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Abstract: Hydroxytyrosol and two other polyphenols of olive tree, hydroxytyrosol acetate and
3,4-dihydroxyphenylglycol, are known for a wide range of beneficial activities in human health and
prevention from diseases. The inability to isolate high, pure amounts of these natural compounds and
the difficult and laborious procedures for the synthesis of them led us to describe herein an efficient,
easy, cheap, and scaling up synthetic procedure, from catechol, via microwave irradiation.
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1. Introduction

Polyphenols are a wide family of compounds found in plant-based foods, such as cranberries,
grapes, olives, and walnuts, and have many diverse biological activities. One of the most important
components of the polyphenol family is hydroxytyrosol (HT), a simple o-diphenol found in leaves
and fruits of olive tree, virgin olive oil, as well as its wastewaters. It is derived from the hydrolysis of
oleuropein, during the maturation of olives, storage of oil, and preparation of table olives. Two other
important polyphenols of olive tree are hydroxytyrosol acetate and 3,4-dihydroxyphenylglycol (DHPG)
(Figure 1).
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1. Introduction 

Polyphenols are a wide family of compounds found in plant-based foods, such as cranberries, 
grapes, olives, and walnuts, and have many diverse biological activities. One of the most important 
components of the polyphenol family is hydroxytyrosol (HT), a simple o-diphenol found in leaves 
and fruits of olive tree, virgin olive oil, as well as its wastewaters. It is derived from the hydrolysis of 
oleuropein, during the maturation of olives, storage of oil, and preparation of table olives. Two other 
important polyphenols of olive tree are hydroxytyrosol acetate and 3,4-dihydroxyphenylglycol 
(DHPG) (Figure 1). 
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The high interest concerning these compounds focuses on their involvement in many aspects of
human health [1–3]. HT function as an efficient free radical scavenger [4–8] and metal ion chelator,
such as Cu and Fe, which catalyze free radical generation, to lower hydroxyl radical formation [9].
This activity can be ascribed to the electron donating ability of the o-hydroxyl groups and subsequent
formation of intramolecular hydrogen bonds with free radicals [10,11]. HT effectively permeates cell
membranes via passive diffusion mechanisms and counteracts the cytotoxic effects of free radicals,
which are formed as a result of metabolic processes in the organism [12].

There are clear epidemiological and biochemical evidence indicating that HT possesses a
cardioprotective effect, reducing the risk of coronary heart disease and atherosclerosis, through
inhibition of the LDL oxidation and platelet aggregation [13–17]. The European Food Safety Authority
(EFSA) has endorsed the claim that consumption of olive oil polyphenols (standardized by the
content of HT and its derivatives) contributes to the protection of blood lipids from oxidative damage.
The panel considers that in order to bear the claim, 5 mg of HT and its derivatives should be consumed
daily [18,19]. Additionally, during 2017, EFSA also confirmed that synthetic HT can be added in
formulas for supplementary dietary with no difference from the natural compound [20].

Accumulating evidence associate HT with protection against the development of aging, which is
intimately connected with its antioxidant [21] and anti-inflammatory activity [22,23]. Additionally, HT
exerts anticancer effects through the activation of molecular signaling pathways leading to apoptosis
and growth arrest in several tumor cell lines in vitro [4,5,24]. Furthermore, evidence has shown that
HT interacts with pro-angiogenic growth factors, i.e., VEGF, exerting its potential anti-angiogenic
activity [25,26].

Due to the implication of oxidative stress and generation of reactive oxygen species in the
aggregation of beta-amyloid peptide and tau protein, it is proposed that HT may offer a protective or
therapeutic alternative against Alzheimer’s disease [27] and other neurodegenerative diseases, such as
Huntington’s Disease [28], multiple scleroses [29], and Parkinson’s Disease [30].

On the other hand, many findings suggest that HT protects against macular degeneration, reducing
the oxidative stress in the epithelial cells of the retina, occurred by the accumulation of acrolein [31,32].
Moreover, this polyphenol seems to interact with the formation of bones and the preservation of
the bone mineral density, resulting in positive effects against osteoporosis and bone loss [33]. It is
imperative to notice that HT is non-genotoxic and non-mutagenic even at very high doses [34–36],
and a no observed adverse effects level (NOAEL) of 500 mg/kg/day has been reported [37].

Regarding HT acetate, its antioxidant activity is much higher than that of a-tocopherol and
oleuropein, but similar to HT [38]. Thus, the applications of HT could be extended using the lipophilic
HT acetate which shows good solubility in oils and emulsions and could be used for controlled release
of HT when needed, through its hydrolysis from lipases [39,40]. Additionally, DHPG has potent
antioxidant [41,42] and antimicrobial activity [43,44], however, there are limited studies regarding
its isolation from olive tree and its activity, probably because this polyphenol is water soluble and
extremely unstable under alkali treatment.

Due to the variety of the biological activities and excellent safety profile, HT, HT acetate, and DHPG
are currently three of the most actively investigated natural polyphenols and could be essential
supplements in the pharmaceutical and nutraceutical industry for the treatment and prevention of
cardiovascular diseases, reduction of hypertension, carcinogenesis, atherosclerosis, and many other
uses [45]. Additionally, HT and HT acetate could be used in the dermocosmetic industry for the
protection of skin from oxidative stress or used as a preservative in the food industry [46].

2. Results and Discussion

The great interest of this high-added value natural compound triggered the development of
various protocols in order to recover HT from olive industry wastewaters, but usually, it is isolated as
a mixture with other phenolic compounds. Additionally, a few procedures describe the isolation of
HT through the hydrolysis of oleuropein, a natural compound found mainly in olive tree leaves and
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other sources such as Ligustrum Vulgare [47–51]. Nevertheless, these approaches, although eco-friendly,
are costly, often require the use of harmful solvents in extensive amount and usually result in low yield.

Due to the described problems, there has been a growing interest in developing an efficient synthetic
route in order to obtain pure HT, but the synthesis is problematic since this compound is relatively
soluble in water and polar organic solvents, therefore, the complete isolation through extraction from
the reaction media is difficult [52]. Furthermore, HT is easily oxidized and relatively unstable during
silica gel purifications and long-term storage [52]; thus adequate precautions must be taken (acid pH
and absence of oxidants are crucial), concerning the synthesis and purification. Numerous synthetic
approaches (more than 85 references in Reaxys database and 18 patents) [46–48,50–69] for the synthesis
of HT have been described; however all these methods appear to have many disadvantages, i.e., low
yields, laborious purifications, high cost, and many byproducts (Figure 2). The starting material
for most of these synthetic procedures is tyrosol, through an oxidative procedure [51,57–59,62,64,69],
though, the major disadvantage of the abovementioned approaches consists mainly of the use of
non-eco-friendly oxidative reactants and the relatively high price of tyrosol. Alternatively, the synthesis
of HT has been presented by the reduction of 3,4-dihydroxyphenylacetic acid but the commercial price
of the acid (or the price of the corresponding nitrile) is too high [48,52,60,66]. Additionally, the isolation
of HT from the reaction media is difficult (because of the water solubility), thus the overall yield is
often low. Interestingly, only three synthetic approaches use catechol as starting material, even though
this molecule is 6400-fold cheaper than tyrosol (Sigma-Aldrich 2019) (Table 1).
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Concerning the synthesis of HT acetate, several synthetic procedures have been described, such as
selective transesterification of the primary hydroxyl using suitable Lewis acids or protection of the
phenolic hydroxyls before the acetylation [38,46,52,57–59,62,64,67–73]. Nevertheless, all of the above
procedures are problematic since they use tyrosol or HT as staring material, two expensive compounds.
Also, referring to the protection/deprotection approach, many steps are involved, thus the overall yield
is relatively low. Regarding the synthesis of DHPG, only one synthetic procedure has been described
with many steps, low yield, and vigorous conditions [74].

Prompted by the above, herein we described a simple and efficient synthesis of HT, with inexpensive
catechol as staring material, without using extreme experimental conditions or laborious purifications.
Additionally, the synthesis of HT acetate and DHPG was illustrated by engaging an intermediate from
the procedure of HT synthesis.
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Table 1. Comparison of the methodologies for the preparation of hydroxytyrosol (HT), HT Acetate and
3,4-dihydroxyphenylglycol (DHPG).

A/A Reference a Starting Material Short Description Steps Overall
Yield (%)

Synthesis of Hydroxytyrosol
1 This Work
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Table 1. Cont.

A/A Reference a Starting Material Short Description Steps Overall
Yield (%)
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To overcome the solubility and stability limitations of HT, we envisioned a three-step synthetic
procedure depicted in Scheme 1. The first step of the synthesis involved Friedel–Craft acylation of
catechol (1) with chloroacetyl chloride in nearly quantitative yield. The preparation of chloride 2 has
been previously reported through many different procedures [75,76]; however, the method reported
herein, via microwave irradiation, was straightforward, simple, high yielding, and cost-effective. Thus,
after vacuum evaporation of the excess of POCl3 and trituration with water, the crude product was
used without any further purification. It should be noted that the evaporation of the excess of POCl3
before the trituration with water was crucial, otherwise, and if the reaction mixture is poured into
ice-water (an experimental usually used for reactions with POCl3), the overall yield is remarkably
reduced (about 40%) even after extraction of the reaction media.
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The next step concerns the reduction of the carbonyl group; still all the initial attempts, under
several conditions, provided complex mixtures. Among the variety of conditions used for the reduction
of compound 2, only the reduction with triethylsilane in the presence of a Lewis acid gave the desired
chloro compound 3 [77–80]. More precisely, of the various Lewis acids and reaction conditions that were
tested, the use of a fourfold excess of trifluoroacetic acid or a fivefold excess of boron trifluoride etherate
and a twofold excess of triethylsilane derived the desirable catechol 3 in 95% or 92%, respectively.
The reaction proceeded smoothly with no formation of byproducts. It is remarkable to note that the
crude of the reaction was readily purified, after vacuum evaporation of the volatiles, by just trituration
with boiling cyclohexane and vacuum evaporation of the solvent.

Finally, chloride 3 was readily converted to the corresponding HT (4) upon hydrolysis with
distilled water, via microwave heating in a Milestone Start E apparatus. Reaction conditions were
optimized, varying applied power and temperature, measured by fiber optic contact thermometer.
The best results were obtained using programmed irradiation at 700 watts, at 101 ◦C, at open vessel
conditions, and HT was obtained in >92% yield.

It is important to note that by the above-mentioned conditions, because of the absence of
basic media (actually the reaction media was acidic due to the hydrochloric acid produced by the
reaction) or oxidants, the reaction proceeded readily. Furthermore, the isolation was very simple,
and no chromatography purification was needed. After completion of the reaction, the mixture was
extracted with dichloromethane, and the aqueous phase was vacuum evaporated at low temperature or
lyophilized, in order to obtain pure HT. Scaling up to 10 g of the above-mentioned synthetic procedure
afforded reproducible overall yields. Higher scale-ups, up to 120 g showed the same excellent results
only by modifying the time reaction conditions. The final step of the hydrolysis of chloride 3 to HT
(4) was also accomplished via conventional heating, but much more time was needed. In particular,
the hydrolysis of 23 g of chloride 3 to HT (4) required 4 h, instead of 32 h of conventional heating.
Additionally, the yield of the reaction was lower (65% vs. 94.8% by MW heating) probably due to the
instability of HT. Most importantly, the purification of HT, synthesized by MW-assisted hydrolysis, was
very simple allowing the overall workup simplification, whilst the same purification of the product,
of the conventional heating procedure, was laborious.

The overall yield of proposed approach was up to 85%, with only three steps involved, whilst
the purification was easy with no silica gel chromatography needed (Table 1). Nevertheless, the main
advantage of the procedure concerned the use of catechol as staring material, an inexpensive compound,
instead of tyrosol, which is usually used, and the reproducibility of the method, even in scale-up
conditions. There are only three other cases in which catechol is used as starting material, though,
the developed approach possessed the highest yield, with only three steps involved. Besides, only
limited amount of solvents, for the reaction and the purification procedures, were needed.

Taking advantage of the intermediate 3, we were also able to prepare HT acetate (5), via a
one-step reaction, upon treatment with potassium acetate in dry DMF at 70 ◦C, which yielded up
to 85% (Scheme 1). It is important to notice that the presented procedure was straightforward,
with no protection of the phenolic groups needed. The overall yield of the procedure was up to 73%,
with minimum purifications, since the only silica gel column chromatography was performed on
the final step. Into the best of our knowledge, this was the only approach that used catechol for the
synthesis of HT-acetate, since all the other procedures use tyrosol or HT as starting material (Table 1).
In addition, we can assert that the presented procedure for the synthesis of HT acetate could be used
for the synthesis of various HT lipophilic esters, in order to study their biological activity.

Regarding the synthesis of 3,4-dihydroxyphenylglycol (7), a slightly different methodology was
developed, which involved the initial hydrolysis of compound 2 to provide alcohol 6. Although this
hydrolysis is already described in the literature via HCOONa/HCOOH system [40], in our hands
proceeded almost quantitively, by microwave heating, in distilled water. The reaction was scalable up
to grams, without any by-products formed, while the purification was very simple, by trituration with
ethyl acetate. Finally, target DHPG (7) was prepared through catalytic hydrogenation in methanol,
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in an 82% overall yield. The overall yield of the proposed procedure was up to 70%, far better than
the previous procedure, with only three steps involved (Table 1) [74]. Interestingly, reduction of
keto compound 6 over palladium on activated carbon, in the presence of a few drops of perchloric
or hydrochloric acid, in abs. ethanol, afforded ether 8 [81], presumably through protonation of the
intermediate alcohol and subsequent nucleophilic substitution by ethanol. It should be noted that this
compound, even as a racemic mixture, is very interesting, since it is a stable form of DHPG, with better
lipophilicity, and could be useful to study the therapeutic role and potentiality of DHPG.

3. Materials and Methods

General Experimental Procedures

All chemicals were purchased from Alfa Aesar (Ward Hill, MA, USA). Melting points were
determined on a Büchi apparatus and were uncorrected. 1H NMR, 13C NMR and 2D spectra were
recorded on a Bruker Avance III 600 spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany),
in deuterated solvents and were referenced to TMS (δ scale). The signals of 1H and 13C spectra
were unambiguously assigned by using 2D NMR techniques: 1H1H COSY, HMQC, and HMBC.
Flash chromatography was performed on Merck silica gel 60 (0.040–0.063 mm). Analytical thin
layer chromatography (TLC) was carried out on pre-coated (0.25 mm) Merck silica gel F-254 plates
(Merck KGa, Darmstadt, Germany). Mass spectra were recorded with a QqToF Premier MicroMass
MS technology (Waters, Manchester, UK). The purity of all the synthesized compounds was >95%,
determined by 1H NMR. Microwave experiments were performed on Milestone Start E apparatus
(Milestone Srl, Bergamo, Italy). 1H and 13C-NMR spectra are available online as Supplementary
Materials. For a schematic overview and detailed steps, see Scheme 1.

2-chloro-1-(3,4-dihydroxyphenyl)ethanone (2): A solution of catechol 1 (100 g, 0.94 mol) and chloroacetyl
chloride (84.9 mL, 1.04 mol) in phosphoryl chloride (264.2 mL, 2.82 mol) was stirred under microwave
irradiation (450 W) at 105 ◦C for 3 h. After completion of the reaction, the excess of phosphoryl chloride
was vacuum evaporated, poured into ice-water, and the resulting solid product was filtered off and
dried to afford 162.6 g (93%) of the title compound, which was used for the next step without any
further purification. 1H NMR (600 MHz, CD3OD) δ: 7.42–7.43 (m, 2, H-3, H-5), 6.84 (d, 1, J = 8.2 Hz,
H-6), 4.80 (s, 2, CH2). 13C NMR (151 MHz, CD3OD) δ: 192.23 (COCH2), 152.95 (C-3), 146.71 (C-4),
127.87 (C-1), 123.58 (C-6), 116.24 (C-5), 115.99 (C-2), 46.87 (CH2Cl). (-) ESI QqToF (m/z): Calcd. for
C8H6ClO3

−: [M − H]− 185.0011, found 185.0004.

4-(2-chloroethyl)benzene-1,2-diol (3): To a suspension of chloride 2 (80.42 g, 0.43 mol) in trifluoroacetic
acid (165.40 mL, 2.15 mol) was added dropwise triethylsilane (276 mL, 2.15 mol) at 0 ◦C, and the
mixture was stirred at room temperature for 11 h. After completion of the reaction, most of the volatiles
were removed under reduced pressure, and the oily product was washed with boiling cyclohexane
(10 × 500 mL). The cyclohexane layer was decanted and concentrated under reduced pressure to afford
71 g (96%) of compound 3 which was used for the next step without any further purification. M.p.:
102–104 ◦C (EtOAc/n-hexane). 1H NMR (600 MHz, (CD3)2CO) δ: 7.75 (br s, 2, D2O exch., 1-OH, 2-OH),
6.76 (d, 1, J = 8.2 Hz, H-6), 6.75 (s, 1, H-3), 6.60 (dd, 1, J = 8.0, 2.2 Hz, H-5), 3.70 (t, 2, J = 7.1 Hz, CH2Cl),
2.90 (t, 2, J = 7.1 Hz, CH2CH2Cl). 13C NMR (151 MHz, (CD3)2CO) δ: 145.80 (C-2), 144.67 (C-1), 130.87
(C-4), 121.06 (C-5), 116.74 (C-6), 116.06 (C-3), 46.10 (CH2Cl), 39.22 (CH2CH2Cl). (-) ESI QqToF (m/z):
Calcd. for C8H8ClO2

−: [M − H]− 171.0218, found 171.0224.

Hydroxytyrosol or 4-(2-hydroxyethyl)benzene-1,2-diol (4): A suspension of chloride 3 (23 g, 0.13 mol)
in distilled water (200 mL) was stirred under microwave irradiation (700 W) at 101 ◦C for 4 h. After
completion of the reaction, the mixture was washed with dichloromethane (2 × 100 mL) and water was
removed under reduced pressure or lyophilization to afford 19 g (94.8%) of the title compound as an
oil. 1H NMR (600 MHz, CD3OD) δ: 6.63 (d, 1, J = 8.2 Hz, H-6), 6.61 (d, 1, J = 2.2 Hz, H-3), 6.48 (dd,
1, J = 8.2, 2.2 Hz, H-5), 3.63 (t, 2, J = 7.1 Hz, CH2OH), 2.62 (t, J = 7.1 Hz, 2, CH2CH2OH). 13C-NMR
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(151 MHz, CD3OD) δ: 146.15 (C-2), 144.62 (C-1), 131.80 (C-4), 121.21 (C-5), 117.07 (C-6), 116.31 (C-3),
64.59 (CH2OH), 39.65 (CH2CH2OH). (-) ESI QqToF (m/z): Calcd. for C8H9O3

−: [M − H]− 153.0557,
found 153.0551.

Hydroxytyrosol acetate or 2-(3,4-dihydroxyphenyl)ethyl acetate (5): A solution of chloride 3 (12.0 g,
69.2 mmol) and CH3COOK (27.23 g, 276.9 mmol) in dry DMF (60 mL) was stirred at 80 ◦C for 12 h.
After completion of the reaction, the excess of DMF was removed under reduced pressure and the crude
product was purified by column chromatography (silica gel), eluted by a system of cyclohexane/ethyl
acetate 3/1, to afford 11.1 g (82%) of the title compound 5. M.p.: 81–83 ◦C (CH2Cl2/CCl4). 1H NMR
(600 MHz, CDCl3) δ: 6.78 (d, 1, J = 8.2 Hz, H-5), 6.72 (d, 1, J = 2.2 Hz, H-2), 6.59 (dd, 1, J = 8.2, 2.2 Hz,
H-6), 4.22 (t, 2, J = 7.1 Hz, CH2O), 2.78 (t, 2, J = 7.1 Hz, CH2CH2O), 2.04 (s, 3, COCH3). 13C NMR
(151 MHz, CDCl3) δ: 172.61 (CO), 143.91 (C-3), 142.61 (C-4), 130.32 (C-1), 121.25 (C-6), 116.01 (C-5),
115.55 (C-2), 65.71 (CH2O), 34.36 (CH2CH2O), 21.12 (CH3). (-) ESI QqToF (m/z): Calcd. for C10H11O4

−:
[M − H]− 195.0663, found 195.0655.

1-(3,4-dihydroxyphenyl)-2-hydroxyethanone (6): This compound was synthesized with an analogous
procedure as described for compound 4, starting from the chloride 2, in 91% yield. 1H NMR (600 MHz,
(CD3)2CO) δ: 7.48 (d, 1, J = 2.2 Hz, H-2), 7.44 (dd, 1, J = 8.2, 2.2 Hz, H-6), 6.94 (d, 1, J = 8.2 Hz, H-5),
4.76 (s, 2, CH2). 13C NMR (151 MHz, (CD3)2CO) δ: 197.81 (CO), 151.61 (C-3), 145.95 (C-4), 127.54 (C-1),
122.16 (C-6), 115.94 (C-5), 115.28 (C-2), 65.53 (CH2). (-) ESI QqToF (m/z): Calcd. for C8H7O4

−: [M −
H]− 167.0350, found 167.0357.

3,4-dihydroxyphenylglycol (DHPG, 7): A solution of 6 (1.4 g, 8.33 mmol) in methanol (80 mL) was
hydrogenated in the presence of 10% Pd/C (100 mg), under a pressure of 50 psi, at room temperature
for 9 h. The resulting mixture was filtered through a Celite pad, and the filtrate was evaporated
to dryness. Treatment with activated charcoal in hot methanol and filtration through a Celite pad
afforded the title compound practically pure (1.13 mg, 80%). For analytical reasons, a small amount
was quickly purified (due to stability reasons) by column chromatography (silica gel) using a mixture
of cyclohexane/ethyl acetate 1/4 as the eluent. 1H NMR (600 MHz, CD3OD) δ: 6.83 (d, 1, J = 2.0 Hz,
H-2), 6.74 (d, 1, J = 8.2 Hz, H-5), 6.68 (d, 1, J = 8.2 Hz, H-6), 4.55 (t, 1, J = 6.1 Hz, CHCH2), 3.58 (d, 2,
J = 6.0 Hz, CHCH2). 13C NMR (151 MHz, CD3OD) δ: 146.07 (C-3), 145.72 (C-4), 134.72 (C-1), 118.98
(C-6), 116.11 (C-5), 114.64 (C-2), 75.70 (CHCH2), 68.69 (CHCH2). (-) ESI QqToF (m/z): Calcd. for
C8H9O4

−: [M − H]− 169.0506, found 169.0512.

4-(1-ethoxy-2-hydroxyethyl)benzene-1,2-diol (8): To a solution of 6 (200 mg, 1.19 mmol) in abs. ethanol
(20 mL) was added HClO4 (100 µL) and the mixture was hydrogenated in the presence of 10% Pd/C
(20 mg), under a pressure of 50 psi, at room temperature, for 4 h. The resulting mixture was filtered
through a Celite pad and the filtrate was evaporated to dryness and the residue was purified by
column chromatography (silica gel) using a mixture of cyclohexane/ethyl acetate 1/2 as the eluent to
afford 198 mg (84%) of the title compound. 1H NMR (600 MHz, (CD3)2CO) δ: 7.81 (br s, 2, D2O exch.,
1-OH, 2-OH, 6.81 (d, 1, J = 2.2 Hz, H-3), 6.78 (d, 1, J = 8.2 Hz, H-6), 6.65 (dd, 1, J = 8.2, 2.2 Hz, H-5),
4.20 (m, 1, CHCH2), 3.54–3.60 (m, 1, CHCH2OH), 3.39–3.47 (m, 2, CHCH2OH, CH2CH3), 3.32–3.38
(m, 1, CH2CH3), 1.12 (t, 3, J = 7.1 Hz, CH2CH3). 13C NMR (151 MHz, (CD3)2CO) δ: 145.83 (C-2),
145.44 (C-1), 132.74 (C-4), 119.38 (C-5), 115.85 (C-6), 114.67 (C-3), 83.75 (CHCH2), 67.96 (CHCH2OH),
64.58 (CH2CH3), 15.65 (CH2CH3). (-) ESI QqToF (m/z): Calcd. for C10H13O4

−: [M − H]− 197.0819,
found 197.0811.

4. Conclusions

In summary, a new, large-scale, straightforward synthetic approach for the preparation of HT
as well as HT acetate and DHPG has been described in the present work, using simple, low-cost,
and scalable procedures, starting from inexpensive, commercially available catechol. The established
procedure for the synthesis of HT acetate could be used for the synthesis of other lipophilic esters of
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HT. Additionally, a synthetic approach for the synthesis of compound 8 has been proposed, which
could be used for the development of new lipophilic and stable analogs of DHPG. All the reactions
proceeded smoothly, with no byproducts formed, while the purification of the compounds was very
simple, mostly by solvent trituration. The synthetic procedures were based in microwave irradiation,
which enabled more precise control of the reaction conditions and contributed to higher yields, thus,
the new synthetic approaches could be an alternative for the industrial preparation of HT, HT acetate
and DHPG.

Supplementary Materials: 1H and 13C-NMR spectra are available online.
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