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Abstract 
Cancer metabolism is a marvellously complex topic, in part, due to the reprogramming of its pathways to self-sustain the malignant 
phenotype in the disease, to the detriment of its healthy counterpart. Understanding these adjustments can provide novel targeted 
therapies that could disrupt and impair proliferation of cancerous cells. For this very purpose, genome-scale metabolic models (GEMs) 
have been developed, with Human1 being the most recent reconstruction of the human metabolism. Based on GEMs, we introduced the 
genetic Minimal Cut Set (gMCS) approach, an uncontextualized methodology that exploits the concepts of synthetic lethality to predict 
metabolic vulnerabilities in cancer. gMCSs define a set of genes whose knockout would render the cell unviable by disrupting an 
essential metabolic task in GEMs, thus, making cellular proliferation impossible. Here, we summarize the gMCS approach and review 
the current state of the methodology by performing a systematic meta-analysis based on two datasets of gene essentiality in cancer. 
First, we assess several thresholds and distinct methodologies for discerning highly and lowly expressed genes. Then, we address the 
premise that gMCSs of distinct length should have the same predictive power. Finally, we question the importance of a gene partaking 
in multiple gMCSs and analyze the importance of all the essential metabolic tasks defined in Human1. Our meta-analysis resulted in 
parameter evaluation to increase the predictive power for the gMCS approach, as well as a significant reduction of computation times 
by only selecting the crucial gMCS lengths, proposing the pertinency of particular parameters for the peak processing of gMCS. 

Keywords: synthetic lethality; genetic Minimal Cut Sets; genome-scale metabolic models; constraint based modelling; gene essentiality 
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INTRODUCTION 
Synthetic lethality and genetic minimal cut sets 
Precision and targeted medicine have emerged as compelling top-
ics in cancer research. Their main challenge is the development 
of novel treatments that selectively target malignant cells while 
sparing healthy ones in order to increase therapy sensitivity and 
decrease side-effects, leading to a better quality of life for patients. 
A promising approach to achieving this goal is synthetic lethality 
(SL), which refers to the interaction between two genes in which 
a perturbation, such as a mutation, RNA interference knockdown, 
or inhibition, affecting either gene alone does not imply a loss in 
cell viability; however, the perturbation of both genes simultane-
ously results in lethality [1]. SL provides a promising avenue for 

developing targeted therapies for cancer, and several approaches 
have been used to detect SL in different cancer types, including in 
vitro studies [2] and computational methods [3, 4]. 

Network-based approaches to predict SL in cancer cells have 
received much attention in the field of systems biology [5]. In 
particular, constraint-based modelling, a computational frame-
work for the analysis of genome-scale metabolic networks, has 
experienced great advance in the last decade to study cancer 
metabolism [6–10]. Among existing approaches, the genetic Mini-
mal Cut Sets (gMCSs) approach constitutes a unique strategy that 
directly connects with the concept of SL [11]. The gMCS approach 
extends the concept of SL to two or more genes whose deletion 
disables a key metabolic task in the reference (uncontextualized)
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network of human cells. This key metabolic task is usually the 
biomass production, an artificial reaction which defines all the 
metabolic requirements for cell proliferation. Following the con-
cept of SL, gMCSs can be used to identify cancer-specific essential 
genes (targeted therapies) based on available omics data. We 
describe the evolution of the concept of gMCS and more recent 
advancements. 

The evolution of the gMCS framework 
In the initial iteration of the gMCS framework [11], microarray 
gene expression data were utilized to identify a set of genes with 
low expression levels within a sample using BARCODE. Subse-
quently, potential target genes were examined, with emphasis 
placed on gMCSs that comprised both a highly expressed gene 
and a collection of genes exhibiting low expression levels. These 
gMCSs were searched to find those that can be inactivated with 
a single gene knockout. Target selectivity could be achieved by 
focusing on gMCSs where only one gene is active in the malig-
nant cell, while the healthy counterpart has multiple activated 
genes. In their analysis, they established a possible mechanism 
to explain the essentiality of RRM1 in cancer. The caveat on this 
study was the limited computational efficiency in the search 
strategy of gMCSs and essential genes. This issue was addressed 
in a subsequent work [12], where a more sophisticated algorithm 
was developed to conduct a global search of gMCSs in metabolic 
networks. 

Afterwards, Valcárcel et al. [13] took the framework one step 
further and implemented an user-friendly online tool, gmctool, 
that comprises the following advancements: the use of latest 
human genome-scale metabolic network reference, Human1 [9], 
novel gene expression thresholding techniques, double knockout 
lethality analysis, use of RNA-Seq data instead of microarray data, 
faster computation times and integration with DepMap informa-
tion. Following the strategy introduced in Apaolaza et al., gmctool 
integrates more than 57,000 unique gMCSs of diverse length 
associated with biomass production. Furthermore, they computed 
gMCSs that are necessary for other fundamental metabolic tasks, 
such as oxidative phosphorylation, uptake of essential amino acids, beta 
oxidation of fatty acids, protein turnover, etc. In total, 57 different 
tasks, including the production of biomass, are considered that 
can be blocked in order to define SL groups within the application. 
The sum of the gMCSs for all tasks tallies to 97,000 distinct gMCSs. 

Candidate genes partaking in the distinct biological tasks are 
selected using a similar approach anew. This involves identifying 
genes that are the unique expressed gene in a given gMCS for 
the malignant condition, whilst the corresponding healthy cells 
has multiples genes expressed for that gMCS. Using the developed 
gmctool, Valcárcel et al. demonstrated the essentiality of CTPS1 in 
a sub-group of multiple myeloma patients. 

The online application, gmctool, stores all the computed gMCSs, 
in which it projects the RNA-Seq gene expression data, uploaded 
by the user, with customizable parameters, such as the essential 
metabolic tasks included in the gMCSs or the threshold used for 
weighing a gene as highly or lowly expressed, for a tailored and 
thorough gene essentiality analysis. 

Novel gMCS advancements 
Altogether, cancer metabolism is complex, as evidenced by the 
emerging field of research on the tumour microenvironment, 
which encompasses not only the tumoral but also the surround-
ing cells. Recent studies have focused on these interactions to 
gain a deeper understanding of the impact of microenvironment 
on tumour progression [14]. In this regard, Apaolaza et al. [15], 

developed a generalization to the gMCS algorithm to determine an 
innovative group of metabolic synthetic lethal interactions that 
integrate nutritional perturbations in the surrounding medium, 
called nutrient-gene Minimal Cut Sets (ngMCSs). Instead of only 
having genetic interactions, this new paradigm would make pos-
sible to have a list of synthetic lethals formed by both gene 
knockouts and metabolite deprivations from the surrounding 
medium. In that work, they successfully prove the essentiality 
of DHFR, subject to the lack of the metabolites thymidine and 
hypoxanthine in the growth medium, whose presence rescues 
cellular proliferation. 

As promising as gMCSs can be, one major limitation is that they 
are confined to the metabolic reactions and genes, blind to the 
impact transcription factors have on reprogramming metabolic 
networks [16]. On a cutting-edge study, Barrena et al. [17] have  
integrated regulatory pathways on a metabolic network based 
on Boolean networks. Using well-known and different regulatory 
network databases, they assessed gene essentiality prediction in 
in vitro gene silencing data with promising results: an increase in 
the predicted number of essential genes in integrated metabolic 
and regulatory to the pure metabolic model, as well as the incor-
poration of key signalling genes to the study. 

Taken together, these three advancements are built upon the 
same concept first studied by Apaolaza et al. [11]. Examples of 
the aforementioned algorithms, as well as the basic formulation 
needed for the computation of gMCSs are thoroughly explained 
in Supplementary Note 1. These studies show the relevance of 
gMCSs in SL prediction and gene essentiality analysis. 

Availability of gMCS algorithms and tools 
A short description of different gMCS algorithms and tools, as 
well as their software and code availability, is summarized in 
Table 1. Different algorithms for calculating gMCSs and ngMCSs 
have been integrated into The COBRA Toolbox, a MATLAB soft-
ware suite for the analysis of genome-scale metabolic networks 
[18]. In fact, a short tutorial can be found in The COBRA Tool-
box for gMCSs: https://opencobra.github.io/cobratoolbox/stable/ 
tutorials/tutorialGMCS.html. In addition, we recently released an 
open source Python package, called gMCSpy, which overcomes 
the need of commercial software for computing gMCSs while 
improving the computational performance of previous algorithms 
[19]. 

Motivation: Fine-tuning the gMCS approach for 
gene essentiality analysis 
To tailor subsequent studies based on gMCS with finely tuned 
parameters, this work reviews and interrogates the gMCS method-
ology to make the best predictions on gene essentiality based on 
several criteria: the optimal threshold that should be considered 
to classify the genes as highly or lowly expressed; the importance 
of the length of a gMCS (also called order) for their predictive 
value, the partaking of target genes in several gMCSs or essential 
tasks, and, lastly, the relevance of other essential tasks beyond the 
biomass production. 

Our analysis was conducted using a small but curated cell line 
cohort from Hart et al. [20], hereafter referred to as Hart2015, as 
well as data from CCLE and the Cancer Dependency Map [21], 
referred to as DepMap (see Methods section). As a result, we 
aim to reveal the optimal threshold for gene expression levels. In 
addition, we investigate how the length of a gMCS and the number 
of essential tasks performed by a gene impact the accuracy of the 
predictions of gene essentiality. These findings can guide users in
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Table 1: Summary of concepts, algorithms and tools in gMCS approach 

Name Description Software and code availability Reference 

gMCSs Minimal subsets of gene knockout 
interventions in metabolic networks. 

MATLAB—The COBRA toolbox, function 
name: calculateGeneMCS 

[11, 12] 

gmctool Online tool for gene essentiality analysis 
based on the gMCS approach, Human1 and 
RNA-seq data. 

The tool is freely available at: https:// 
biotecnun.unav.es/app/gmctool. 

[13] 

Nutrient gMCSs (ngMCSs) Minimal subsets of gene knockout and/or 
nutrient deprivation interventions in 
metabolic networks. 

MATLAB—The COBRA toolbox, function 
name: calculateGeneMCS, with the option 
‘only Nutrients’ as TRUE. 

[15] 

gMCSs and regulatory 
networks 

Minimal subsets of gene knockout 
interventions in integrated metabolic and 
regulatory (iMR) networks. 

MATLAB functions available in https://github. 
com/PlanesLab/iMR_gmcs 

[17] 

gMCSpy Computation of gMCSs and ngMCSs in 
metabolic networks. 

Open-source Python package built in 
COBRApy available in https://github.com/ 
PlanesLab/gMCSpy 

[19] 

Note: Short description, necessary software and references for each methodology 

the application of gene essentiality analysis in cancer based on 
the gMCS framework. 

RESULTS 
In order to carry out the fine-tuning of the gMCS approach 
for gene essentiality analysis, we focus on true positives 
(TPs), false positives (FPs) and the positive predictive value 
[PPV = TP/(TP + FP)], also called precision. These metrics are 
important because cancer-specific essential genes are scarce, as 
they comprise less than 1% of all genes. Thus, accurate prediction 
of their presence is challenging, and labelling all genes as non-
essential would result in an extremely high, yet misleading, 
accuracy rate, but at the cost of missing the essential genes. With 
these three metrics (FPs, TPs, PPV), however, we can correctly 
assess the performance of the different cases considered in this 
study. 

Optimal gene expression threshold 
Once gMCSs are computed, the RNA-Seq expression data are 
projected to them. A required step to identify cancer-specific 
essential genes is to define whether a gene is highly or lowly 
expressed. We considered the two thresholding techniques imple-
mented in gmctool: gmcsTHX and localT2 [22]. 

In the case of gmcsTHX, for each sample, the most expressed 
gene from each gMCS is taken, as it should be the most expressed 
from the lot. Only unique genes are considered, as repetition 
will occur due to having more gMCSs than genes; then, using 
the expression of those unique genes, a distribution is built for 
each sample, and finally, the threshold is assigned after an arbi-
trary number. All genes below the coefficient defined by that 
sample-specific threshold will be deemed as lowly expressed, 
while those genes above the threshold value are appointed as 
highly expressed. After some analysis, the authors of gmctool 
decided on setting a threshold of 5% (gmcsTH5), which implies 
that all genes that have a lower expression than the bottom 5% 
of the most expressed genes of the gMCSs are considered as 
low expressed. To check whether this threshold conveys the best 
prediction, we analysed several thresholds: 0, 1, 2, 2.5, 5, 10 and 
20%. 

With respect to localT2, a cohort-dependent methodology that 
defines a threshold for each gene based on the observed expres-
sion distribution across the samples of the cohort, we considered 
two cases with different gene universes, one containing the genes 

partaking in the gMCS (totalling 1,244), localT2-G, and the other 
has all Human1 genes (3,650), LocalT2-H1, and reviewed their 
predictive capabilities. 

We started analysing Hart2015. First, we observed clear differ-
ences among the distinct thresholds, as it can be seen in the three 
facets of Figure 1A. In the case of gmcsTHX methodology, we can 
observe a scarcely escalating trend as the threshold increases in 
TPs (full details in Supplementary Table 1). Specifically, the mean 
of the predicted TPs varies from 94.2 for gmcsTH0 to 104.8 in the 
case of gmcsTH20. In the case of the localT2 thresholding method-
ology, considering only the genes partaking in gMCSs (localT2-G) 
yields more TPs than the procedure in which we consider all the 
universe of metabolic genes (localT2-H1). For the FP metrics, the 
boost as the threshold increases is more pronounced, jumping 
from 131 FP in localT2-G to 178 in LocalT2-H1. Concurrently, 
both localT2 methods show similar performance to that of the 
highest thresholds in gmcsTHX, and they have the highest FP of 
the study, with 181.8 for the case of localT2-G. Finally, the PPV, 
subordinated to previous metrics, depicts a decreasing tendency 
as the threshold increases, having its maximum value of 0.418 for 
gmcsTH0; the lowest PPV (0.363) is held by localT2 methodologies, 
due to their high FP values. 

We observed similar trends and variances in DepMap to those 
observed in Hart2015 (Supplementary Figure 1A), finding a sig-
nificant variation in TPs, FPs and PPVs for the different thresh-
olds and cases tested (Kruskal–Wallis P-value < 2.2 × 10−16). Pre-
cise mean values for the different scenarios are held in Supple-
mentary Table 1. Overall, these results indicate that the higher 
the threshold, the less we can trust the positive results of the 
methodology, as the increase in FPs are greater than the increase 
in TP. 

Prior to studying the impact of lengths in the analysis, we 
contemplated how would the metrics change in each threshold 
for each length. As the number of gMCSs sharply decreases after 
length seven in gmctool, lengths greater than seven were merged 
in one single group. Figure 1B shows the cumulative mean for all 
the thresholds through the eight considered lengths for Hart2015. 
The most relevant aspect is the importance of gMCSs of length 
one. Approximately 75% of TPs come from here, finding a small 
variance among the different thresholds, particularly for highest 
thresholds, which range from 74% to 79%. Switching to FPs, com-
parable behaviour is observed, for the lowest thresholds, the first 
orders are the parameters that provide most FPs. A similar pattern 
was found in DepMap (Supplementary Figure 1B). Note here that
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Figure 1. Gene expression threshold analysis and essentiality predictions under the gMCS framework for Hart2015. TPs, FPs and PPVs are shown for the 
different cases analysed: gmcsTHX for six thresholds (1, 2, 2.5, 3.5, 5, 10 and 20%) and localT2 for two gene universes (localT2-G and localT2-H1). Results 
for gmcsTHX and localT2 are separated by a red vertical line. (A) Boxplot of TPs, FPs and PPVs in Hart2015 for the different cases analysed. Average 
values are linked together for the different cases in gmcsTHX and localT2, respectively. (B) Accumulated mean value of TPs, FPs and PPVs across lengths 
in Hart2015 for the different cases considered. 

gMCSs of length one define essential genes for any human cell 
type under specific growth medium conditions, here, the one 
used by default in Human1 (Ham’s medium). For this reason, this 
subset of essential genes is conserved across different thresholds 
and no changes are observed for TPs and FPs that derived from 
gMCSs of length one in Figure 1B. 

Intriguingly, in the case of the lowest thresholds, we can 
observe that higher lengths do not contribute at all to both TPs 
and FPs, which then result in a stagnation of the PPV (Figure 1B, 

Supplementary Figure 1B). Finally, the higher the threshold, longer 
gMCSs are considered, as the metrics of TP and FP are seen 
steadily ramp up. 

In summary, when we consider only the effect of changing the 
threshold, Figure 1 shows that lower thresholds have higher PPVs, 
although fewer TPs and less contribution based on longer gMCSs. 
In contrast, the higher thresholds have smaller PPV; however, they 
show more TPs, due to the gMCSs of higher orders that provide 
novel candidates for analysis.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae115#supplementary-data
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Length of gMCS 
When considering candidate genes, shorter gMCS are more suit-
able for in vitro experimental validation, as it is easier to overex-
press or inhibit one or two genes than altering, for example, six 
genes to prove valid a gMCS of length seven. gmctool does not use 
this data for anything else than display, because it assumes that 
the prediction is not affected by gMCS length. The objective of this 
section is to further study the impact that length has on TP and 
FP predictions, based on the previews of the previous section, but, 
instead of showing cumulative results, we examined each length 
independently. 

As done in the previous section, lengths greater than seven 
were merged in one single group. For the sake of clarity, we only 
considered in our study two of the thresholds previously dis-
cussed with gmcsTHX: gmcsTH2 and gmcsTH5. For completeness, 
we also included one case considered with localT2: localT2-G, 
which is slightly less computationally expensive than localT2-H1 
with similar performance in gene essentiality predictions. Note 
here both localT2-H1 and localT2-G serve as a proxy for higher 
threshold values of the gmcsTHX technique. 

As seen in Figure 1B, a high proportion of TPs are obtained in 
the first order for all three thresholds. Since order 1 is not affected 
by the threshold, there were between 60 and 100 TPs depending 
on the cell line. However, starting from the lowest threshold, 
gmcsTH2, Figure 2A, we found that only the four first orders 
yield any TP. The mean, depicted by the red dot in the figures, 
drastically drops from 78.8 for length one to 3 for length four 
(Supplementary Table 2). Only one cell line had any TPs predicted 
for further gMCS orders. The PPV remained consistent across 
lengths one to four, with high variance for the remaining lengths. 
The high mean PPV for lengths five and six was due to the unique 
predicted cell line with essential genes for these orders, which 
turned to be correct predictions; however, the limited sample size 
makes them unreliable. 

For gmcsTH5, Figure 2B, similarities with the previous thresh-
olding method are perceived, but now length five has more TPs 
and FPs for three out of five cell lines, while lengths six and higher 
had some TPs and FPs for two cell lines. The PPV shows similar 
trends as before, but the fifth order had a higher median, despite 
high variance. Curiously, the sixth order has also a relatively high 
median, but an even larger variance. 

Lastly, we considered localT2-G, Figure 2C. As expected, all 
lengths are now not null. The number of TPs fluctuated between 
20 and 30 along lengths two to five and decreased for higher 
orders. Nevertheless, the number of FPs increases substantially; 
hence, the PPV is lower than in the last shown cases, even if the 
mean is non-zero for all the lengths. 

We also inquired DepMap data (Supplementary Figure 2), find-
ing similar patterns to Hart2015. In the three cases considered, we 
identified significant variations of TPs, FPs and PPV for different 
length values (Kruskal–Wallis P-value < 2.2 × 10−16, Supplemen-
tary Table 2), which demonstrates that length is a critical param-
eter. 

Summing up, both threshold and length analysis are closely 
correlated, as we can see with the previous analyses, as higher 
thresholds (or both localT2 analyses) entail a greater repercussion 
of longer lengths. Nonetheless, shorter lengths have higher PPVs, 
but their lengths have a lower impact. 

gMCS promiscuity 
When working with more than 97,000 gMCS, it is expected to 
have genes that partake in several gMCS, case which we termed 

Multiple-gMCS; however, there is also the possibility of a gene 
intervening only in a particular gMCS, named Single-gMCS. We  
studied whether the user should equally rely on both conditions, 
or essential genes involved in more than one gMCS constitute a 
more robust strategy. 

Taking all lengths into account and the same thresholds as 
in the previous exercise i.e. gmcsTH2, gmcsTH5 and localT2-G, 
essential genes were separated in two groups for all cell lines, 
depending on the number of gMCSs they were part of, either 
having only one gMCS associated or more than one. As seen in 
previous analyses, gMCSs of length one are the most relevant 
genes essentiality wise and have the highest predictive values. 
To avoid introducing bias in the Single-gMCS study, these gMCSs 
have been removed from the analysis, because all these genes are 
associated with a unique gMCS. 

Figure 3A depicts the result obtained with Hart2015 for TPs, 
FPs and PPVs. We detected more essential genes that are part 
of many gMCS, as seen by the sheer number of TPs in both 
comparisons, the median ranging from three to five in the case 
of Single-gMCS and from 10 to 20 for  Multiple-gMCS. FPs  raise  
in a similar fashion as seen in previous analyses, increasing 
as the threshold value increases. Finally, PPVs are spread along 
0.2 for the Single-gMCS condition; values for Multiple-gMCS are 
slightly higher, but they have more variance. Mean values for 
the different metrics in Figure 3A are available at Supplementary 
Table 3. 

Again, the results for DepMap follow the same pattern than 
Hart2015 (Supplementary Figure 3A). We compared TPs, FPs and 
PPVs between Single-gMCS and Multiple-gMCS for the all the condi-
tions tested, finding significantly higher values in Multiple-gMCS 
(see two-sided Wilcoxon P-values in Supplementary Table 3). 
However, although the effect size in TPs and FPs is very clear, it 
is more limited in the case of PPVs (Supplementary Table 3). 

Task promiscuity 
The metabolic model of Human1 defines essential tasks not 
only regarding proliferation, but also contemplating key cellular 
metabolic functions, such as ‘de novo synthesis of nucleotides’, ‘beta 
oxidation of fatty acids’, ‘vitamins and co-factors’, etc. The addition of 
those tasks in the initial biomass analysis enriches the prediction, 
although brings up an interesting question closely related to 
the last one: are genes associated with a unique task, called 
here Single-task, more reliable than genes associated with many 
tasks, called here Multiple-task? In this case, essential genes of 
the first order are considered, as of the 235 genes, 100 par-
take only in one task, whereas the rest are part of multiple 
tasks. 

In Hart2015, we note that the TPs are higher in the Single-
task cases in gmcsTH2 and gmcsTH5 (Figure 3B), where the TP 
medians are 65.6 and 65.9, respectively, to their Multiple-Task 
counterparts. For localT2-G, TPs keep high with more TPs detected 
in the Multiple-task case. In DepMap (Supplementary Figure 3B), 
TPs are slightly higher for the Multiple-task case in the different 
thresholds. Once again, the FPs show similar trends; however, the 
number of FPs is significantly higher in the Multiple-task case. Full 
details can be found in Supplementary Table 4. 

In Hart2015, Single-task PPVs are higher for gmcsTH2 and gmc-
sTH5, in which the single task shows a consistently high PPV. 
Considering DepMap, Multiple-task PPVs are significantly lower 
for all the cases considered (two-sided Wilcoxon P-value < 2.2× 
10−6, Supplementary Table 4), which suggest that essential genes 
coming from the Single-Task case are more reliable.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae115#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae115#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae115#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae115#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae115#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae115#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae115#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae115#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae115#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae115#supplementary-data
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Figure 2. Length of gMCSs and gene essentiality predictions in Hart2015. (A) Boxplot of TPs, FPs and PPVs in Hart2015 for gmcsTH2 for different lengths 
considered. (B) Boxplot of TPs, FPs and PPVs in Hart2015 for gmcsTH5 for different lengths considered. (C) Boxplot of TPs, FPs and PPVs in Hart2015 for 
localT2-G for different lengths considered. Average values are linked together for the different cases analysed.
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Figure 3. gMCS and metabolic task promiscuity and gene essentiality predictions in Hart2015. (A) Boxplot of TPs, FPs and PPVs in Hart2015 for gmcsTH2, 
gmcsTH5 and localT2-G considering gMCS promiscuity, which defines two cases: essential genes involved in one gMCS (‘Single-gMCS’) and more than 
one (‘Multiple-gMCS’). (B) Boxplot of TPs, FPs and PPVs in Hart2015 for gmcsTH2, gmcsTH5 and localT2-G considering task promiscuity, which defines 
two cases: essential genes involved in one essential metabolic task (‘Single-task’) and more than one (‘Multiple-task’). 

Compare all-tasks to biomass results 
Valcárcel et al. [13] used all the tasks deemed as essential by 
Human1 to compute gMCSs. However, the initial approach that 
was available when Apaolaza et al. [11] published their work was to 
target the biomass function, a reaction which measures the cell’s 
ability to grow. The number of gMCSs obtained for each analysis 
changes drastically, as the latter is contained in the former, there 
is a vast difference of 40,000gMCSs between the two analyses. 
We pose here the question as to whether essential tasks really 
helps in gene essentiality predictions, or they are not more than a 
liability for the analysis and only the biomass function should be 
deliberated. 

Figure 4 shows the cumulative median of TPs, FPs and PPVs 
for different lengths of gMCSs in Hart2015 using the same 
threshold techniques as in previous analyses. The dashed line 
represents the All Tasks analysis. It can be observed for all 
thresholds that TPs are increased when considering all tasks 
(Figure 4). In Hart2015, the mean of TPs moves from 65.6, 69.2 
and 80.2 in the biomass analysis to 96.8, 98.8 and 102.8 when 
All Tasks were considered in gmcsTH2, gmcsTH5 and localT2, 
respectively. Per contra, FPs increase substantially too, from a 
mean of 69.4, 87.4 and 125 in gMCSs associated with Biomass 
analysis to 137.4, 156.4 and 182.2 in the case of All Tasks 
(Figure 4).
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Figure 4. Effect of metabolic tasks in gene essentiality predictions in Hart2015. TPs, FPs and PPV are shown when considering only the biomass tasks 
(‘Biomass’, solid line) or all metabolic tasks (‘All Tasks’, Two dashed line) in the gene essentiality predictions for the different for three thresholding 
techniques (gmcsTH2, gmcsTH5 and localT2-G) and different lengths for Hart2015. 

The increase in FPs in Hart2015 can be clearly observed in the 
PPV metrics, which are reduced in the All Tasks condition (0.414, 
0.387, 0.363) with respect to the biomass analysis (0.486,0.442 
and 0.400) ( Supplementary Table 5). The same result can be 
found in DepMap (Supplementary Figure 4), where we found a 
statistically significant difference for all the metrics and lengths 
between both conditions (see Kruskal–Wallis P-values in Supple-
mentary Table 5). 

DISCUSSION 
The aim of this work has been to perform an in silico meta-
analysis of the gMCS algorithm developed by Apaolaza et al. [11] 
and honed by Valcárcel et al. [13]. Getting to know the parameters 
that suit best the analysis is of utmost importance in order to find 
candidate genes that could exploit metabolic vulnerabilities. This 
thorough analysis has focused on certain aspects of the method-
ology, in the following order, impact of gene expression threshold-
ing methodology and thresholding value on prediction, impact of 
gMCS length on prediction, association analysis: whether a gene 
predicted present in one gMCS is as reliable as a gene predicted 
present in many gMCS, as well as, a gene predicted present in 
one essential metabolic task or many; and last, the comparison 
of whether the biomass function is sufficient for the analysis 
or adding the rest of deemed essential tasks by the authors of 
Human1 provides any boost to the analysis. 

We now would like to discuss which are the parameters we 
consider to be the most relevant for the analysis. For it, we will 
one by one delve into each one in the same structure as has 
been discussed in the Results section. Before beginning, we would 
like to note that even though PPVs of less than 0.5 are obtained, 
which could let the reader think that this prediction capability 
is irrelevant, we consider this an achievement, because gene 
essentiality prediction has always been a challenge in the field of 
Computational Biology, and higher precision values are not easily 
obtained using the current state-of-the-art metabolic models and 
network-based strategies. 

Insomuch as threshold is concerned, it is clear in both Hart2015 
and DepMap that higher threshold values imply more TPs; how-
ever, we are preoccupied by the sheer number of FPs predicted 
in these cases, as they will make the selection of candidates 
less reliable. Also, high gmcsTHX values and localT2 thresholding 
techniques behave similarly. Following the same train of thought, 

we decant for lower threshold values. Thus, we value more the 
high results of the PPV rather than the slightly higher TPs; hence, 
we advise a threshold value of around 2% to maintain a high PPV 
as well as obtaining additional TPs. 

Taking length in mind, we observe length one carries the most 
importance of all lengths, as half of them really are essential 
as we predict. We cannot discuss length without considering 
threshold, as they are closely related because higher lengths 
are only relevant when examining higher thresholds; nonethe-
less, longer thresholds have higher FPs due to longer lengths 
not being as precise as lower lengths. Which reinforces the last 
point, longer thresholding implies worse predictions due to longer 
length gMCSs not being as accurate as shorter ones. Keeping in 
mind that we ascertain lower thresholds to improve PPV, as we 
consider gmcsTH2 to be the optimal threshold, therefore, only 
lengths up to five should be considered, as the rest is unreliable 
and probably null. 

When considering genes partaking in more than one gMCS, 
which we called gMCS promiscuity, we have not seen significant 
visual differences in any of the cases, we therefore think that a 
gene involved in multiple gMCSs does not imply that the gene is 
more relevant. In the case of Task promiscuity, clear differences 
appear, and, admitting that the P-values for Hart2015 are not 
significant, both visually and in DepMap, we can observe sig-
nificant changes. The PPV is 0.15 higher when a gene partakes 
in a single task, so, we expect that genes partaking in multiple 
tasks are going to be less important than those who only partake 
in one task. This result could imply that the inhibited gene, if 
partaking in many different tasks, has multiple readjustments 
that are not considered in the metabolic model, while disrupt-
ing a job-specific gene should have a higher impact in cellular 
metabolism. 

Finally, we checked whether all tasks improve biomass predic-
tions. We noticed that adding more tasks to the analysis increased 
in 47.8% all the detected TPs in lower thresholds, decreasing to 
28.1% more for higher thresholds, yet decidedly increasing the 
FPs 97.9% more for lower thresholds and 45.7% more for longer 
thresholds. The change resulted in a lower PPV of 14.8% less 
for gmcsTH2 and 9.25% for localT2. According to these results, 
we encourage the community to revise and improve further the 
quality of tasks, as it adds a critical number of TPs that could 
broaden the number of candidate genes to study, but currently 
a significantly higher number of FPs.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae115#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae115#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae115#supplementary-data
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All in all, the optimal parameter combination for maximizing 
both TPs and PPVs would involve using gmcsTH2. Therefore, only 
lengths up to five should be considered, and the promiscuity of 
gMCSs should not impact the final results. At this stage, the focus 
is solely on studying the biomass reaction, making an examina-
tion of gene promiscuity among multiple tasks unnecessary. 

METHODS 
Gene expression data 
Validation analysis has been developed using the data available in 
Hart et al. [20], which includes five cell lines: HCT116, HeLa, GBM, 
RPE1 and DLD1, and DepMap, release 21Q4 [21]. RNA-seq data for 
Hart2015 are available in Gene Expression Omnibus database [23] 
under the accession number GSE75189. In the case of DepMap, 
the intersection of cell lines which had both data from CRISPR 
knockout (Achilles-Chronos) and RNA-seq expression consists of 
913 cell lines. Processed gene expression data are available at 
the DepMap (https://depmap.org/portal/download/all/) and  raw  
data at the Sequence Read Archive [24] under accession number 
PRJNA523380 [25]. 

gMCS computation 
The gMCSs were downloaded from gmctool in GitHub: https:// 
github.com/PlanesLab/gmctool. Human1, version 1.4.0, has been 
used as the reference metabolic network, which contains 13,101 
reactions, 8,400 metabolites and 3,628 genes [9]. As aforemen-
tioned, this network defines 57 essential metabolic tasks for any 
human cell, which define the output metabolites that must be 
obtained from a list of input metabolites, subject to reaction 
constraints. Human1 was downloaded from https://github.com/ 
SysBioChalmers/Human-GEM. 

Essentiality analysis 
The five cell lines from Hart2015 have an associated Bayes 
Factor threshold to identify essential genes. Each of them has 
a particular curated value based on a false discovery threshold 
(< 5%). Genes with a score higher than the defined thresholds 
will be considered as essential. The intersection of the predicted 
essential genes with the gMCS approach and the essential genes 
from Hart2015 leads to TPs and FPs. Bayes Factor data for 
Hart2015 were obtained from https://www.cell.com/cms/10.1016/ 
j.cell.2015.11.015/attachment/11268869-c530-4f14-9e70-6a19 
db4bf8d0/mmc3.xlsx. 

For DepMap analysis, essentiality score below −0.6 has been 
considered as essential. This threshold is the same that the one 
used by Robinson et al. [9]. The complete list of essential genes for 
all the cases considered in Hart2015 and DepMap can be found in 
Supplementary Tables 6 and 7 respectively. 

DepMap essentiality score data were downloaded from 
https://depmap.org/portal/download/all/ and, specifically, the 
DepMap21Q4 database, https://depmap.org/portal/download/ 
all/?releasename=DepMap+Public+21Q4&filename=CRISPR_gene_ 
effect.csv. 

Key Points 
• The gMCS approach constitutes a promising network-

based strategy to predict SL and metabolic vulnerabili-
ties in cancer; 

• A review of the gMCS approach, recent extensions and 
future challenges are described and discussed; 

• A systematic analysis and fine-tuning of the gMCS 
approach for gene essentiality analysis in cancer is car-
ried out with two different datasets of large-scale silenc-
ing experiments; 

• We show the important and related role of gene expres-
sion thresholding techniques and length of gMCSs for 
the accurate prediction of essential genes; 

• We emphasize the importance of correctly defining the 
essential metabolic tasks to be blocked, beyond biomass 
production, which is significantly more reliable than the 
rest of essential tasks deemed in Human1 metabolic 
reconstruction. 

SUPPLEMENTARY DATA 
Supplementary data are available online at http://bib.oxford 
journals.org/. 
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repository, all necessary data and code can be found. Due to their 
size, CCLE, DepMap and Hart Data exceed GitHub’s capacity, but 
there are instructions available for downloading these crucial 
datasets. 
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