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A B S T R A C T   

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a pandemic cause of Corona Virus Disease 
(COVID-19), that has claimed numerous human lives across the globe. Main protease being the active protein of 
SARS-CoV-2 requires urgent mitigating effect against the spread of the virus. The therapeutic roles of the active 
compounds present in ten typical African medicinal plants were investigated in this study. Five active compounds 
Curcuma longa (Curcumin and Bisdethoxy curcumin), Garcinia kola (kolaviron), Zingiber officinale (Gingerol) and 
Vernonia amygdalina (Artemisinin) were selected and docked against Main protease through receptor grid gen-
eration, protein ligand docking, receptor ligand complex pharmacophore and binding free energy. The results 
obtained revealed Curcumin had the highest binding score of − 8.628 kcal/mol while artermisinin presented the 
least with − 4.123 kcal/mol. The outcome of the pharmacokinetic prediction in this study revealed high transport 
capacity across the gastrointestinal tract and high blood brain barrier permeability for curcumin, bisdemethoxy 
curcumin, gingerol and artemisinin. The exemption is gingerol with low LD50 value (250 mg/kg), the LD50 of all 
active compounds ranged from 2000 to 4228 mg/kg. Adsorption, distribution, metabolism, excretion and 
toxicity (ADMET) properties exhibited by all compounds portrayed them as non-hepatotoxic, non-cytotoxic, non- 
mutagenic and non-carcinogenic. The active compounds exhibited drug-likeness features against Main protease 
of Covid-19.   

1. Introduction 

The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) as 
well as Middle East Respiratory Syndrome Coronavirus (MERS-CoV) are 
member of Coronaviridae family, which affects species ranging from 
human beings to animals, causing dreadful respiratory diseases [1]. 
Coronavirus 2019 (COVID-19) emerged from severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) as a pandemic [2] discovered in 
Wuhan, Hubei province China, where it was spontaneously transferred 
from animal source like bats as possible sources to human being [3–5]. 
The infection leads to severe respiratory disease after an incubation 
period of 2–14 days [6]. The mode of transmission among human beings 
has been confirmed to be based on contaminated hands, infected sur-
faces and salivary or airway droplets [7]. The death rate has risen to 5, 
620,865 with infection cases at 360,578,392 as at 4:37 p.m. CET, 

January 27, 2022 [8]. When infecting human cells, SARS-CoV-2 attaches 
itself with angiotensin converting enzyme 2, ACE2 [9,10]. ACE2 func-
tions through the decrease blood pressure by lowering the angiotensin 2 
[11,12]. The inflammatory around the lung, through animal research, 
has been shown as been reversible by improving the expression of ACE2 
[13]. Viral proteases enzymes are major drug target; they function 
essentially, in viral protein maturation through proproteins removal 
after translation processes in the cytosol of the host cell. SARS-CoV-2 has 
become medically important coronaviruses because of the resulting 
health challenges [14,15]. The viral particles of coronavirus contain 4 
major structural proteins: spike, membrane, envelope and nucleocapsid 
protein. Spike is a vital target for virus entrance into human cells via 
interaction with the ACE2. Nonstructural proteins possess enzymatic 
activities like proteases alongside RNA polymerase that redirected its 
activities. The blocking of the enzymatic regulations is useful when 
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developing antiviral drugs against SARS-CoV2. SARS-CoV-2 is a 
positive-stranded large RNA genome enveloped betacoronavirus con-
sisting approximately 30 kb of encoded proteins [16–18]. One of them, 
Main protease (3 chymotrypsin-like protease) being a cysteine protease, 
aids maturation cleavage of repeating amino acid units linked by a 
peptide bond in the process of virus reprodution [19–21]. Main protease 
is a homodimer consisting of two promoters: papin-like cyctseine pro-
tease (PL pro) and 3 chymotrypsin-like protease (3CLpro) alongside three 
domains; domain I (residue 8–101), domain II (residue 102–184), and 
domain III (residue 201–303). Domains I and II, are made up of six 
antiparallel β-barrels. An antiparallel globular cluster of five α helices 
forms domain. Domain III is involved in indirect interaction with sub-
strate crucial for enzymatic activity of proteins through the removal of 
inactive protease [22]. Main protease is an upstream enzyme that in-
volves in the SARS-CoV-2 replication and transcription [23]. The pres-
ence of computational model through in-silico screening of potential 
inhibitory role against the Main protease becomes possible. 

Applications of plant extracts in medicine have being historically 
common due to their effectiveness against numerous infections majorly 
in Africa [24]. Approximately 70% of medications are synthesized 
directly or indirectly from the active ingredient present in plant extracts 
nevertheless the high rate of consumption for health improvement is 
observed in rural environment [24,25]. Plant extracts are readily 
available, safe, natural and affordable with limited side effect as 
compared to synthesized drugs. Plants generally are composed of 
phytochemical constituents present in different sections ranging from 
flower, leaf, stem and roots which serves as bioactive compounds 
responsible for numerous therapeutic role like anti diabetic, 
anti-inflammatory, antiviral and anti-microbial effects [26]. There are 
common plants used in Nigeria due to their bioactive compounds and 
previous infection treatment history. Bitter kola (Garcinia kola) is found 
majorly in moist forests of Central and Western African countries 
belonging to the family Guttiferae [27]. The entire parts of the plant are 
of importance, it is orally applied to alleviate poor health status ranging 
from erectile dysfunction, cough, gastric problems and high blood 
pressure. The major biflavonoids present in Garcinia kola is kolaviron 
responsible for its anti-inflammatory, anti-microbial and wound healing 
features [28,29]. Bitter leaf (Vernonia amygdalina) is a small shrub of 
tropical Africa origin belonging to the daisy family. Vernonia amygdalina 
is major traditional dish in some region in Nigeria due to its nutritional 
composition. The presence of artemisinin a bioactive terpenoid present 
in bitter leaf could be responsible for its usefulness in orthodox medi-
cation, being responsible for treating chicken pox, stomach ache, mea-
sles, pneumonia and cancer [30]. Ginger (Zingiber officinale) and 
turmeric (Curcuma longa) are used as cuisines and medicinal spices 
globally [31,32]. They are perennial plants of tropical and subtropical 
Asia Origin. Zingiber officinale contains gingerol as the bioactive com-
pound of phenolic compound and terpeniods while Curcuma longa, 
curcumin being its bioactive ingredient of polyphenol making them 
responsible for various therapeutic functions in aliments like cough, 
cold, fever, arthritis and cancer [30,31]. This study was aimed at char-
acterizing the potency of these medicinal plants against SARS-CoV2 
protease through molecular docking, pharmacophore modelling and 
ADMET studies. 

2. Methods 

2.1. Protein preparation 

The crystal structure of Main protease (PDB ID: 6LU7) resolution 
2.16 Å was retrieved from Protein Data Bank (PDB) repository. The 
sample was prepared employing protein preparation wizard panel of 
Glide [33] to assign bond orders, add hydrogen, create disulfide bonds 
and, fill missing loops and side chains with prime. Water molecules 
outside 3.0 Å of the heteroatoms were detached and the structure 
minimized and optimized employing OPLS3 and PROPKA respectively 

[33,34]. Afterwards, the receptor grid file was created to define the 
binding pocket of the ligands. 

2.2. Ligand preparation 

About sixteen compounds from reviews on phytochemistry and 
medicinal importance of selected herbs commonly used in treating 
various infections and ailments in Nigeria [30]. Their structures 
including that of the standard inhibitor also known as (1s, 
2s)-2-({n-[(Benzyloxy)carbonyl]-L-Leucyl}amino)-1--
Hydroxy-3-[(3s)-2-Oxopyrrolidin-3-Yl]propane-1-Sulfonic Acid (K36) 
were downloaded from the PubChem database were prepared for mo-
lecular docking using Ligprep module [35]. Low-energy 3D structures 
having appropriate chiralities were generated. Possible ionization states 
for each ligand structure were generated at physiological pH of 7.2 ±
0.2. Also generated were stereoisomers for each ligand by maintaining 
specified chiralities and varying others. 

2.3. Receptor grid generation 

Receptor grid generation permits specifying the size and position of 
the protein’s active site for ligand docking. The scoring grid was speci-
fied with respect to the co-crystalized ligand (inhibitors N3) applying the 
receptor grid generation tool of Schrödinger Maestro 12.5. The van der 
Waals (vdW) radius scaling factor of nonpolar receptor atoms of 1.0 and 
partial charge cut-off of 0.25 were applied. 

2.4. Protein-ligand docking 

Molecular docking studies were undertaken with the generated re-
ceptor grid file using Glide tool of Schrödinger Maestro 12.5. The ligands 
already prepared were docked applying standard precision (SP), setting 
ligand sampling to flexible, with the ligand sampling set to none (refine 
only). The vdW radius scaling factor and partial charge cut-off for ligand 
atoms were 0.80 and 0.15 respectively. 

2.5. Receptor-ligand complex pharmacophore modelling 

A receptor-ligand complex pharmacophore model was developed 
with PHASE using the first 3 compounds having the top binding affinity 
towards the target protein. Auto (E-pharmacophore) method was 
applied; hypothesis set at 7 as the highest number of features being 
generated, 2.0 as lowest feature to feature distance, 4.0 as lowest feature 
to feature distance for feature of the same type and donor as vector. 

2.6. Binding free energy calculation 

The Prime MM-GBSA panel was used to determine the binding free 
energy for ligand–protein complexes employing the MM-GBSA tech-
nology available with Prime [36]. The binding free energy of the 
protein-ligand complexes was then used to obtain stability of their 
complexes via Prime MM-GBSA program (Schrödinger suite version 
2020–3). Prior to this, the ligands were prepared by ligprep, while the 
respective proteins were prepared using the protein preparation wizard 
methods as discussed earlier. The active sites of the proteins were pre-
dicted by sitemap. Hence, the compounds were docked with proteins 
using glide SP docking. With OPLS3 force field selected and VSGB 
employed as the continuum solvent model, others were set as default 
[36].1 

2.7. Pharmacology parameters 

The absorption, distribution, metabolism, excretion and toxicity 

1 The authors contributed equally to this work. 
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(ADMET) features of the test compounds were obtained employing in 
silico integrative model predictions on the SwissADME and PROTOX-II 
software respectively. 

3. Results 

3.1. 2D structures of some active compounds present in the medicinal 
plants 

The 2D structures of the five most bioactive constituents of African 
medicinal plants, namely, curcumin, kolaviron, bisdemethoxycurcumin, 
gingerol, and artemisinin were modeled and used as ligands for docking 
studies against Main protease of SARS-CoV-2 (Fig. 1). In the molecular 
docking of the plants active compound against SARS-CoV-2 Main pro-
tease, several active compounds exhibited numerous level of binding 
affinity against the protein of interest, as represented in Table 1. The 
binding affinities ranging from − 8.628 to − 2.236 kcal/mol of the 
change in Gibbs free energy (ΔG) against SARS-CoV-2 Main protease. 
Curcumin has the greatest binding affinity with − 8.628 kcal/mol. The 
binding affinity of kolaviron is − 7.027 kcal/mol, (1s,2s)-2-({n-[(Ben-
zyloxy)carbonyl]-L-Leucyl}amino)-1-Hydroxy-3-[(3s)-2-Oxopyrrolidin- 
3-Yl]propane-1-Sulfonic Acid the standard ligand is − 6.541 kcal/mol, 
bis-demethoxy curcumin is − 4.975 kcal/mol, gingerol is − 4.252 kcal/ 
mol and arteminsin with the least binding affinity of − 4.123 kcal/mol 
among the top five compounds. 3.2. Molecular modeling of biological interactions 

The molecular interaction among the standard inhibitor (K36), Ver-
nonia amygdaline, Garcinia kola, Zingiber officinale and Curcuma longa 

Fig. 1. 2D Structures of active compound present in medicinal plants.  

Table 1 
The docking score (kcal/mol) of the active compound of medicinal plants 
against main proteinase of SARS-CoV-2.  

Active compound Main proteinase of 
SARS-CoV-2 

PubChem 
ID 

Curcumin − 8.628 969516 
Kolaviron − 7.027 155169 
(1s,2s)-2-({n-[(Benzyloxy)carbonyl]-L- 

Leucyl}amino)-1-Hydroxy-3-[(3s)-2- 
Oxopyrrolidin-3-Yl]propane-1-Sulfonic 
Acid 
(standard inhibitor) (K36) 

− 6.541 118737648 

Bis-demethoxycurcumin − 4.975 5315472 
Gingerol − 4.252 442793 
Artemisinin − 4.123 68827 
Nimbic acid − 3.965 25446 
Thymoquinone − 3.931 10281 
Paradol − 3.924 94378 
Nimbolide − 3.883 12313376 
Ibuprofen − 3.727 3672 
Geraniol − 3.42 637566 
Beta-Pinene − 3.188 14896 
Citral − 3.061 638011 
Limonene − 2.9 22311 
Allicin − 2.236 65036 
Alpha-Pinene  6654  
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with the SARS-CoV-2 Main protease, showing the binding pocket of the 
enzyme comprising of various amino acid residue as shown in Fig. 2. 
Artemisinin formed hydrogen bond with GLN 189 and GLU 166; the 
hydrogen bond was formed in gingerol at THR 190 and GLN 189; bis- 
demethoxycurcumin formed hydrogen bond with THR 26, THR 190, 
GLN 189 and GLU 166; moreso, curcumin bonded at the position THR 
26, GLY 143, GLN 189 and THR 190 with hydrogen; kolaviron formed 
hydrogen bond also at GLU 166 and GLY 143 while (1s,2s)-2-({n- 
[(Benzyloxy)carbonyl]-L-Leucyl}amino)-1-Hydroxy-3-[(3s)-2-Oxo-
pyrrolidin-3-Yl]propane-1-Sulfonic Acid (standard K36) binds with 
hydrogen bond at GLN 189 and HIS 41. 

3.3. Adsorption, distribution, metabolism, excretion and toxicity 
(ADMET) properties 

The SwissADMET predictions of lipophilicity, solubility, drug- 
likeness and oral bioavailability of the selected bio active compounds 
are presented as Table 2, the pharmacokinetic features as Table 3 while 
the protox II predicted toxicity profile are as presented in Table 4. The 
water solubility, Log S, of curcumin, kolaviron, bisdemethoxy curcumin 
and -Gingerol were predicted to be moderately soluble while artemisinin 
is soluble. Additionally, the Lipohilicity (Log P) are of the range − 0.48 
for kolaviron to 2.62 for artemisinin. In terms of drug-likeness, the 
outcome of this study indicated that kolaviron violated three of the 
Linpinski rules, while curcumin, bisdemethoxy curcumin, gingerol and 
artemisinin fully obeyed the rules. Additionally, the bioavailability 
scores of curcumin, bisdemethoxy curcumin, gingerol and artemisinin is 
0.55 while that of artemisinin is 0.17 (see Table 5). 

The pharmakokinetic prediction in Table 3 portrayed high transport 
capacity across the gastrointestinal tract and high blood brain barrier 
(BBB) for curcumin, bisdemethoxy curcumin, gingerol and artemisinin. 
However, none of the active compounds is substrate to permeability of 
the glycoprotein (P-gp). Furthermore, bisdemethoxy curcumin, gingerol 
and artemisinin are predicted to be able to inhibit CYP1A2; curcumin, 
kolaviron and bisdemethoxy curcumin are predicted to inhibit CYP2C9 
and CYP3A4. Moreover, curcumin, kolaviron, bisdemethoxy curcumin 
gingerol and artemisinin were predicted not to inhibit CYP2C19 and 
CYP2D6. 

As presented in Table 4, the protoxll-predicated toxicity profile of the 
compounds showed that curcumin, kolaviron, bisdemethoxy curcumin, 
gingerol and artemisinin do not tend to be hepatotoxic, carcinogenic, 
mutagenic and cytotoxic. However, curcumin, kolaviron, gingerol and 
artemisinin are predicted to have immunotoxic potentials. The 

exemption of gingerol with low LD50 value (250 mg/kg), the LD50 of the 
active compound ranged from 2000 to 4228 mg/kg. Moreso, curcumin 
and kolaviron belong to the acute oral toxicity class 4, bisdemethoxy 
curcumin and artemisinin to class 5, and gingerol to class 3. 

3.4. Receptor-ligand pharmacophore modelling 

The active compounds produced pharmacophore models against 
SARS-CoV-2 Main protease. The model revealed four sorts of charac-
teristics:D: Hydrogen Acceptor, A: Hydrogen Donor, H: hydrophobic, 
and R: Aromatic ring which are presented in figure below: Kolaviron 
formed two hydrogen bond donor, two hydrogen bond acceptor and one 
aromatic ring with the enzyme. Curcumin and bisdemethoxy curcumin 
uses two hydrogen donor, hydrogen acceptor and aromatic rings; the 
standard inhibitor requires one hydrogen donor, one hydrogen acceptor 
and one aromatic ring (see Fig. 3). 

3.5. Binding free energy calculation 

The binding free energy of the protein-ligand complexes was 
employed to determine the stability of their complexes via Prime MM- 
GBSA program (Schrödinger suite version 2020–3) (see Fig. 4). 

4. Discussion 

The Coronaviruses are the virus with positive-polarity RNA genome, 
making them to depend less on the host cell during replication. The 
replication occurs in the cytoplasm of the epithelial cells of the respi-
ratory system and the gastrointestinal system [16,18]. The computa-
tional approach of drug design against covid-19 is essential to reduce 
cost, save time and improve output. NADPH and dTDP-4-dehy-
dro-6-deoxy-L-mannose show a significant interaction in silico with the 
active site of Mpro, with a binding energy of 8.5 and 8.6 kcal/mol, 
respectively [37]. This study involved five approaches comprising of 
protein and ligand preparation, receptor grid generation, protein-ligand 
docking, receptor ligand pharmacophore, binding free energy and 
pharmacology parameters. In this study, 5 major bioactive compounds 
of plant extract in addition with standard ligand were docked against 
SARS-CoV-2 Main protease, curcumin had the highest docking score of 
− 8.62 kcal/mol, followed by kolaviron with − 7.027 kcal/mol as 
compared with the standard ligand (K36) − 6.541 kcal/mol. The pres-
ence of flavonoinds and curcumin in Curcuma longa has been shown to 
be responsible for its chemopreventive and physiological effects in many 

Fig. 2a. 3D representations of SARS-CoV-2 3C-like Protease-kolaviron.  
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tumor bioassays and the decreased tumor cell growth [38]. Curcumin 
has been reported to possess antioxidant, anti-inflammatory and anti-
bacterial properties [38]. In-silico approach recently found curcumin as 
safe, being able to also interact in molecular mechanisms with proteins 
[39]. The docking score obtained for curcumin being higher than the 
standard ligand K36 may inform its level of interaction with the active 
site of Main protease of Sars-Cov-2 by forming hydrogen bonds [40,41]. 
The protoxll-predicted toxicity profile of curcumin inferred is 
non-hepatotoxic, non-cytotoxic, non-mutagenic with the LD50 predic-
tion at 2000 mg/kg body weight suggesting that curcumin have good 
therapeutic properties with drug-likeness for oral drug development 
[41–43]. Kolaviron is the active ingredient of Garcinia kola known to 
possess biflavonoids responsible for its numerous health benefits; the 
high docking score may account for its interactions with Main protease 
of covid-19 making it pharmacologically active with numerous phar-
macokinetic properties both in-vivo and in-silico [44,45]. Bisdemethoxy 
curcumin is a derivative of curcumin, composing of polyphenol and 
possess anti-cancer and hepatoprotective effect in-vivo [46]. Further-
more, the in-silico ADMET studies have predicted its role as antiviral 
among many therapeutic functions [47]. Gingerol the active ingredient 
of Zingiber officinale serves as anti-inflammatory agent; gingerol 

intreacts with main protease of covid-19 on the carboxyl and hydroxyl 
ends of the chains which can serve as potential drug target [48]. Arte-
misinin the active component of Vernonia amygdalina and an active 
anti-malaria component [4,49,50], though had the least docking score, 
interact with SARS-CoV-2 Main protease on Glu 166 and Gln 189 
making it a potential drug target [51]. 

These six compounds interacted with important active site amino 
acids residues of the enzyme; curcumin, kolaviron, bisdemethoxy cur-
cumin, gingerol, artemisinin and the standard ligand formed one or 
more hydrogen bonds with Gln 189. Additionally, curcumin, bisdeme-
thoxy curcumin, gingerol, artemisinin, standard K36 formed hydrogen 
bond with amino acid GLN 189 [52]. There were hydrogen interaction 
with curcumin and kolavion on amino acid GLY143, bisdemethoxy 
curcumin and artemisinin on GLU 166 [53,54]. Curcumin and bisde-
methoxy curcumin formed hydrogen bonds on THR26, finally bisde-
methoxy curcumin and gingerol interacted with hydrogen bonds at the 
THR 190 amino acid pocket of the 6LU7 protein of the Main protease of 
covid 19. 

The drug-likeness features which include flexibility, lipophilicity, 
water solubility, molecular size, plasma protein binding, and saturation 
of the compound polarity, determine the orally bioavailability of a 

Fig. 2b. 2D and 3D representations of SARS-CoV-2 3C-like Protease-curcumin.  

Fig. 2c. 2D and 3D representations of SARS-CoV-2 3C-like Protease-Bisdemethoxycurcumin.  
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compound [55,56]. Curcumin, bisdemethoxy curcumin, gingerol and 
artemisinin possess high water solubility, vital transport factor within 
the blood, however kolaviron is poorly soluble. Furthermore, curcumin, 
bisdemethoxy curcumin, gingerol and artemisinin obeyed both Vebers 
and Lipinski rule of five making them orally active. In Veber’s rule, 
compounds that meet only the two criteria of ≤10 rotatable bonds and 
polar surface area ≤140 Å are projected to have good oral bioavailability 
while the Lipinski rule constitutes octanol/water partition coefficient (C 
logP) ≤ 5, number of hydrogen bond acceptors (HBA) ≤ 10, the criteria 
of molecular weight (MW) ≤ 500 with an orally active drug not violating 
beyond one of these criteria [11]. The toxicity profile of active com-
pounds of curcumin, bisdemethoxy curcumin, gingerol and artemisinin 
are not likely to produce any toxic effect on the Hepatocyte and cytosol. 
Moreso, of all the active compounds gingerol is the most toxic com-
pound with the LD50 of 250 mg/kg, while other active compounds 
belonging to oral toxicity class 5 are relatively safe, with LD50 ranging 
from 2000 to 4228 mg/kg. The pharmacokinetic properties of curcumin, 
bisdemethoxy curcumin, gingerol and artemisinin include the underly-
ing role offered by drug-metabolising enzymes like cytochrome P-450 
thereby inhibiting the metabolism of drugs being substrates of one or 
more of the enzymes, resulting in certain degrees of drug-drug 

interaction [54,57,58]. 
Binding free energy determines the stability of the protein-ligand 

complexes [58]; as the binding free energy increases, the 
ligand-bound protein becomes more stable and favorable. Curcumin 
exhibited the highest stability of Main protease, followed by kolaviron, 
the standard, bisdemethoxy curcumin, gingerol and artemisinin. The 
visualization in the scatter plot is thus a validation of how reliable the 
docking procedure is in predicting the active site of the protein. Moreso, 
the main donors to the free binding energy are covalent energy, 
Coulomb energy, lipophilic bonding, hydrogen bonding and van der 
Waals energy. 

5. Conclusion 

The potency of the active ingredients from ten medicinal plants 
common in Southwest Nigeria against Covid-19 virus has been deter-
mined. Five out of sixteen active compounds from the ten medicinal 
plants demonstrated positive inhibitory role against Main protease of 
Covid-19. These include curcumin, kolaviron, bisdemethoxy curcumin, 
gingerol and artemisinin. These active compounds recorded various 
docking scores against main protease of Covid-19 with curcumin being 

Fig. 2d. 2D and 3D representations of SARS-CoV-2 3C-like Protease-Artemisinin.  

Fig. 2e. 2D and 3D representations of SARS-CoV-2 3C-like Protease-Gingerol.  
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the highest having − 8.62 kcal/mol followed by kolaviron with − 7.027 
kcal/mol, the standard ligand with − 6.541 kcal/mol, bisdemethoxy 
curcumin with − 5.641 kcal/mol, gingerol with − 4.975 kcal/mol and 
artemisinin with − 4.252 kcal/mol. These five active compounds retain a 

favorable ADMET profile with none exhibiting any affinity towards 
cytotoxicity, hepatotoxicity, mutagenicity and carcinogenicity. As a 
result, these active compounds may be investigated further through 
experimental studies and possibly developed into novel drugs or sup-
plements for the treatment of Covid-19. 

Ethics approval and consent to participate 

Not applicable. 

Sources of funding 

This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit sectors. 

Consent for publication 

Not applicable. 

Fig. 2f. 2D and 3D representations of SARS-CoV-2 3C-like Protease-standard inhibitor.  

Table 2 
SwissADMET prediction outputs of selected active compounds.  

AC Molecular 
weight 

Mean logp 
(0–3) 

Silicos-IT Log SW (− 0.7 to 
+6.0) 

Silicos-IT 
class 

Lipinski violations (>500 g/ 
mol) 

Veber violations (<140 
Å2) 

Bioavailability Score 
(100%) 

A 368.38 1.47 − 4.45 MS 0 0 0.55 
B 588.52 − 0.48 − 5.76 MS 3 1 0.17 
C 308.33 2.13 − 4.23 MS 0 0 0.55 
D 294.39 2.14 − 4.58 MS 0 0 0.55 
E 282.33 2.62 − 2.03 S 0 0 0.55 

A = Curcumin, B=Kolaviron, C=Bisdemethoxycurcumin, D = Gingerol, E = Artemisinin, AC = Active compound; S=Soluble; MS = Moderately Soluble. 

Table 3 
Pharmacokinetics prediction output of selected active compounds.  

AC GI A BBBP Pgp CYP1A2I CYP2C19I CYP2C9I CYP2D6I CYP3A4I 

A High No No No No Yes No Yes 
B Low No No No No Yes No Yes 
C High Yes No Yes No Yes No Yes 
D High Yes No Yes No No No No 
E High Yes No Yes No No No No 

A = Curcumin; B=Kolaviron; C=Bisdemethoxy curcumin; D = Gingerol; E = Artemisinin AC = Active compound; GIA = GI Absorption; BBB––BBB permeant; Pgp =
Pgp substrate; CYP1A2I = CYP1A2 inhibitor; CYP2C19I = CYP2C19 inhibitor; CYP2C9I = CYP2C9 inhibitor; CYP2D6I = CYP2D6 inhibitor; CYP3A4I = CYP3A4 
inhibitor. 

Table 4 
Protoxll-predicated toxicity profile of selected active compound.  

AC H T C T IT MT CT LD50 

(mg/kg) 
PTC 

A Inactive Inactive Inactive Inactive Inactive 2000 4 
B Inactive Inactive Inactive Inactive Inactive 2000 4 
C Inactive Inactive Active Inactive Inactive 2560 5 
D Inactive Inactive Inactive Inactive Inactive 250 3 
E Inactive Inactive Inactive Inactive Inactive 4228 5 

A = Curcumin; B=Kolaviron; C-Bisdemethoxy curcumin, D-Gingerol, E− Arte-
minsinin 
HT=Hepatotoxicity; CT=Carcinogenicity; IT=Immunotoxicity, CT=Cytotox-
icity; PTC=Predicted Toxicity Class. 
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Table 5 
Binding free energy calculations of top five hit compounds against main protease.  

AC ΔGBinda ΔG_Coulombb ΔG_Covalentc ΔG_Hbondd ΔG_Lipoe ΔG_Packingf ΔG_vdWg 

A − 59.50 − 36.72 7.61 − 2.49 − 17.82 − 0.81 − 41.05 
B − 61.33 − 41.99 6.91 − 3.84 − 7.34 − 4.52 − 39.90 
C − 42.99 28.22 6.75 − 1.32 − 20.49 − 0.34 − 53.66 
D − 52.87 − 28.69 4.06 − 2.43 − 13.31 − 1.33 − 29.12 
E − 45.10 − 17.89 7.47 − 1.62 − 16.75 − 0.51 − 33.12 
F − 22.12 1.34 − 0.01 − 1.13 − 7.20 0 − 26.67 

AC-Active compound A-Curcumin B-Kolaviron C- (1s,2s)-2-({n-[(Benzyloxy)carbonyl]-L-Leucyl}amino)-1-Hydroxy-3-[(3s)-2-Oxopyrrolidin-3-Yl]propane-1-Sulfonic 
Acid D-Bis Demethoxy curcumin E-Gingerol F-Artemisinin. 

a MM-GBSA free energy (kcal/mol) of binding. 
b Contribution to the MM-GBSA free energy of binding (kcal/mol) from the Coulomb energy. 
c Contribution to the MM-GBSA free energy of binding (kcal/mol) from hydrogen bonding. 
d Contribution to the MM-GBSA free energy of binding (kcal/mol) from lipophilic binding. 
e Contribution to the MM-GBSA free energy of binding (kcal/mol) from packing binding. 
f Contribution to the MM-GBSA free energy of binding (kcal/mol) from solvent GB binding. 

Fig. 3. Pharmacophore models of kolaviron, curcumin, Bisdemethoxy curcumin and (1s,2s)-2-({n-[(Benzyloxy)carbonyl]-L-Leucyl}amino)-1-Hydroxy-3-[(3s)-2- 
Oxopyrrolidin-3-Yl]propane-1-Sulfonic Acid on SARS-CoV-2 Main proteinase. 

Fig. 4. Binding free energy MMGBSA dG Bind (ΔGbind) versus docking score 
(kcal/mol). 
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