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Abstract

Motivation: A major cause of autosomal dominant disease is haploinsufficiency, whereby a single

copy of a gene is not sufficient to maintain the normal function of the gene. A large proportion of

existing methods for predicting haploinsufficiency incorporate biological networks, e.g. protein-

protein interaction networks that have recently been shown to introduce study bias. As a result,

these methods tend to perform best on well-studied genes, but underperform on less studied

genes. The advent of large genome sequencing consortia, such as the 1000 genomes project,

NHLBI Exome Sequencing Project and the Exome Aggregation Consortium creates an urgent need

for unbiased haploinsufficiency prediction methods.

Results: Here, we describe a machine learning approach, called HIPred, that integrates genomic

and evolutionary information from ENSEMBL, with functional annotations from the Encyclopaedia

of DNA Elements consortium and the NIH Roadmap Epigenomics Project to predict haploinsuffi-

ciency, without the study bias described earlier. We benchmark HIPred using several datasets and

show that our unbiased method performs as well as, and in most cases, outperforms existing

biased algorithms.

Availability and Implementation: HIPred scores for all gene identifiers are available at: https://

github.com/HAShihab/HIPred.

Contact: h.shihab@bristol.ac.uk or tom.gaunt@bristol.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Technological advances and the falling costs of next-generation

sequencing technologies have accelerated the identification of gen-

etic variation in the human genome (The 1000 Genomes Project

Consortium, 2012). The most common form of genetic variation is

single nucleotide variants (SNVs) and small insertions/deletions

(INDELs). Identifying which of these are functional promises to

improve our understanding of the molecular mechanisms of human

disease and lead to novel treatments. As a result, there is a plethora

of in silico algorithms capable of predicting the functional impact

of SNVs and INDELs, e.g. (Choi et al., 2012; Kircher et al., 2014;

Ritchie et al., 2014; Shihab et al., 2013, 2015). On the other hand,

loss-of-function (LoF) variants, i.e. truncating mutations and

whole gene deletions, have traditionally been considered to be rare

and highly deleterious. However, there is growing evidence to sug-

gest that LoF variants are common amongst healthy individuals

(MacArthur et al., 2012; Ng et al., 2008; Pelak et al., 2010).

Haploinsufficiency, whereby a single copy of a gene product is not

sufficient to maintain the normal function of the gene, is just one

possible biological mechanism implicating LoF variants to abnor-

mal phenotypes (Veitia and Birchler, 2010). Prediction of haploin-

sufficiency is an important aspect to interpreting whole genome

sequence data, in which each individual will have a number of non-

sense and missense mutations. Therefore, accurate methods for
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identifying haploinsufficiency within the genome are of increasing

importance.

A large proportion of the existing algorithms for predicting hap-

loinsufficiency utilize biological networks, such as protein–protein

interaction networks. However, it has been shown that commonly

used biological networks are heavily affected by study bias

(Steinberg et al., 2015); i.e. well studied genes are over-represented

with respect to the number of networks they are part of and the

number of links they form within these networks. As a result, these

methods tend to perform best on well-studied genes but underper-

form on less studied genes. Steinberg et al. (2015) constructed an un-

biased genome-wide haploinsufficiency score (GHIS) by replacing

these biological networks with co-expression networks. However,

other potentially informative sources for functional annotation in-

clude the Encyclopaedia of DNA Elements (ENCODE) consortium

(The ENCODE Project Consortium, 2012) and the NIH Roadmap

Epigenomics Project (Roadmap Epigenomics Consortium et al.,

2015). Following our previous work (Shihab et al., 2015), we de-

scribe a machine learning approach (called HIPred) that integrates

genomic and evolutionary features with functional annotations from

ENCODE and NIH Roadmap Epigenomics to predict haploinsuffi-

ciency. We observe improved performance when compared with five

existing methods, but without the potential study bias described

earlier. Pre-computed HIPred scores for all gene identifiers

(GRCh37) are available at: https://github.com/HAShihab/HIPred.

2 Materials and methods

2.1 Datasets
We assembled two datasets for training: our positive dataset was

constructed using 299 known haploinsufficient genes from (Dang

et al., 2008) and our negative dataset was constructed using 386 pu-

tative loss-of-function tolerant (LoFT) genes from (MacArthur

et al., 2012). After removing records with conflicting annotations

and ambiguous mappings, we retained 298 haploinsufficient and

386 LoFT genes.

Following a similar procedure described in Steinberg et al.

(2015), we used the following benchmarks from (Petrovski et al.,

2013) to evaluate the performance of HIPred: 175 genes listed as

haploinsufficient in OMIM (OMIM HI), 108 genes listed as hap-

loinsufficient with known de novo mutations in OMIM (OMIM HI

de novo), 91 genes for which a heterozygous gene knockout causes

‘lethality’ phenotypes in mouse (MGI Lethality) and 95 genes for

which a heterozygous gene knockout causes seizures in mouse (MGI

Seizures). Next, we collected a list of 59 genes disrupted by de novo

LoF mutations in autism probands (ASD1) (Iossifov et al., 2012)

and a further 64 genes disrupted by de novo LoF mutations in other

sets of autism probands (ASD2). (Neale et al., 2012; O’Roak et al.,

2012; Sanders et al., 2012). The composition of haploinsufficient

genes across these benchmarks, and their overlap with our training

data, is summarized in Supplementary Table S1. The actual genes

used in these benchmarks are given as Supplementary Material.

Finally, for each gene, we also obtained the number of associated

publications in PubMed using the NCBI Entrez Search and Retrieval

System and used this as a measure of how ‘well-studied’ these genes

are.

2.2 Feature groups
Following our previous work (Shihab et al., 2015), we annotated

our datasets using a number of feature groups, which could be pre-

dictive of haploinsufficiency. A detailed description of these feature

groups can be found in Supplementary Table S2, but a short descrip-

tion is as follows:

• Genomic and evolutionary: we used a number of genomic prop-

erties such as the length of the gene, number of transcripts and

the average number of predicted protein domains across tran-

scripts. A comprehensive set of conservation-based measures,

such as dN/dS ratios between human and 65 different species

(one-to-one orthologues), was also used. In addition, we also

tested whether the number of observed rare variants (MAF <

0.01) from the Exome Aggregation Consortium (ExAC) (Lek

et al., 2016), the number of expected rare variants across the

gene, and a z-score representing the deviation of observed from

expected added any predictive value.
• Histone modifications: we used regions of enrichment based on

histone ChIP-seq peak calls from ENCODE and NIH Roadmap

Epigenomics.
• Open chromatin: we used regions of enrichment based on

DNase-seq and Formaldehyde-Assisted Isolation of Regulatory

Elements peak calls from ENCODE and NIH Roadmap

Epigenomics.
• Transcription factor-binding sites: based on PeakSeq and SPP

peak calls for 119 transcription factors across 77 cell lines from

ENCODE.
• Gene expression: based on RNA-seq signal coverage using con-

solidated epigenomes from NIH Roadmap Epigenomics.
• Methylation: based on whole genome bisulphite sequencing from

NIH Roadmap Epigenomics.
• Digital genomic footprinting sites: for transcription factor recog-

nition sequences within DNase-hypersensitive sites using consoli-

dated epigenomes from the NIH Roadmap Epigenomics Project.
• Networks: we used measures of centrality from cell-type specific

interactome and tissue-specific co-expression networks.

As described in the Supplementary Material, the majority of our

feature groups comprise multiple annotations across a gene. For ex-

ample, there could be multiple ChIP-seq values across a given region

(one value for each position). In these instances, we used the median

value across the region. We also tested other summary measures,

specifically the mean and maximum value across a region; however,

these summaries did not yield any significant improvements in the

overall performance of our method (data not shown).

2.3 Data integration
The resulting product of our data preparation is several large matri-

ces comprising data from the above feature groups, each of which

can have different measurement scales. Therefore, we investigated

three approaches for data integration (see Fig. 1). First, we evaluated

data integration at the data level (i.e. concatenating datasets into a

single matrix). This form of data integration is the simplest and

most intuitive; however, combining feature groups in this way cre-

ates additional analytical challenges. For example, classifiers will

need to handle a larger number of heterogeneous features.

Therefore, we used a gradient boosted machine (Chen and Guestrin,

2016) as they can handle heterogeneous datasets, are robust to miss-

ing data and can estimate the relative importance of features. To il-

lustrate the potential benefits of using a gradient boosted machine

on this type of data, as opposed to alternative machine learning al-

gorithms, we also evaluated the performance of a support vector

machine (SVM) (Campbell and Ying, 2011) on the same task.

Next, we evaluated data integration based on multiple kernel

learning (MKL). In MKL, feature groups are encoded into a
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corresponding base kernel K‘ (where ‘ ¼ 1; . . . ;p if there are p fea-

ture groups), from which we can derive a composite kernel matrix

K ¼
Pp

‘¼1 k‘K‘. This composite kernel can then be used with a

kernel-based classifier such as the SVM, which was the classifier

used here. The k‘ are kernel weights where
Pp

‘¼1 k‘ ¼ 1 and k‘ � 0.

These weights can be adjusted according to the relative informative-

ness of the different feature groups. We used an L1-norm to yield

sparse solutions that implicitly excludes uninformative feature

groups by assigning them zero weight.

Finally, we evaluated data integration based on stacking. Here,

each feature group was tested against a number of machine learning

algorithms, e.g. naı̈ve Bayes, SVMs and random forests, and the best

performing algorithm was chosen as the base classifier for the group

C‘ (where ‘ ¼ 1; . . . ; p if there are p feature groups). These base clas-

sifiers were then ’stacked’ (i.e. combined) using a logistic regression:

log p
1�p

� �
¼
Pp

i¼1 biCi þ a, where the bi of each base classifier was

deduced through the regression process. As with MKL, we used an

L1-norm to implicitly exclude uninformative feature groups by as-

signing them zero coefficient.

We present our results using several performance statistics, such

as the overall accuracy, sensitivity and specificity. In addition, we

provide receiver operating characteristic (ROC) curves and area

under the curve (AUC) statistics. Individual algorithm parameters,

e.g. the SVM cost parameter C, were optimized through a 10-fold

cross-validation and grid search.

To remove the potential bias caused by the random partitioning

of the datasets during cross validation, we repeated our analysis 30

times and report the mean values and SDs above 0.01. In order to al-

leviate any performance artifacts arising from potential gene similar-

ity within our training dataset, we performed a gene similarity

analysis using NCBI’s BLASTCLUST algorithm using the following

parameters: -p F, -L 0.6, -b F and -S 10.

Finally, we performed a feature selection analysis to identify im-

portant features and improve model interpretation. All analyses in

this study were performed using scikit-learn (Pedregosa et al., 2011),

SHOGUN (Sonnenburg et al., 2010) and xgboost (Chen and

Guestrin, 2016).

2.4 Sequential learning
Both MKL and stacking rely on the assumption that data are avail-

able in every feature group for every training example. However, in

practice, data can be absent from some feature groups, e.g. not every

position in the genome will have annotations for Open Chromatin.

We could use all available feature groups, but this would result in

fewer training examples. With all values present for all feature

groups, our training dataset consisted 156 haploinsufficient genes

and just 52 LoFT genes. On the other hand, we could use a smaller

number of feature groups, but with many more training examples.

Therefore, we opted for an iterative sequential learning approach to

determine the best combination of base kernels (MKL) and classi-

fiers (stacking) (Rogers et al., 2015). Here, we rank the base kernels/

classifiers based on their individual cross-validation performance.

Then, starting with the best performing base kernel/classifier, we it-

eratively add feature groups and retest the combined model using

the same cross-validation procedure. If performance improves, then

the feature group is added to the final model and the process is re-

peated until no more feature groups can be added.

2.5 Comparison with existing methods
For each of the benchmarks described in Datasets, we compared

HIPred with 5 alternative methods that could be used to predict hap-

loinsufficiency: predicted haploinsufficiency probabilities, HIS and

HIS Imputed (Huang et al., 2010); predicted gene indispensability

scores (IS) (Khurana et al., 2013); Residual Variance Intolerance

Scores (RVIS) (Petrovski et al., 2013); Evolutionary Intolerance

(EvoTol) (Rackham et al., 2014); and predicted genome-wide hap-

loinsufficiency probabilities (GHIS) (Steinberg et al., 2015). In add-

ition, we evaluated the correlation between each of the methods

evaluated based on the absolute Spearmando rank correlation

coefficient.

3 Results

3.1 Performance of the method
On our training dataset, the performance of existing methods

ranged from 0.6929 to 0.8549, with the HIS (Imputed) probabilities

achieving the highest AUC (see Table 1). However, due to potential

overlaps between this dataset and the datasets used to train these al-

gorithms, the performances reported here may be over-inflated and

may not represent the true generalizability of existing methods (see

section 3.2 below).

Next, we evaluated the performance of a gradient boosted ma-

chine, i.e. data integration at the data level. In terms of AUC, the

performance of our gradient boosted machine outperformed all

existing methods with an average AUC of 0.8940. Comparing the

performance of a gradient boosted machine and SVMs, we achieved

a nominal AUC of 0.8133 using SVMs; thereby highlighting the

Fig. 1. Methods for integrating feature groups: (a) feature groups are combined at the data level and fed into a single classifier; (b) feature groups are encoded as

base kernels and combined using MKL; and (c) feature groups are used to construct heterogeneous base classifiers which are then combined using a stacking

approach
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potential pitfalls of integrating large heterogeneous datasets at the

data level.

In our experiments, the highest performing MKL model com-

prised seven feature groups and achieved an average AUC of

0.8747. Here, Genomic and Evolutionary was the highest perform-

ing individual feature group with an average AUC of 0.8179, fol-

lowed by Open Chromatin and Histone Modifications from the

NIH Roadmap Epigenomics Project (i.e. gappedPeak and

narrowPeak) with an average AUC of 0.8103 and 0.8035, respect-

ively. Histone Modifications from ENCODE yielded an average

AUC of 0.7518. We observed a performance boost of 4.61% during

the first stage of our sequential learning approach. However, we

observed minor improvements at each subsequent iteration.

Interestingly, MKL assigned the largest weight to Histone

Modifications from ENCODE (0.6056), whose individual perform-

ance was ranked 4th overall, followed by Genomic and

Evolutionary (0.2233) and Open Chromatin/Histone Modifications

(narrowPeak) from NIH Roadmap Epigenomes Project (0.1701). A

lower weight was assigned to gappedPeak and broadPeak (0.0008

and 0.0001, respectively), probably because of the similarities be-

tween these feature groups and the narrowPeak feature group (see

Supplementary Tables S3 and S4).

The best performing stacked model comprised four feature

groups and had an average AUC of 0.8866. As with MKL, Genomic

and Evolutionary was the best performing feature group with an

average AUC of 0.8196, followed by Open Chromatin and Histone

Modifications (narrowPeak) with an AUC of 0.8794. However, in

contrast to MKL, we observed a small performance boost of 0.38%

after the initial sequential learning iteration. In our experiments, the

most informative feature group was Genomic and Evolutionary

with a regression coefficient of 4.0810, followed by Gene

Expression and Open Chromatin (regression coefficients 2.1805 and

2.1391, respectively). Despite the best performing model comprising

four feature groups during cross-validation, the final logistic regres-

sion assigned zero coefficients to one of these feature groups (see

Supplementary Tables S5 and S6).

From our analysis, it would appear that all 3 data integration

classifiers evaluated outperform existing methods, with a classifier

based on integration at the data level performing best. However, the

difference in performance between these three data integration tech-

niques evaluated is marginal. Nonetheless, for maximum perform-

ance and improved model interpretation, the final version of HIPred

is based on a gradient boosted machine. All subsequent analyses pre-

sented are based on this version.

Next, we tested for potential gene similarity (at the nucleotide

level) within our training data using the NCBI BLASTCLUST algo-

rithm. Using a minimum sequence identity and sequence coverage of

60%, we did not find any gene clusters.

Finally, we performed a feature selection analysis to identify the

most informative features (see Fig. 2). The most important feature

identified from this analysis was the ExAC (E) missense z-scores for

the deviation of observed missense variants from expectation (gain

¼ 0.34), followed by several cell-type specific interactomes (I), such

as the Mesenchymal Precursor (gain ¼ 0.09), and genomic/evolu-

tionary features (G), such as the dN/dS ratios and percent identity

with other Ensembl genomes. We also assessed the performance of

our final model using a progressive number of features and found

that a maximum tree depth of 2 yields optimal performance (see

Supplementary Material).

3.2 Performance using known and candidate disease

genes
We evaluated HIPred on a set of known human disease-associated genes

and mouse model equivalents. After removing genes that were present

in our training data (see Supplementary Table S1), we were left with 81

OMIM HI and 49 OMIM HI de novo genes. Following the procedure

described in Steinberg et al. (2015), we matched these genes to an equal

number of random genes based on gene length, which were assumed to

be neutral. In general, HIPred outperformed the RVIS, EvoTol and

GHIS across both OMIM datasets (see Table 2). Furthermore, HIPred

marginally outperformed the HIS (both imputed and non-imputed) and

Indispensability probabilities. However, these OMIM datasets comprise

some of the most studied genes which could artificially inflate the

observed performances of biased predictors. ROC curves are made

available as Supplementary Figure S1.

Next, we tested these methods using a set of genes for which a

heterozygous gene knockout causes ‘lethality’ phenotypes and seiz-

ures in mouse. After removing genes that were also present in our

training data, we were left with 75 MGI Lethality and 90 MGI

Seizure genes, which were matched using the same procedure as

above. From our analysis, it would appear that HIPred outperforms

all other methods across these datasets. Although the performance

Table 1. Performance of haploinsufficiency predictors on our training data

Method Accuracy Sensitivity Specificity Precision NPV AUC

EvoTol 0.6367 0.5577 0.7988 0.6905 0.6917 0.6929

GHIS 0.7069 0.7178 0.6327 0.6578 0.6951 0.7450

RVIS 0.8129 0.7895 0.7596 0.7059 0.8316 0.8329

HIS 0.6707 0.6683 0.8383 0.8354 0.6731 0.8412

IS 0.8478 0.8403 0.7017 0.6779 0.8547 0.8489

HIS (Imputed) 0.6195 0.5155 0.9257 0.8581 0.6867 0.8549

HIPreda 0.9032 0.8846 0.8919 0.8519 0.9167 0.8940

Note: NPV, negative predictive value; AUC, area under the curve.
aThe reported performance of HIPred is the average performance observed across our repeated cross-validation procedure.

Fig. 2. Informative features used for predicting haploinsufficient genes
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of HIPred appears to drop on the MGI Seizures datasets, the drop in

performance is not as drastic as that observed with other methods.

Using the number of associated publications in PubMed as a

proxy of how well genes are studied, we tested whether the MGI

dataset was enriched for less-studied genes compared with the

OMIM datasets. Although the median number of publications was

lower in the MGI datasets, we did not reach statistical significance

using a Mann-Whitney U-test (P ¼ 0.13 for MGI Seizures versus

OMIM HI and P ¼ 0.34 for MGI Lethality versus OMIM HI).

Therefore, we also tested these methods on a set of candidate disease

genes linked to autism (ASD1 and ASD2). These datasets were

statistically enriched for less studied genes than the OMIM datasets

(P ¼ 0.02 for ASD1 versus OMIM HI and P ¼ 0.01 ASD2 versus

OMIM HI). After removing genes that were also present in our

training data, we matched the remaining genes to to a random set of

genes based on gene length as above. Our analysis shows that the

performance of all methods drops significantly on these datasets,

with RVIS performing best. The performance of HIPred is compar-

able to GHIS across the ASD datasets. However, it should be noted

that we cannot be sure which ASD genes are casual (Steinberg et al.,

2015). Therefore, the results of this benchmark should be inter-

preted with some caution.

Table 2. Performance of methods used for predicting haploinsufficiency on known disease genes and mouse models

Method Accuracy Sensitivity Specificity Precision NPV AUC

OMIM HI

EvoTol 0.5232 0.5263 0.7358 0.7407 0.5200 0.6477

GHIS 0.8077 0.8630 0.3621 0.6300 0.6774 0.6845

RVIS 0.7593 0.8354 0.2807 0.6168 0.5517 0.6609

HIS 0.6604 0.7049 0.6923 0.7818 0.6000 0.7303

IS 0.7869 0.8354 0.5172 0.7021 0.6977 0.7451

HIS (Imputed) 0.4933 0.4722 0.8333 0.8095 0.5128 0.7156

HIPred 0.7606 0.7821 0.6026 0.6630 0.7344 0.7543

OMIM HI de novo

EvoTol 0.5455 0.5455 0.7273 0.7273 0.5455 0.6959

GHIS 0.8361 0.8889 0.2973 0.6061 0.6875 0.7135

RVIS 0.8667 0.9149 0.2500 0.6143 0.6923 0.6965

HIS 0.7188 0.7568 0.6923 0.7778 0.6667 0.7599

IS 0.8286 0.8723 0.4857 0.6949 0.7391 0.7350

HIS (Imputed) 0.5455 0.5349 0.8333 0.8214 0.5556 0.7357

HIPred 0.8919 0.9130 0.5217 0.6562 0.8571 0.7902

MGI lethality

EvoTol 0.4928 0.5000 0.7174 0.7292 0.4853 0.6258

GHIS 0.7576 0.8235 0.3958 0.6588 0.6129 0.6725

RVIS 0.6697 0.7600 0.3636 0.6706 0.4706 0.6523

HIS 0.5600 0.5926 0.7742 0.8205 0.5217 0.7210

IS 0.6949 0.7568 0.5200 0.7000 0.5909 0.7065

HIS (Imputed) 0.4676 0.4478 0.8537 0.8333 0.4861 0.7632

HIPred 0.7872 0.7973 0.7027 0.7284 0.7761 0.8143

MGI seizures

EvoTol 0.5341 0.5287 0.7164 0.7077 0.5393 0.6611

GHIS 0.6748 0.7619 0.2879 0.5766 0.4872 0.5826

RVIS 0.7440 0.8222 0.2836 0.6066 0.5429 0.5748

HIS 0.4759 0.5000 0.6327 0.6786 0.4493 0.5428

IS 0.7000 0.7667 0.4143 0.6273 0.5800 0.5767

HIS (Imputed) 0.3854 0.3140 0.7231 0.6000 0.4434 0.5479

HIPred 0.7073 0.7333 0.5682 0.6346 0.6757 0.7024

ASD 1

EvoTol 0.4016 0.2400 0.8478 0.6316 0.5065 0.4978

GHIS 0.7429 0.8085 0.3043 0.5429 0.6087 0.5185

RVIS 0.7468 0.8077 0.3778 0.6000 0.6296 0.6925

HIS 0.3563 0.2000 0.6316 0.3333 0.4615 0.4023

IS 0.5158 0.5660 0.4043 0.5172 0.4524 0.4621

HIS (Imputed) 0.3684 0.2174 0.7442 0.4762 0.4706 0.4426

HIPred 0.6049 0.6667 0.3542 0.5079 0.5152 0.4948

ASD 2

EvoTol 0.4015 0.2931 0.7308 0.5484 0.4810 0.4428

GHIS 0.6757 0.7647 0.2245 0.5065 0.4783 0.5646

RVIS 0.6905 0.7593 0.3400 0.5541 0.5667 0.6259

HIS 0.4490 0.4130 0.7143 0.6552 0.4808 0.5609

IS 0.6275 0.6724 0.4630 0.5735 0.5682 0.5923

HIS (Imputed) 0.3750 0.2857 0.7273 0.5714 0.4444 0.5483

HIPred 0.6211 0.6667 0.4259 0.5373 0.5610 0.5640

Note: NPV, negative predictive value; AUC, area under the curve.
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3.3 Rank correlation between methods
Following the above benchmarks, we tested the correlation in gene

ranks between the methods (based on absolute Spearman’s rank cor-

relation coefficient, see Table 3). Unsurprisingly, the highest correl-

ation was observed between HIS and HIS (Imputed). Disregarding

the HIS scores, rank correlations fall in the range 0.03–0.58, with

correlations between EvoTol and all other methods being generally

low. It appears that HIPred has a moderate correlation with all

existing methods (coefficients range from 0.4994 to 0.5739, with

the exception of EvoTol which yields a correlation coefficient of

0.0478).

4 Discussion

In this study, we outlined HIPred, an integrative approach that com-

bines genomic and evolutionary features with functional annota-

tions from ENCODE and Roadmap Epigenomics to predict

haploinsufficiency. We evaluated 3 approaches for data integration:

integration at the data, kernel (MKL) and classifier (stacking) level;

and observed improved performances over existing methods using

all data integration techniques. In our experiments, we observed

that MKL and stacking classifiers outperformed classifiers con-

structed for one type of data. However, we found that the most in-

tuitive data integration technique, i.e. integration at the data level,

outperformed other (more complex) data integration techniques.

We observed comparable performances to existing methods using

SVMs on the integrated data, but improved performances using a

gradient boosted machine. The improved performance may be the

result of the implicit feature selection performed in gradient boosted

machines. Therefore, it may be possible to improve the performance

of our MKL-based classifier using feature selection before data inte-

gration. However, our stacking classifier uses random forests (which

are also tree-based methods similar to gradient boosted machines)

for most feature groups and therefore performs some form of feature

selection before data integration, so it is unclear how much benefit

MKL would gain from feature selection. One main advantage to in-

tegration at the data level is the ability to capture the potential rela-

tionships between features across feature groups (which are missed

using MKL and stacking based approaches).

We benchmarked HIPred using several datasets and have shown

that our method performs as well as, and in most cases, outperforms

existing algorithms. An important issue to consider when comparing

the performance of any prediction algorithm is the benchmark being

used. Here, it is preferable to use blind datasets, i.e. data that have

not been used to train the algorithm, to minimize any bias in the

observed performance. Although we took care to reduce this bias in

our results by performing an extensive cross-validation analysis and

excluding genes from our benchmarks that were also present in our

training data, this level of testing is not possible with alternative

methods as it would require training each method using common

data. Therefore, the performance of alternative methods may be

inflated. Furthermore, it has been shown that most biological net-

works used in existing methods are effected by study bias (Steinberg

et al., 2015), i.e. well-studied genes are over-represented in these

networks compared with less studied genes. As a result, existing al-

gorithms may not generalize well to less studied genes. For example,

the performance of most existing algorithms drops when predicting

on the MGI datasets, which comprise less studied genes. In contrast,

HIPred doesn’t appear to be affected by this study bias and outper-

forms existing methods on these datasets.

Other important factors to consider when evaluating predictive

methods are potential artifacts in performance arising due to gene

similarity. Although we did not observe any gene similarities within

our training data at the nucleotide sequence (up to 60% sequence

similarity), we did not test for potential gene similarities at the pro-

tein sequence level.

The advent of large genome sequencing consortia, such as the

1000 genomes project (The 1000 Genomes Project Consortium,

2012), NHLBI Exome Sequencing Project (ESP) and the ExAC (Lek

et al., 2016), creates an urgent need for unbiased haploinsufficiency

prediction methods such as HIPred.
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