0.85 3 1.4 4 3.11 5 0.24 2 1.9	tal Me 14 3 13 32 15 3 15 3 15 3 15 3 15 3 15 3 12 3 16 3 16 3 14 36 = 8 (P tal Total 10 15 16 16 16 16 25	an 3 8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 7 8.6 38 5 < 0.000 C C Mean 17.69 23.5 20.61 20.24 20.24	SD To SD To 1.3 52 7.3 12 05 2.3 7.5 7 5.6 001); I ² ontrol <u>SD</u> 1.11 1.9 3.25 0.29 1.9	tal Wi 14 1 17 1 15 15 15 15 18 1 16 14 14 16 14 10 15 17 16 31	Eight I 2.9% 7.5% 8.1% 5.1% 7.2% 6.3% 6.2% 7.7% 9.0% 0.0% 0.0% 0.0% 13.2% 7.0% 21.2% 14.9%	V. Random, 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61] -1.52 [-3.47, 0.42] -1.52 [-3.47, 0.42] -0.27 [-1.14, 0.60] -1.70 [-2.89, -0.51] 0.83 [-1.34, 3.00] -1.19 [-1.37, -1.01] -1.80 [-2.80, -0.80]	IV. Random. 95% CI
с	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009 Total (95% Cl) Heterogeneity: Tau ² = 5.37; Test for overall effect: Z = 1 Study or Subgroup Andon R. Kossev 2002 Gabrielle Todd 2010 Jessica A. Bernard 2012 M. C. Pellicciari 2009 Marielle Young-Bernier 2012	Mean 37.7 28.15 30.8 43 38.2 38.5 37.3 33.7 36 Chi ² = 4 .53 (P = Ex() Mean 17.4, 21.4 19.0 2 22.3 4 23 2 24.5 1	SD To 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8 1 3.75, df 0.13) periment SD 2 0.85 3 1.4 4 3.11 5 0.24 1 1.6	tal Met 14 3 13 32 15 3 15 15 12 3 15 3 12 3 16 3 16 3 16 3 16 3 16 3 16 3 16 3 16	kan 3 8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 7 8.6 38 5 <0.000 C Mean 17.69 23.5 20.61 20.24 24 4	SD To SD To 1.3 52 7.3 12 05 2.3 7.5 7 5.6 14 001); I ² 001); I ² 001); I ² 001); I ² 0.29 1.9 3.25 0.29 1.9 3.3	tal Wi 14 11 15 15 15 18 1 18 1 14 16 16 14 14 14 10 15 17 16 31 18	Eight I 2.9% 7.5% 8.1% 7.2% 6.3% 6.2% 7.7% 9.0% 0.0% 0.0% 0.0% 16.2% 13.2% 7.0% 21.2% 14.9% 10.4%	V. Random, 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61] -1.52 [-3.47, 0.42] -1.52 [-3.47, 0.42] -0.27 [-1.14, 0.60] -1.70 [-2.89, -0.51] 0.83 [-1.34, 3.00] -1.19 [-1.37, -1.01] -3.40 [-4.95, -1.85]	IV. Random. 95% CI
C	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009 Total (95% Cl) Heterogeneity: Tau ² = 5.37; Test for overall effect: Z = 1 Study or Subgroup Andon R. Kossev 2002 Gabrielle Todd 2010 Jessica A. Bernard 2012 M. C. Pellicciari 2009 Marielle Young-Bernier 2014 P.M. Rossini 1992	Mean 37.7 28.15 30.8 43 38.2 38.5 37.3 33.7 36 Chi ² = 4 .53 (P = Ex) Mean 17.4 21.4 19.0 22.2 4 23.5 10.0 10.	SD To 3.6	tal Met 14 3 13 322 15 3 15 3 12 3 15 3 12 3 16 3 12 3 16 3 14 36 = 8 (P 10 15 16 16 16 16 16 16 25 25 25	kan 3 8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 7 8.6 3 8.6 3 8.6 3 8.6 3 8.6 3 8.6 3 8.6 3 8.6 3 8.6 3 20.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SD To SD To 1.3 52 7.3 12 05 2.3 7.5 7 5.6 14 001); I ² 001); I ² 001); I ² 1.11 1.9 3.25 0.29 1.9 3 1.6	tal Wi 14 11 15 15 15 18 1 18 1 18 1 18 1 14 16 16 14 10 15 17 16 31 31 18 40	tight I 2.9% 7.5% 8.1% 7.2% 6.3% 6.2% 7.7% 9.0% 0.0% 0.0% 14.2% 13.2% 7.0% 21.2% 14.9% 10.4% 10.4%	V. Random, 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61] -1.52 [-3.47, 0.42] -1.52 [-3.47, 0.42] -0.27 [-1.14, 0.60] -1.70 [-2.89, -0.51] 0.83 [-1.34, 3.00] -1.19 [-1.37, -1.01] -1.80 [-2.80, -0.80] -3.40 [-4.95, -1.85] 0.10 [-0.67, 0.87]	IV. Random. 95% CI
D	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009 Total (95% CI) Heterogeneity: Tau ² = 5.37; Test for overall effect: Z = 1 Study or Subgroup Andon R. Kossev 2002 Gabrielle Todd 2010 Jessica A. Bernard 2012 M. C. Pellicciari 2009 Marielle Young-Bernier 2012 Marielle Young-Bernier 2014 P.M. Rossini 1992	Mean 37.7 28.15 30.8 43 38.2 38.5 37.3 33.7 36 Chi ^P = 4 .53 (P = Ex.) Mean 17.4 21.4 21.4 19.0 22.2 4 23.5 19.0 19	SD To 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8 1 3.75, df 0.13) periment SD 2 0.85 3 1.4 4 3.11 5 0.24 2 1.9 1 1.6 5 1.5	tal Met 14 3 13 32 15 3 15 3 15 3 15 3 15 3 15 3 16 3 16 3 16 3 16 3 16 3 16 3 16 3 16	an 3 8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 7 8.6 38 5 < 0.000 C C Mean 17.69 23.5 20.61 20.24 24.4 19.4	SD To SD To 1.3 52 7.3 12 05 2.3 7.5 7 5.6 001); I ² 001); I ² 001); I ² 1.11 1.9 3.25 0.29 1.9 3 1.6	tal Wi 14 1 17 1 15 15 18 1 18 1 14 10 15 11 14 10 15 17 16 31 18 40	Eight I 2.9% 7.5% 8.1% 5.1% 7.2% 6.3% 6.2% 7.7% 9.0% 0.0% 0.0% 0.0% 14.2% 13.2% 7.0% 21.2% 14.9% 10.4% 17.1%	V. Random, 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61] -1.52 [-3.47, 0.42] -1.52 [-3.47, 0.42] -0.27 [-1.14, 0.60] -1.70 [-2.89, -0.51] 0.83 [-1.34, 3.00] -1.19 [-1.37, -1.01] -1.80 [-2.80, -0.80] -3.40 [-4.95, -1.85] 0.10 [-0.67, 0.87]	IV. Random. 95% CI
C	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009 Total (95% CI) Heterogeneity: Tau ² = 5.37 Test for overall effect: Z = 1 Study or Subgroup Andon R. Kossev 2002 Gabrielle Todd 2010 Jessica A. Bernard 2012 M. C. Pellicciari 2009 Marielle Young-Bernier 2014 P.M. Rossini 1992 Total (95% CI)	Mean 37.7 28.15 30.8 43 38.2 38.5 37.3 33.7 36 Chi ² = 4 .53 (P = Ex() Mean 17.4, 21.4 19.0 22.2 4 2 19.1 20.2 22.1 4 20.2 19.1 20.2 2	SD To 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8 1 3.75, df 0.13) periment SD 2 0.85 3 1.4 4 3.11 5 0.24 1 1.6 5 1.5	tal Met 14 3 13 322 15 3 15 3 12 3 15 3 12 3 16 3 12 3 16 3 14 36 = 8 (P 10 15 16 16 16 16 16 25 20 20 20 20 20	kan 3 8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 7 8.6 38 5 <0.000 C C Mean 17.69 23.5 20.61 20.24 24.4 19.4	SD To 1.3 52 7.3 12 05 2.3 7.5 7 5.6 001); I ² 001); I ² 001); I ² 001); I ² 0.29 1.9 3.25 0.29 1.6	tal Wi 14 11 15 15 15 18 1 18 1 18 1 16 16 14 14 10 15 17 16 31 18 40 147	Eight I 2.9% 7.5% 8.1% 7.2% 6.3% 6.2% 7.7% 9.0% 0.0% 0.0% 0.0% 0.0% 0.0% 14.2% 12.2% 14.9% 10.4% 17.1%	V. Random, 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61] -1.52 [-3.47, 0.42] -1.52 [-3.47, 0.42] -0.27 [-1.14, 0.60] -1.70 [-2.89, -0.51] 0.83 [-1.34, 3.00] -1.19 [-1.37, -1.01] -1.80 [-2.80, -0.80] -3.40 [-4.95, -1.85] 0.10 [-0.67, 0.87] -1.07 [-1.77, -0.37]	IV. Random. 95% CI
С	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2009 Ashleigh E. Smith 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009 Total (95% CI) Heterogeneity: Tau ² = 5.37; Test for overall effect: Z = 1 Study or Subgroup Andon R. Kossev 2002 Gabrielle Todd 2010 Jessica A. Bernard 2012 M. C. Pellicciari 2009 Marielle Young-Bernier 2012 Marielle Young-Bernier 2014 P.M. Rossini 1992 Total (95% CI) Heterogeneity: Tau ² = 0.59;	Mean 37.7 28.15 30.8 43 38.2 38.5 37.3 33.7 36 Chi ² = 4 (Chi ² = 4 17.4 19.0 2 22.2 4 2 19.2 Chi ² = 27	SD To 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8 1 3.75, df 0.13) periment 2 2 0.85 3 1.4 4 3.11 5 0.24 2 1.9 1 1.6 5 1.5 .95, df =	tal Met 14 3 13 322 15 3 15 15 12 3 16 3 16 3 16 3 16 3 16 3 16 3 16 3 16	kan 3 8.2 4 .35 1. 2.1 7 46 8.4 2. 7.6 2 7.6 7 8.6 38 5 <0.000 C C Mean 17.69 23.5 20.61 20.24 24.4 19.4	$\frac{SD}{1.11} = 7$	tal Wi 14 1: 17 1 1 15 15 18 1 16 15 17 16 31 18 40 147 9%	Eight I 2.9% 7.5% 8.1% 7.2% 6.3% 6.2% 7.7% 9.0% 0.0% 0.0% 14.2% 13.2% 7.0% 21.2% 14.9% 10.4% 17.1%	V. Random, 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61] -1.52 [-3.47, 0.42] -1.52 [-3.47, 0.42] -0.27 [-1.14, 0.60] -1.70 [-2.89, -0.51] 0.83 [-1.34, 3.00] -1.19 [-1.37, -1.01] -1.80 [-2.80, -0.80] -3.40 [-4.95, -1.85] 0.10 [-0.67, 0.87] -1.07 [-1.77, -0.37]	IV. Random. 95% Cl
C	Study or Subgroup Adrian Degardin 2011 Ashleigh E. Smith 2009 Ashleigh E. Smith 2010 George M. Opie 2014 George M. Opie 2018 John Cirillo 2010 John Cirillo 2010 John Cirillo 2011 Nigel C. Rogasch 2009 Total (95% CI) Heterogeneity: Tau ² = 5.37; Test for overall effect: Z = 1 Study or Subgroup Andon R. Kossev 2002 Gabrielle Todd 2010 Jessica A. Bernard 2012 M. C. Pellicciari 2009 Marielle Young-Bernier 2014 P.M. Rossini 1992 Total (95% CI) Heterogeneity: Tau ² = 0.59; Test for overall effect: Z = 3.	Mean 37.7 28.15 30.8 43 38.2 38.5 37.3 33.7 36 : Chi ² = 4 .53 (P = Exi Mean 17.4, 21.1 21.4 19.0 2 22.2 4 2 19.2 Chi ² = 27 00 (P = 0	SD To 3.6 .22 6.9 8 1.5 2.4 8.9 8.4 6.8 1 3.75, df 0.13) periment SD 2 0.85 3 1.4 4 3.11 5 0.24 2 1.9 1 1.6 5 1.5 .95, df = .003)	tal Met 14 3 13 32 15 3 15 3 15 3 15 3 15 3 15 3 15 3 15 3	tan 3 8an 3 8.2 4 .35 1.7 46 8.4 8.4 2.1 7 46 8.4 2.1 7 46 8.4 2.1 7 46 8.4 2.1 7 6 3.8 5 < 0.000	$\begin{array}{c} \text{SD} & \text{To} \\ \text{SD} & \text{To} \\ \text{S2} \\ \text{S3} \\ \text{S5} \\ \text{S6} \\ \text{S1} \\ \text{S1} \\ \text{S1} \\ \text{S2} \\ \text{S2} \\ \text{S2} \\ \text{S3} \\ \text{S3} \\ \text{S3} \\ \text{S4} \\ \text{S5} \\ \text{S5} \\ \text{S5} \\ \text{S5} \\ \text{S6} \\ \text{S1} \\ \text{S1} \\ \text{S2} \\ \text{S1} \\ \text{S2} \\ \text{S2} \\ \text{S3} \\ \text{S1} \\ \text{S2} \\ \text{S3} \\ \text{S3} \\ \text{S4} \\ \text{S4} \\ \text{S5} \\ \text{S5} \\ \text{S5} \\ \text{S5} \\ \text{S6} \\ \text{S1} \\ \text{S1} \\ \text{S2} \\ \text{S1} \\ \text{S2} \\ \text{S2} \\ \text{S3} \\ \text{S1} \\ \text{S2} \\ \text{S3} \\ \text{S4} \\ \text{S4} \\ \text{S5} \\ \text{S6} \\ \text{S1} \\ \text{S1} \\ \text{S1} \\ \text{S1} \\ \text{S2} \\ \text{S1} \\ \text{S2} \\ \text{S1} \\ \text{S2} \\ \text{S1} \\ \text{S2} \\ \text{S1} \\ \text{S1} \\ \text{S2} \\ \text{S1} \\ \text{S1} \\ \text{S1} \\ \text{S2} \\ \text{S1} \\ \text{S2} \\ \text{S1} \\ \text{S2} \\ \text{S1} \\$	tal Wi 14 1: 15 15 18 1 16 16 16 16 16 16 16 16 16 16 31 15 17 16 31 18 40 147 9%	Eight I 2.9% 7.5% 8.1% 5.1% 7.2% 6.3% 6.2% 7.7% 9.0% 0.0% 0.0% 0.0% 16.2% 13.2% 7.0% 21.2% 21.2% 10.4% 17.1%	V. Random, 95% CI -0.50 [-3.44, 2.44] -4.20 [-5.18, -3.22] -1.30 [-6.38, 3.78] -3.00 [-10.30, 4.30] -0.20 [-1.34, 0.94] 0.90 [-0.71, 2.51] -0.30 [-6.69, 6.09] -4.90 [-10.26, 0.46] -2.00 [-6.61, 2.61] -1.52 [-3.47, 0.42] -1.52 [-3.47, 0.42] -0.27 [-1.14, 0.60] -1.70 [-2.89, -0.51] 0.83 [-1.34, 3.00] -1.19 [-1.37, -1.01] -1.80 [-2.80, -0.80] -3.40 [-4.95, -1.85] 0.10 [-0.67, 0.87] -1.07 [-1.77, -0.37]	IV. Random. 95% CI

2000; Müller-Dahlhaus et al., 2010). In this manner, TMS may directly reflect the excitability information of different motor cortices and functional integrity of the intracortical neuronal structures. EMG refers to the muscle bioelectrical pattern recorded using an electromyograph. It is often used to determine the functional status of peripheral nerves, neurons, neuromuscular junctions, and muscles. When TMS-EMG is applied to the monitoring of primary motor cortex excitability,

it activates the underlying neural group and passes through the corticospinal pathway. This ultimately leads to a motor response to the contralateral muscle MEP, which can be quantified using EMG. The motor thresholds, the MEP amplitude, the MEP latency, and short intracortical inhibition are the most commonly applied techniques for TMS (Edwards et al., 2008). Notably, the results of these techniques are largely influenced by device characteristics, parameter settings, and experimental

procedures. In addition, subject-related variables (e.g., eventual pharmacological treatments) affect the outcome indicators of TMS stimulation.

In recent years, investigations regarding the plasticity of neural networks have attracted considerable attention, and researchers use the TMS-EMG technology to evaluate the sensitivity of the motor system to plastic changes. Some studies showed that following the induction of the M1 cortical region of the brain by TMS in the elderly, their ability to stimulate excitability and stimulation-induced adaptations was limited compared with that reported in the young individuals (Dayan et al., 2013; Li et al., 2015). Consistent with the findings of the present meta-analysis, these results indicate that the function and ability of the M1 cortical region in older individuals decrease with age.

Limitations

This meta-analysis had several limitations. Firstly, heterogeneity was detected, which reduced the reliability of the comparisons. Although all the included studies were examined using only TMS-EMG, there was also heterogeneity detected in different characteristics, parameter settings, experimental procedures, and subject-related variables (including state dependency and eventual pharmacological treatments), which may reduce the generalizability of the conclusions. Secondly, only 29 randomized controlled trials were included in this review. Moreover, limitations in the quality of research design and sample sizes affect the extrapolation and strength of this evidence. In addition, due to the limitations of the inclusion of the literature, we can only be included in the cohort and case-control studies. Therefore, it is possible that the statistical power may have been inadequate due to the small number of studies, and it is difficult to precisely evaluate the excitability of neural networks in the different groups. Thirdly, there was no report of adverse events. In the included studies, we only found limited information related to safety owing to poor reporting of adverse events. Hence, the pooled results should be treated with caution. Another limitation is that, in this review, behavioral metaanalysis results are only provided by the included TMS-EMG studies, which may lead to publication bias. This suggests that some studies without significant cortical activation results may not be published.

CONCLUSIONS

We found that the excitability of the cerebral cortex declined in elderly individuals vs. young individuals. The findings of this review should be considered with caution owing to the

REFERENCES

Ahmed, R. M., Ke, Y. D., Vucic, S., Ittner, L. M., Seeley, W., Hodges, J. R., et al. (2018). Physiological changes in neurodegeneration - mechanistic insights and clinical utility. *Nat. Rev. Neurol.* 14, 259–271. doi: 10.1038/nrneurol.2018.23

Ballard, J. (2010). Forgetfulness and older adults: concept analysis. J. Adv. Nurs. 66, 1409–1419. doi: 10.1111/j.1365-2648.2010.05279.x

methodological limitation of the included trials. Further highquality studies are warranted to validate the present findings. It is well established that the normal process of aging is the result of degeneration and compensation of the neural network and its related conduction functions. However, the existing models of age-related changes in the brain do not cover the full spectrum of alterations (Li et al., 2015). Thus, the use of various detection methods is necessary to dynamically observe the age-related changes in neural networks. This approach may assist researchers in developing a new aging model, which reflects the age-related changes in the plasticity of neural networks.

DATA AVAILABILITY STATEMENT

The data supporting the results reported in this article may be obtained from the corresponding author upon reasonable request.

AUTHOR CONTRIBUTIONS

NX and PH: study concept and design. WY and ZY: data curation. YL and LW: formal analysis. YL and JL: investigation. XT: methodology. YL: resources. LW, MX, and PH: software. XT and PH: supervision and writing-original draft. NX: validation. XT: writing-review and editing. All authors read and approved to publish the final version of the manuscript.

FUNDING

This study was supported by Project Grant National Natural Science Foundation of China (Grants nos. 81774406, 81774394, 81804167, and 81904297), the Qi-Huang Scholar of National Traditional Chinese Medicine Leading Talents Support Program (2018) and 2012A061400017, 2014GKXM031, 2017KYTD03, 2017B030314143, 2017KCXTD006 from the Department of Education of Guangdong Province, China.

ACKNOWLEDGMENTS

We would like to thank the staff of South China Research Center for Acupuncture of Guangdong Province for their support of this study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fncel. 2019.00469/full#supplementary-material

Barker, A. T., Jalinous, R., and Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. *Lancet* 1, 1106–1107. doi: 10.1016/S0140-6736(85)92413-4

Bashir, S., Perez, J. M., Horvath, J. C., Pena-Gomez, C., Vernet, M., Capia, A., et al. (2014). Differential effects of motor cortical excitability and plasticity in young and old individuals: a Transcranial Magnetic Stimulation (TMS) study. *Front. Aging Neurosci.* 6:111. doi: 10.3389/fnagi.2014.00111

- Becker, J. A., Hedden, T., Carmasin, J., Maye, J., Rentz, D. M., Putcha, D., et al. (2011). Amyloid-beta associated cortical thinning in clinically normal elderly. *Ann. Neurol.* 69, 1032–1042. doi: 10.1002/ana.22333
- Bennett, I. J., and Madden, D. J. (2014). Disconnected aging: cerebral white matter integrity and age-related differences in cognition. *Neuroscience* 276, 187–205. doi: 10.1016/j.neuroscience.2013.11.026
- Bernard, J. A., and Seidler, R. D. (2012). Evidence for motor cortex dedifferentiation in older adults. *Neurobiol. Aging* 33, 1890–1899. doi: 10.1016/j.neurobiolaging.2011.06.021
- Bolandzadeh, N., Davis, J. C., Tam, R., Handy, T. C., and Liu-Ambrose, T. (2012). The association between cognitive function and white matter lesion location in older adults: a systematic review. *BMC Neurol.* 12:126. doi: 10.1186/1471-2377-12-126
- Boroojerdi, B., Ziemann, U., Chen, R., Bütefisch, C. M., and Cohen, L. G. (2001). Mechanisms underlying human motor system plasticity. *Muscle Nerve* 24, 602–613. doi: 10.1002/mus.1045
- Brunso-Bechtold, J. K., Linville, M. C., and Sonntag, W. E. (2000). Age-related synaptic changes in sensorimotor cortex of the Brown Norway X fischer 344 rat. *Brain Res.* 872, 125–133. doi: 10.1016/S0006-8993(00)02515-4
- Burke, S. N., and Barnes, C. A. (2006). Neural plasticity in the ageing brain. *Nat. Rev. Neurosci.* 7, 30–40. doi: 10.1038/nrn1809
- Celsis, P. (2000). Age-related cognitive decline, mild cognitive impairment or preclinical Alzheimer's disease? *Ann. Med.* 32, 6–14. doi: 10.3109/07853890008995904
- Cirillo, J., Rogasch, N. C., and Semmler, J. G. (2010). Hemispheric differences in use-dependent corticomotor plasticity in young and old adults. *Exp. Brain Res.* 205, 57–68. doi: 10.1007/s00221-010-2332-1
- Cirillo, J., Todd, G., and Semmler, J. (2011). Corticomotor excitability and plasticity following complex visuomotor training in young and old adults. *Eur. J. Neurosci.* 34, 1847–1856. doi: 10.1111/j.1460-9568.2011.07870.x
- Craik, F. I., and Bialystok, E. (2006). Planning and task management in older adults: cooking breakfast. *Mem. Cognit.* 34, 1236–1249. doi: 10.3758/BF03193268
- Cuypers, K., Thijs, H., Duque, J., Swinnen, S. P., Levin, O., and Meesen, R. L. (2013). Age-related differences in corticospinal excitability during a choice reaction time task. Age 35, 1705–1719. doi: 10.1007/s11357-012-9471-1
- Dayan, E., Censor, N., Buch, E. R., Sandrini, M., and Cohen, L. G. (2013). Noninvasive brain stimulation: from physiology to network dynamics and back. *Nat. Neurosci.* 16, 838–844. doi: 10.1038/nn.3422
- DeCarli, C., Kawas, C., Morrison, J. H., Reuter-Lorenz, P. A., Sperling, R. A., and Wright, C. B. (2012). Session II: mechanisms of age-related cognitive change and targets for intervention: neural circuits, networks, and plasticity. J. Gerontol. A Biol. Sci. Med. Sci. 67, 747–753. doi: 10.1093/gerona/ gls111
- Degardin, A., Devos, D., Cassim, F., Bourriez, J. L., Defebvre, L., Derambure, P., et al. (2011). Deficit of sensorimotor integration in normal aging. *Neurosci. Lett.* 498, 208–212. doi: 10.1016/j.neulet.2011.05.010
- Dickerson, B. C., Bakkour, A., Salat, D. H., Feczko, E., Pacheco, J., Greve, D. N., et al. (2009). The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. *Cereb. Cortex.* 19, 497–510. doi: 10.1093/cercor/bhn113
- Dickins, D. S. E., Kamke, M. R., and Sale, M. V. (2017). Corticospinal plasticity in bilateral primary motor cortices induced by paired associative stimulation to the dominant hemisphere does not differ between young and older adults. *Neural Plast.* 2017, 1–14. doi: 10.1155/2017/8319049
- Dickins, D. S. E., Sale, M. V., and Kamke, M. R. (2015). Plasticity induced by intermittent theta burst stimulation in bilateral motor cortices is not altered in older adults. *Neural Plast*. 2015, 1–9. doi: 10.1155/2015/323409
- Dukart, J., Mueller, K., Villringer, A., Kherif, F., Draganski, B., Frackowiak, R., et al. (2013). Relationship between imaging biomarkers, age, progression and symptom severity in Alzheimer's disease. *Neuroimage Clin.* 3, 84–94. doi: 10.1016/j.nicl.2013.07.005
- Edwards, M. J., Talelli, P., and Rothwell, J. C. (2008). Clinical applications of transcranial magnetic stimulation in patients with movement disorders. *Lancet Neurol.* 7, 827–840. doi: 10.1016/S1474-4422(08)70190-X
- Emonson, M. R. L., Fitzgerald, P. B., Rogasch, N. C., and Hoy, K. E. (2019). Neurobiological effects of transcranial direct current stimulation in younger

adults, older adults and mild cognitive impairment. *Neuropsychologia* 125, 51–61. doi: 10.1016/j.neuropsychologia.2019.01.003

- Fathi, D., Ueki, Y., Mima, T., Koganemaru, S., Nagamine, T., Tawfik, A., et al. (2010). Effects of aging on the human motor cortical plasticity studied by paired associative stimulation. *Clin. Neurophysiol.* 121, 90–93. doi: 10.1016/j.clinph.2009.07.048
- Fujiyama, H., Garry, M. I., Levin, O., Swinnen, S. P., and Summers, J. J. (2009). Age-related differences in inhibitory processes during interlimb coordination. *Brain Res.* 1262, 38–47. doi: 10.1016/j.brainres.2009.01.023
- Fujiyama, H., Hinder, M. R., Schmidt, M. W., Garry, M. I., and Summers, J. J. (2012). Age-related differences in corticospinal excitability and inhibition during coordination of upper and lower limbs. *Neurobiol. Aging* 33, 1484.e1–1484.e14. doi: 10.1016/j.neurobiolaging.2011.12.019
- Fujiyama, H., Hyde, J., Hinder, M. R., Kim, S. J., McCormack, G. H., Vickers, J. C., et al. (2014). Delayed plastic responses to anodal tDCS in older adults. *Front. Aging Neurosci.* 6:115. doi: 10.3389/fnagi.2014.00115
- Fujiyama, H., Tandonnet, C., and Summers, J. J. (2011). Age-related differences in corticospinal excitability during a Go/NoGo task. *Psychophysiology*. 48, 1448–1455. doi: 10.1111/j.1469-8986.2011.01201.x
- Godde, B., Berkefeld, T., David-Jürgens, M., and Dinse, H. R. (2002). Agerelated changes in primary somatosensory cortex of rats: evidence for parallel degenerative and plastic-adaptive processes. *Neurosci. Biobehav. Rev.* 26, 743–752. doi: 10.1016/S0149-7634(02)00061-1
- Higgins, J. P., Thompson, S. G., Deeks, J. J., and Altman, D. G. (2003). Measuring inconsistency in meta-analyses. *BMJ* 327, 557–560. doi: 10.1136/bmj.327.7414.557
- Hortobágyi, T., del Olmo, M. F., and Rothwell, J. C. (2006). Age reduces cortical reciprocal inhibition in humans. *Exp. Brain Res.* 171, 322–329. doi: 10.1007/s00221-005-0274-9
- Hunter, S. K., Thompson, W., and Roger, D. A. (2001). Reaction time, strength, and physical activity in women aged 20–89 years. *J. Aging Phys. Act.* 9, 32–42. doi: 10.1123/japa.9.1.32
- Iadecola, C. (2010). The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol. 120, 287–296. doi: 10.1007/s00401-010-0718-6
- Kossev, A. R., Schrader, C., Däuper, J., Dengler, R., and Rollnik, J. D. (2002). Increased intracortical inhibition in middle-aged humans; a study using paired-pulse transcranial magnetic stimulation. *Neurosci. Lett.* 333, 83–86. doi: 10.1016/S0304-3940(02)00986-2
- Levin, O., Cuypers, K., Netz, Y., Thijs, H., Nuttin, B., Helsen, W. F., et al. (2011). Age-related differences in human corticospinal excitability during simple reaction time. *Neurosci. Lett.* 487, 53–57. doi: 10.1016/j.neulet.2010.09.072
- Li, H. J., Hou, X. H., Liu, H. H., Yue, C. L., Lu, G. M., and Zuo, X. N. (2015). Putting age-related task activation into large-scale brain networks: a metaanalysis of 114 fMRI studies on healthy aging. *Neurosci. Biobehav. Rev.* 57, 156–174. doi: 10.1016/j.neubiorev.2015.08.013
- Logsdon, R. G., Gibbons, L. E., McCurry, S. M., and Teri, L. (2002). Assessing quality of life in older adults with cognitive impairment. *Psychosom. Med.* 64, 510–519. doi: 10.1097/00006842-200205000-00016
- Mora, F., Segovia, G., and del Arco, A. (2007). Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. *Brain Res. Rev.* 55, 78–88. doi: 10.1016/j.brainresrev.2007.03.011
- Morrison, J. H., and Baxter, M. G. (2012). The ageing cortical synapse: hallmarks and implications for cognitive decline. *Nat. Rev. Neurosci.* 13, 240–250. doi: 10.1038/nrn3200
- Müller-Dahlhaus, F., Ziemann, U., and Classen, J. (2010). Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex. *Front. Synaptic Neurosci.* 2:34. doi: 10.3389/fnsyn.2010.00034
- Oliviero, A., Profice, P., Tonali, P. A., Pilato, F., Saturno, E., Dileone, M., et al. (2006). Effects of aging on motor cortex excitability. *Neurosci Res.* 55, 74–77. doi: 10.1016/j.neures.2006.02.002
- Opie, G. M., Cirillo, J., and Semmler, J. G. (2018). Age-related changes in late Iwaves influence motor cortex plasticity induction in older adults. J. Physiol. (Lond). 596, 2597–2609. doi: 10.1113/JP274641
- Opie, G. M., Post, A. K., Ridding, M. C., Ziemann, U., and Semmler, J. G. (2017). Modulating motor cortical neuroplasticity with priming paired associative stimulation in young and old adults. *Clin. Neurophysiol.* 128, 763–769. doi: 10.1016/j.clinph.2017.02.011

- Opie, G. M., and Semmler, J. G. (2014). Age-related differences in short- and long-interval intracortical inhibition in a human hand muscle. *Brain Stimul.* 7, 665–672. doi: 10.1016/j.brs.2014.06.014
- Pellicciari, M. C., Miniussi, C., Rossini, P. M., and De Gennaro, L. (2009). Increased cortical plasticity in the elderly: changes in the somatosensory cortex after paired associative stimulation. *Neuroscience* 163, 266–276. doi: 10.1016/j.neuroscience.2009.06.013
- Rogasch, N. C., Dartnall, T. J., Cirillo, J., Nordstrom, M. A., and Semmler, J. G. (2009). Corticomotor plasticity and learning of a ballistic thumb training task are diminished in older adults. *J. Appl. Physiol.* 107, 1874–1883. doi: 10.1152/japplphysiol.00443.2009
- Rossini, P. M., Desiato, M. T., and Caramia, M. D. (1992). Age-related changes of motor evoked potentials in healthy humans: non-invasive evaluation of central and peripheral motor tracts excitability and conductivity. *Brain Res.* 593, 14–19. doi: 10.1016/0006-8993(92)91256-E
- Rossini, P. M., Rossi, S., Babiloni, C., and Polich, J. (2007). Clinical neurophysiology of aging brain: from normal aging to neurodegeneration. *Prog Neurobiol.* 83, 375–400. doi: 10.1016/j.pneurobio.2007.07.010
- Sale, M. V., and Semmler, J. G. (2005). Age-related differences in corticospinal control during functional isometric contractions in left and right hands. J. Appl. Physiol. 99, 1483–1493. doi: 10.1152/japplphysiol.00371.2005
- Sanes, J. N., and Donoghue, J. P. (2000). Plasticity and primary motor cortex. *Annu. Rev. Neurosci.* 23, 393–415. doi: 10.1146/annurev.neuro.23.1.393
- Savović, J., Weeks, L., Sterne, J. A., Turner, L., Altman, D. G., Moher, D., et al. (2014). Evaluation of the Cochrane Collaboration's tool for assessing the risk of bias in randomized trials: focus groups, online survey, proposed recommendations and their implementation. *Syst. Rev.* 3:37. doi: 10.1186/2046-4053-3-37
- Sawaki, L., Yaseen, Z., Kopylev, L., and Cohen, L. G. (2003). Age-dependent changes in the ability to encode a novel elementary motor memory. *Ann. Neurol.* 53, 521–524. doi: 10.1002/ana.10529
- Scahill, R. I., Frost, C., Jenkins, R., Whitwell, J. L., Rossor, M. N., and Fox, N. C. (2003). A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. *Arch. Neurol.* 60, 989–994. doi: 10.1001/archneur.60.7.989
- Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., et al. (2010). Motor control and aging: links to age-related brain structural, functional, and biochemical effects. *Neurosci. Biobehav. Rev.* 34, 721–733. doi: 10.1016/j.neubiorev.2009.10.005
- Smith, A. E., Ridding, M. C., Higgins, R. D., Wittert, G. A., and Pitcher, J. B. (2009). Age-related changes in short-latency motor cortex inhibition. *Experimental Brain Research*. 198, 489–500. doi: 10.1007/s00221-009-1945-8
- Smith, A. E., Ridding, M. C., Higgins, R. D., Wittert, G. A., and Pitcher, J. B. (2011). Cutaneous afferent input does not modulate motor

intracortical inhibition in ageing men. *Euro. J. Neurosci.* 34, 1461–1469. doi: 10.1111/j.1460-9568.2011.07869.x

- Sousa, A. M. M., Meyer, K. A., Santpere, G., Gulden, F. O., and Sestan, N. (2017). Evolution of the human nervous system function, structure, and development. *Cell* 170, 226–247. doi: 10.1016/j.cell.2017.06.036
- Sperling, R. A., Laviolette, P. S., O'Keefe, K., O'Brien, J., Rentz, D. M., Pihlajamaki, M., et al. (2009). Amyloid deposition is associated with impaired default network function in older persons without dementia. *Neuron* 63, 178–188. doi: 10.1016/j.neuron.2009.07.003
- Tatti, E., Rossi, S., Innocenti, I., Rossi, A., and Santarnecchi, E. (2016). Noninvasive brain stimulation of the aging brain: state of the art and future perspectives. Ageing Res. Rev. 29, 66–89. doi: 10.1016/j.arr.2016.05.006
- Todd, G., Kimber, T. E., Ridding, M. C., and Semmler, J. G. (2010). Reduced motor cortex plasticity following inhibitory rTMS in older adults. *Clin. Neurophysiol.* 121, 441–447. doi: 10.1016/j.clinph.2009.11.089
- Ward, N. S., Swayne, O. B., and Newton, J. M. (2008). Age-dependent changes in the neural correlates of force modulation: an fMRI study. *Neurobiol. Aging* 29, 1434–1446. doi: 10.1016/j.neurobiolaging.2007.04.017
- Wellman, C. L., and Sengelaub, D. R. (1995). Alterations in dendritic morphology of frontal cortical neurons after basal forebrain lesions in adult and aged rats. *Brain Res.* 669, 48–58. doi: 10.1016/0006-8993(94)01231-6
- Young-Bernier, M., Davidson, P. S., and Tremblay, F. (2012). Paired-pulse afferent modulation of TMS responses reveals a selective decrease in short latency afferent inhibition with age. *Neurobiol Aging* 33, 835.e1–835.e11. doi: 10.1016/j.neurobiolaging.2011.08.012
- Young-Bernier, M., Tanguay, A. N., Davidson, P. S., and Tremblay, F. (2014). Short-latency afferent inhibition is a poor predictor of individual susceptibility to rTMS-induced plasticity in the motor cortex of young and older adults. *Front. Aging Neurosci.* 6:182. doi: 10.3389/fnagi.2014.00182

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The handling editor declared a shared affiliation, though no other collaboration, with the author PH at the time of the review.

Copyright © 2019 Tang, Huang, Li, Lan, Yang, Xu, Yi, Lu, Wang and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.