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Many dietary, pharmaceutical, and genetic interventions have

been found to increase the lifespan of laboratory animals.

Several are now being explored for clinical application. To

understand the physiologic action and therapeutic potential of

interventions in aging, researchers must build quantitative

models.Do interventions delay the onset of aging? Slow it

down? Merely ameliorate some of its symptoms? If

interventions slow some aging mechanisms but accelerate

others, can we detect or predict the systemic consequences?

Statistical and analytic models provide a crucial framework in

which to answer these questions and clarify the systems-level

effect of molecular interventions in aging.This review provides

a brief survey of approaches to modeling lifespan data and

places them in the context of recent experimental work.
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Douglas Adams once said that ‘There is an art to flying, or

rather a knack. The knack lies in learning how to throw

yourself at the ground and miss.’ Immortality requires

learning a similar knack: you must first be born and then

subsequently avoid dying forever. This is challenging in

part because there are many different causes of death to

avoid — accidents, infections, cancer, heart disease,

neurodegenerative disorders — and because our bodies

slowly change in ways that make most of these causes of

death increasingly probable (Figure 1). As the risks of

occurrence for different diseases increase, their contribu-

tions add up to produce a doubling in all-cause mortality

risk approximately every eight years [1]. The specific

physiological changes driving these increases in disease-

specific mortality risk remain uncertain, motivating
www.sciencedirect.com 
intense research into the molecular, cellular, and systems

biology of aging.

The mathematics and statistics used to measure changes

in the risk of death are non-trivial and can often appear

obscure or arcane to experimental biologists. Yet a basic

understanding of the models used to analyze lifespan data

is broadly useful. In a clinical setting, quantitative models

clarify the challenges ahead for proponents of radical

lifespan extension, as delaying or eliminating individual

causes of death will statistically yield only modest incre-

mental increases in lifespan. For example, it is estimated

that curing all cancers would produce less than four years

of extended lifespan [2]. In a basic research setting,

lifespan data usually provides the strongest evidence

for any molecular mechanisms’ involvement in aging. A

working understanding of statistical models allows

researchers to critically evaluate this evidence.

Describing aging using hazard and survival
functions
Analysis of lifespan data is grounded in study of two

related mathematical functions — the survival curve

and the hazard function. The hazard function provides

an intuitive measure of the risk of death, describing the

probability that a typical individual who is currently alive

will soon die. This probability is much higher in older

individuals compared to younger ones, an observation

usually interpreted as evidence of some physiological

weakness or susceptibility to death shared among old

individuals not present in the young. Over the last forty

years, it has become very clear that this increase in risk

does not emerge from some universal natural law. The

shape of hazard functions is a product of evolutionary

forces and varies enormously between species [3]. In fact,

one mammal, the naked mole rat, has recently been

shown to exhibit a nearly constant hazard function [4].

Formally, the hazard function is defined as a conditional

probability, h(t) = lim P(T � t + Dt|T > t) as Dt ! 0, and is

usually estimated and plotted as the rate h(t) = P
(t < T � t + Dt)/P(T > t).

The survival curve is a separate but closely related

function that describes the fraction of a population that

remains alive over time. At the start of an observational

period, this fraction is one and then drops each time an

individual dies. The survival function is formally defined

as the cumulative probability of remaining alive, S(t) = P
(T > t), and is related to the hazard function by

SðtÞ ¼ exp � R t

0
hðtÞdt� �

. Though the hazard function

often provides a clearer visualization of patterns in
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Figure 1
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Systems-level measurement of complex physiological processes. The risk of death from the seven most frequent causes of non-accidental

death is shown, corresponding to 70% of all deaths reported in the USA in 2015 [1]. Cause-specific risks (colored lines) sum up to produce the

all-causes hazard function (black). Each cause exhibits distinctive age-dependent effects, though substantial correlations exist among the causes.
mortality, any model of lifespan data can be equivalently

stated in terms of the survival function.

Identifying changes in lifespan with non-
parametric methods
The analysis of lifespan data usually involves the appli-

cation of a non-parametric test used to identify statisti-

cally significant changes in lifespan. Common methods

include the log-rank, Wilcox, and the modified

Kolmogorov–Smirnov (KS) tests, all of which ask whether

two population’s lifespan correspond to the same under-

lying survival and hazard function. These tests make

relatively few assumptions about the statistical properties

of the underlying lifespan data, and so have remained in

continuous use for decades without substantial modifica-

tion. However, this lack of assumptions limits the types of

conclusions that can be drawn — most non-parametric

tests can show that lifespan has been altered but not

how it has been altered. Recently, non-parametric

approaches have been developed to distinguish changes

in mean lifespan from changes in the variation in lifespan,

as part of a pace-shape framework [5�].
Current Opinion in Cell Biology 2018, 55:129–138 
Modeling the hazard function with parametric
models
Parametric models go beyond non-parametric models by

asserting that lifespan data can be accurately described by

simple mathematic functions with a small number of free

parameters. Where this assumption holds, parametric

functions allow researchers to reason about survival and

hazard functions in simple, intuitive geometric terms. For

example, the commonly used Gompertz model assumes

that populations exhibit hazard functions that increase

exponentially over time (Figure 2a–d), following a

straight line on a log-linear plot.

Different models have been proposed to explain why

physiological aging processes might yield lifespan distri-

butions conforming to simple parametric forms. The

more quantitative of these theories draw on a mix of

reliability theory [17], complex networks theory [18], and

statistical physics [19]. Most common parameterizations

include (or can be re-parameterized to include) a single

parameter that uniquely governs the time-dependent

increase of the hazard functions, called a ‘timescale’ or

‘rate’. Examples include the Gompertz b parameter, the
www.sciencedirect.com
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Figure 2
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Parametric models of lifespan data. Various simple functions have been proposed to approximate empiric lifespan data, shown as models of

survival functions (left) and (right) hazard functions. Median lifespan is marked as a single point on each corresponding curve. Geometric

regularities in the influence of various parameters are marked with gray arrows. (a,b) The Gompertz distribution is commonly employed with the

parameter a that determines the risk of death in animals of zero age and b that determines the rate of increase in risk over time. (c,d) The

www.sciencedirect.com Current Opinion in Cell Biology 2018, 55:129–138



132 Differentiation and disease
Weibull b parameter, and the Inverse Gaussian l param-

eter. Such timescale parameters are generally interpreted

as measuring a population’s ‘rate of aging’, which is some

average speed at which physiologically young individuals

change into old individuals. Empiric data can be used to

distinguish an intervention’s effect on this rate from other

parameters. In this way, interventions can be categorized

according to their distinct effects on different parameters

[20,21,9,22,23�].

The usefulness of any parametric model depend crucially

on whether empiric data do in fact exhibit such patterns,

and the Gompertz model has been shown to provide a

reasonable approximation for some human populations

[6,7] as well as some invertebrate populations [8,9]. Yet,

Gompertzian patterns should not be assumed a priori, as

the shape of hazard functions varies enormously between

species [3] and despite its popularity the Gompertz model

is frequently out-performed by several other two-param-

eter distributions. These include the Weibull model [10]

that assumes a polynomial increase in the risk of death

over time (Figure 2e,f), as well as the inverse-Gaussian

model (Figure 2g,h) which notably has a compelling

theoretic grounding in the statistical physics of random

walks [11,12]. Other parametric alternatives include

Gompertz–Makeham, log-logistic, and log-normal mod-

els. Parameter estimates can be obtained by a variety of

methods [13,14], with maximum-likelihood estimation

approaches [15] almost always producing the most accu-

rate results [16].

The major limitation to parametric methods is that for

most data sets, there does not exist a single unambigu-

ously best parametric form. In cases where different

parameterizations can equally well approximate a data

set, the different parameterizations will provide multiple,

discordant interpretations. Several reasons for this

empiric ambiguity are described in subsequent ‘frailty’

and ‘competing risk’ sections.

Modeling changes in lifespan with semi-
parametric methods
Semi-parametric models improve on parametric

approaches by eliminating the need for risky assumptions

about the shape of survival and hazard functions. Semi-

parametric models parameterize only the difference

between two survival curves — the action of the inter-

vention itself. In this way, semi-parametric models pro-

vide a more flexible means for evaluating interventions in
(Figure 2 Legend Continued) alternate parameterization of the Gompertz m

the a parameter, allowing changes in initial mortality and changes in doublin

both changes in proportional hazards and changes in timescale. (e,f) The W

polynomial of time (in contrast to the exponential increase assumed in by th

lines when plotted on log–log axes, rather than log-linear axes. (g,h) Inverse

functions, and provide a link between lifespan data to the theory of Weiner 
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aging, often with practically equivalent statistical power

as parametric methods [24�].

The two most common families of semi-parametric mod-

els are Proportional Hazards (PH) models and Acceler-

ated Failure Time (AFT) models. Proportional hazards

models assume interventions alter the hazard function to

produce a time-independent proportional change in the

risk of death. In practice, this means that PH models

require that an intervention produces a vertical shift of

the hazard function when plotted on log-linear axes,

equivalent to a change in a Gompertz a or a Weibull b
parameter (Figure 3a,b). PH models are formally defined

by the relation h1(t) = lh0(t), where h1(t) is the hazard

function of a population exposed to some intervention

with h0(t) as the control group. Accelerated failure time

models, in contrast to PH models, assume that interven-

tions produce a temporal rescaling of aging, stretching or

compressing survival curves such that S1(t) = S0(lt)
(Figure 3c,d). This scaling is equivalent to a change in

the Gompertz b or Weibull b parameters. AFT models

offer an intuitive physical interpretation, that interven-

tions extend lifespan by decreasing the rate of the under-

lying molecular or cell biologic processes that determine

the timing of death.

Semi-parametric models are widely used in clinical

research and therefore a deep literature exists exploring

their behavior in diverse contexts [25,26]. Multivariable

methods such as Cox regression and Buckley–James

regression allow multiple influences on lifespan to be

considered, for example where environmental factors

differ between experimental replicates of a single inter-

vention [27�] or when multiple interventions are applied

simultaneously. PH and AFT models often provide very

good approximations of empiric data in a variety of

organisms, including yeast [28�], flies [5�], nematodes

[23�,29�], and mice [30,31]. A variety of approaches exist

to identify and compensate for situations where assump-

tions are not met, including segmenting time or allowing

continuously time-varying hazard ratios [32]. Additive

hazards (AH) models, assuming h1(t) = Dh + h0(t) have

also been suggested [33].

AFT models, unlike PH models, produce residual dis-

tributions that take the same time units as the lifespan

data provided. This allows residuals to subsequently be

used as a time-standardized lifespan distribution for

qualitative comparisons between different populations

[29�] and a convenient means for handling confounding
odel removes the implicit and often missed time-scale dependence of

g time to be isolated, and allowing the Gompertz function to model

eibull distribution models hazard functions that increase as a

e Gompertz model). Weibull hazard functions therefore form straight

 Gaussian distributions exhibit inherently decelerating hazard

Processes and Brownian motion.

www.sciencedirect.com
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Figure 3
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Semi-parametric models of lifespan data. Semi-parametric models describe differences between populations in a way that does not depend on

any particular parametric form of the survival curve of hazard function. (a,b) Proportional hazards functions assume that two populations’ hazard

functions are offset by a constant ratio. (c,d) Accelerated Failure time models assume that two populations’ survival curves are related by a

temporal scaling, corresponding to simultaneous shift of the hazard functions, up and to the right such that h1(t) = lh0(lt). (e,f) Accelerated Failure
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134 Differentiation and disease
effects of environmental factors [34]. In cases where

interventions do not slow the aging process, but rather

delay it by a fixed interval to produce a rigid shift of the

survival curve, interventions can be modeled using simi-

lar methods assuming S1(t) = S0(t � Dt) (Figure 3e,f).

Accounting for heterogeneity within groups
with frailty models
Basic parametric forms like Gompertz and Weibull are

often employed with the implicit assumption that all

individuals in a population age according to the same

parameters. This assumption is rarely justified by experi-

mental data. Even within isogenic populations of labora-

tory animals housed in controlled laboratory conditions,

subpopulations are observed to age in distinctive ways

[35–39,40��]. Heterogeneity can also be produced when

individuals respond unevenly to an intervention

[41,42�,43].

The effect of the heterogeneity on the hazard and sur-

vival functions can be modeled even when it cannot be

explicitly measured. This is accomplished by assuming

the effect of the unmeasured heterogeneity takes a sim-

ple parametric form as it varies between individuals. This

heterogeneity is then incorporated as an extra parameter

in parametric or semi-parametric models and referred to

as a ‘frailty’ or ‘random effect’ term. A two-parameter

Gompertz model, for example, can be modified to

account for heterogeneity in respect to its a parameter

by adding a single additional parameter, s, to represent

the variance of an gamma-distributed Z random variable,

such that the hazard function becomes h(t) = Z(s)a/b exp

(t/b) [44].

Heterogeneity of this kind produces a stereotypic, geo-

metric effect on hazard functions — a progressive decel-

eration of hazard functions relative to the basic underly-

ing parametric form [45]. This deceleration can be large

enough to produce a plateauing (flattening) of hazard

functions (Figure 3g,h). This deceleration arises as a

consequence of high-frailty, high-risk subpopulations

dying earlier than low-frailty and low-risk sub-popula-

tions. As the high-risk individuals die off, the remaining

population increasingly consists of relatively low-risk

individuals. This change in the populations’ composition

counteracts the increasing risk of each individual, pro-

ducing a quasi-stationary state in which the hazard rate

appears flat [46]. Decelerating hazard functions are

observed in most model-organism lifespan data. In some

data sets the effect is subtle, but in many cases late-life

deceleration is a dominant feature that limits the practical
(Figure 3 Legend Continued) time models are easily modified to model po

respect to time. (g,h) The existence of heterogeneity within a population in 

the hazard function and a corresponding long-tail of the survival function.

Current Opinion in Cell Biology 2018, 55:129–138 
application of simple two parameter Gompertz or Weibull

models [45,47,48,29�]. Frailty-associated heterogeneity

also confounds efforts to experimentally identify a ‘true’

distributional form of lifespan distributions produced by

aging. Simple parametric models are most easily distin-

guished by their behavior at late ages, at the tail of the

parametric probability distribution. Heterogeneity masks

the underlying form of these tails, undermining biological

interpretations that depend on empiric justification of

specific parametric forms [29�,49].

Accounting for multiple causes of death with
competing risk models
Competing risks (CR) models explore the idea that

though an organism can die only once, it remains at risk

of dying from multiple possible causes up until the

moment that one particular cause kills it. These models

are most intuitively applied for individuals obviously

suffering from several potentially fatal diseases — for

example cancer patients with cardiovascular conditions

[50]. CR models explore the way different causes of death

interact to determine survival and hazard functions, and

provide a framework in which interpret situations where

interventions do not effect all causes of death equally

[51]. Competing risk models involve data where each

death time Ti is paired with a label Ci describing the cause

of death. This allows an intuitive decomposition of the

all-cause hazard into the sum of several cause-specific

hazard functions, h(t) =
P

ihi(t) =
P

i limP(t � T + Dt|
T > t, C = Ci) as Dt ! 0 [26], shown in Figures 1 and 4

a,b.

Some CR models assume that all individuals share the

same risks for each cause of death, with physiological

changes shared among all individuals nevertheless pro-

ducing qualitatively distinct outcomes (Figure 4a,b).

Other CR models, often called ‘Mixture models’, assume

instead that sub-populations differ in their risks for dif-

ferent causes, with the most extreme case being when

causes of death are predetermined early in life (Figure 4c,

d). The empiric validity of these assumptions is of par-

ticular contemporary interest given the many types of

distinct subpopulations now being identified within iso-

genic populations [52��,53–55].

The assumptions required to formulate CR models are

now used as a rigorous starting point for experimental

researchers attempting to understand the physiological

basis of aging. For example, the temporal scaling of

lifespan distributions has been interpreted using a CR

framework as suggesting that many interventions act
pulations whose survival distributions are shifted (rather than scaled) in

respect to the risk of death produces a deceleration, or leveling-off of

www.sciencedirect.com
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Figure 4
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Modeling different types of heterogeneity. Several techniques exist to describe heterogeneity between individuals within a population and over

time during the aging process. (a,b) Competing risk models describe the effect that multiple causes of death have on a population’s hazard

function. Here, three statistically independent causes of death exhibit different temporal dynamics. One cause (blue) shows a constant risk over

time, another cause (green) increases slowly with age and a third (red) increases rapidly later in life. The cause-specific hazard functions of each

cause sum to produce the all-cause hazard function and survival curve (black). (c,d) In come cases, the cause of death of an individual may be

predetermined early in life, producing distinct subpopulations dying from distinct causes of death. Here, thirty percent of individuals die early

according to one cause of death (red) and the remainder die according to a second cause (blue). In this case, the hazard functions do not strictly

add. (e,f) Survival and hazard functions can be modeled with a ‘change-point’ that separates distinct phases of aging. Though geometrically

compelling, the biological interpretation of segmented hazards is often problematic, as the break-point time must be uncorrelated with each

individual’s death time.
equivalently on all physiologic determinants of the risk of

death [29�]. More generally, competing risk models pro-

vide a quantitative framework for exploring the relation-

ship between different aging mechanisms and their
www.sciencedirect.com 
integrative effect on lifespan. The identification of dis-

tinct causes of death in model systems [52��,56�,57] opens

the door to exploring the mechanistic basis of competing

risk phenomena.
Current Opinion in Cell Biology 2018, 55:129–138



136 Differentiation and disease
Describing multi-stage aging processes
The physiologic processes that transform young individ-

uals into middle age individuals may be distinct from the

physiologic processes transform middle age individuals

into elderly individuals. Several lines of research are

exploring such distinctions based on a variety of observ-

able differences the aging processes working in young and

old individuals, including transitions in gut permeability

[58], changes in rate of morphologic properties like body

size and texture [40��], transcriptomic changes

[59,60,61�], protein aggregation [62,63], and differences

in susceptibility to early-life [52��] or late-life [64] bacte-

rial infection. In some cases, the effect these phases have

on lifespan may be minor, and specialized statistical

techniques may not be needed. However, when individ-

uals in different states exhibit distinctive risks of death,

multi-state models often called ‘illness-death’ models will

be applicable [65].

Change-point models and segmented hazard
functions
A class of models have been proposed that separate aging

into distinct phases relative to a landmark, or ‘change-

point’, specified in chronological time [66–69]. (Figure 4e,

f). The biological interpretation of these models is often

problematic. For a sharp transition to be observed in a

population’s hazard function, all individuals alive at the

change-point must simultaneously switch to the new

phase. The simplest mechanism this would be an external

factor such as a shift in environment or diet, effecting all

individual at the change-point. The segmented hazard

function then would reflect an aspect of the environment

and not aging itself. Absent such external factors, the

change-point would need to be determined by some

intrinsic physiologic process. This process would need

to be independent of the processes determining lifespan,

as individuals variable in their lifespan would neverthe-

less need to switch synchronously between phases. A

more physiologically plausible explanation would be that

segmented hazard functions arise not from a multi-phasic

aging process but instead from the distinct contributions

of unidentified subpopulations to the population hazard

function, as described by competing risks and mixture

models.

Biphasic hazard models in other cases may simply repre-

sent an over-fitting or mis-fitting of empiric data. For

example, an apparently biphasic Gompertzian hazard

function may be better explained by a single-phase

inverse Gaussian distribution or a single-phase Gompert-

zian distribution with an extra parameter correcting for

the effects of frailty.

Summary
Aging research is undergoing a period of rapid discovery

and characterization of genetic, pharmaceutical, and die-

tary interventions in aging. Several of these therapies are
Current Opinion in Cell Biology 2018, 55:129–138 
being explored for translational potential, and lifespan

data from human clinical trials may soon be available in

which patients’ survival is altered by molecular perturba-

tion of basic aging processes. This growing abundance of

lifespan data demands the thoughtful application of sta-

tistical methods.

For these projects, familiar analytic techniques should be

re-evaluated. In particular, researchers should recognize

that the Gompertz hazard parameterization became stan-

dard decades ago, long before the high-resolution data

needed to validate it became available. Experimentalists

should, as an alternative, consider frailty-corrected Gom-

pertz distributions or semi-parametric methods like AFT

or PH regression. Finally, competing risks and mixture

models should seriously considered in situations where

multiple aging processes may influence one or more

outcomes in aging. Employing a diverse set of analytic

approaches, experimentalists can move beyond humble

significance testing to instead use lifespan data as a

versatile means for studying the physiological dynamics

of aging.
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