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Abstract: A new architecture for the measurement of depolarization produced by atmospheric
aerosols with a Raman lidar is presented. The system uses two different telescopes: one for
depolarization measurements and another for total-power measurements. The system architecture
and principle of operation are described. The first experimental results are also presented,
corresponding to a collection of atmospheric conditions over the city of Barcelona.

Keywords: lidar system; depolarization channel; calibration; stability; depolarizing particles

1. Introduction

Multi-wavelength Raman lidars provide a number of measurements that can be used to
characterize the nature and origin of the aerosols present in the atmosphere. The most relevant [1]
are: the lidar ratio, defined as that between the retrieved extinction and backscattering at a given
wavelength; the quotient of lidar ratios at two different wavelengths and the color ratio or the
Ängstrom exponent [2], also computed by comparing the retrieved backscattering and extinction at
different wavelengths.

Additionally, since the 1970s the use of the lidar depolarization technique has proven to be a
valuable tool for atmospheric sciences, see for instance [3] or [4]. Regarding aerosol characterization,
the depolarization information has been widely used for aerosol typing when combined with additional
optical properties (e.g., [5–10]). In this sense, it can also be very useful in the retrieval of the atmospheric
boundary layer (ABL) height since it allows to discriminate between the aerosol within this layer and
different aerosol types coupled to the ABL height based on aerosol data [11]. In reference [12] it is
shown how the depolarization data combined with the color ratio allow for discriminating among
different kinds of aerosols and clouds, so depolarization information can be added to the set of
parameters to be considered in aerosol classification [12,13].

Besides aerosol typing, the depolarization technique also provides relevant information for
the retrieval of aerosol microphysical properties. Due to the particle shape information associated
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to lidar depolarization, the detection of non-spherical particles can be highly improved (see for
instance [14–18]).

Because of the importance of depolarization measurements for aerosol science, a new
depolarization measurement channel [19] has been developed and implemented for the BarcelonaTech
(UPC) 6-channel elastic/Raman lidar [20]. The majority of the currently working systems [8,21–26] use
a single telescope and either a polarizing beam-splitter that separate the parallel and perpendicular
polarization components of the light collected by the telescope or a non-polarizing beamsplitter in one
of whose outputs a polarizer is inserted; these approaches present the issue of needing a very precise
characterization of the crosstalk parameters of the beam-splitters. The main innovation of our system
is the use of an additional telescope (in fact, a telephoto lens) to measure the cross-polarized return
signal (and thus, the un-polarized component of this signal), without altering the original system.
The light collected by the main telescope is coupled into the wavelength separation unit using an
optical fiber bundle that produces a nearly total effective depolarization at its output, making the rest
of the system insensitive to changes in polarization.

The rest of this article is organized as follows: Section 2 describes the system architecture; Section 3
contains the basic formulation for retrieving the information about depolarization profiles; Section 4
details the calibration process and Section 5 presents some measurements corresponding to a collection
of atmospheric conditions over the city of Barcelona.

2. System Architecture

A complete description of the UPC main lidar instrument can be found at [20]. The transmitter is
based on a Quantel® Brilliant® laser (Quantel Laser, Les Ulis, France), equipped with second and third
harmonic generators. The laser produces 4-ns pulses at with energies 130 mJ at 1064 nm and 532 nm
and 40 mJ at 355 nm. The beam divergence, according to the manufacturer, is less than 0.7 mrad [27].

The 6-channel main receiver unit is sketched in Figure 1. A 356-mm diameter, 3910-mm
focal length telescope (C14-A XLT, CELESTRON®, Torrance, CA, USA) collects the backscattered
light and couples it (with the help of a field lens) to a 3-mm diameter, 3-m long fiber bundle
(custom-made, CeramOptec®, Bonn, Germany). The estimated field of view of this optical arrangement
is approximately 1.2 mrad. The bundle delivers the light to a wavelength separation unit, which splits
it to the different channels. They include: three elastic backscattering channels (1064, 532 and 355 nm)
and three Raman channels (607 and 387 nm, for nitrogen excited at 532 and 355 nm, respectively, and
407 nm, for water vapor excited at 355 nm).
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illuminated by the laser beams and that “seen” by the receivers, which affects to the amount of light 
collected from short distances [28–35]. 

Figure 1. Main receiver of UPC Raman lidar [20], presenting the telescope, the fiber bundle
and the wavelength separation unit, which delivers the collected light to the different receivers:
an avalanche-photodiode (APD) for 1064 nm and photo-multiplier tubes (PMT) for the other channels.

The axes of the laser beams and the telescope are parallel, with an approximate distance of 30 cm
between them. This fact causes the partial overlap between the part of the atmosphere illuminated by
the laser beams and that “seen” by the receivers, which affects to the amount of light collected from
short distances [28–35].
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We have tested the polarization performance of the fiber bundle [36], finding that, for a linearly
polarized input, the power values measured at the output of a polarization analyzer show a standard
deviation of less than 1%. Therefore we can consider that the light coming out of the fiber bundle shows
a nearly total effective depolarization. This fact permits to consider that the 6 channels (including
the 532-nm one, implied in the measurements presented in Section 5) are basically sensitive to
the total collected power, without any polarization discrimination, even though the wavelength
separation unit includes several beam-splitters that could cause di-attenuation. The overall calculated
transmission of the fiber bundle and the wavelength separation unit at the 532-nm output is 6.18% [20].
Further measurements (see Section 4) suggest that the 532-nm channel transmission could be lower.

The signal collected by the different channels is detected by means of an avalanche photo-diode
(APD) photo-receiver (for the 1064 nm channel) and five photo-multiplier tube modules (PMT) (for
the remaining channels) and digitized by a parallel Licel® Transient Recorder [37] (Licel GmbH,
Berlin, Germany) with analog and photon-counting capabilities.

The aerosol depolarization ratio measurement requires the comparison of the signals recovered
by two channels in the system: one proportional to the total power and another proportional to
the cross-polar component of the collected light [38,39]. These two channels operate at 532 nm.
The depolarization auxiliary channel [19,24,27] is shown in Figure 2.
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Figure 2. Auxiliary channel for depolarization measurements, where the most relevant elements
are labelled.

The depolarization channel uses a separate telescope (a 70-mm aperture, 300-mm focal distance
TAIR-3S telephoto lens, BelOMO, Minsk, Belarus). The rest of the optical arrangement, sketched in
Figure 3, includes a field-of-view stop iris (D) and a polarization analyzer (P) in the focal plane of
the telephoto lens, and an eye-piece lens (L4) and an interference filter (IF). The polarization analyzer
consists on a linear polarizer mounted on the goniometric mount that can be seen in Figure 2.
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Figure 3. Depolarization channel optical configuration; L1 to L3 are the lenses included in the telephoto
lens; L4 works as an eye-piece lens that produces an image of the telephoto lens input aperture on the
PMT active surface; P is a polarizing analyzer; IF is an interference filter centered at 532 nm; distances
d4 to d8 are listed in Table 1.

The different parameter values are indicated in Table 1. Some of the parameters provided in Table 1
have been experimentally determined and adjusted for an optimal performance of the depolarization
channel. Every component (except for the telephoto lens) has a diameter of 2.54 mm. The distances
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between the lenses included in the telephoto lens (d1 to d3) are not provided by the manufacturer,
while distance d4 has been estimated as a function of its overall performance.

Table 1. Parameters of the different optical elements of the depolarization channel.

Parameter Value

d4 138.9 mm (estimated)
d5 1 mm
d6 39.4 mm
d7 5 mm
d8 23 mm

Telephoto lens focal length 300 mm
Eye-piece lens focal length 38 mm

Field-of-view stop iris diameter 1 mm
Interference filter BARR 532-0.5 nm (custom made)
Center wavelength 531.9 nm

Spectral width 0.5 nm
Thickness 11 mm

The collected light is detected by the active surface of a Licel® R9880U photo-multiplier
module [40] (PMT in Figure 3), which feeds the detected signal to a dedicated Licel® transient recorder.

The iris is located at the focal plane of the telephoto lens and limits the field of view to a theoretical
value of 3.33 mrad (reduced partially due to construction compromises, as it will be pointed out later),
which is essential to limit the amount of background diffuse light that reaches the PMT active surface,
as it is the reduced value of the spectral width of the interference filter; the eye-piece produces an
image of the telephoto lens input aperture onto the PMT active surface, spreading the collected light
onto its surface.

A ray-optics simulation of the receiver has been performed, using the ZEMAX® software
(Zemax LLC, Kirkland, WA, USA). Figure 4 plots the axial ray distribution over the plane of the
active surface of the photo-multiplier tube. The plot shows the impinging points of the rays parallel to
the optical axis. The PMT active surface has an 8-mm diameter. According to the optical analysis all
the traced rays lay within an 8.6-mm diameter, which leads to an estimated 16% overspill.
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Figure 4. Spot diagram of the distribution of the collected rays, parallel to the optical axis, over the
8-mm diameter active surface of the photo-multiplier detector tube calculated with ZEMAX® software.

Figure 5 shows the ray distribution of those entering the telephoto lens with the maximum
angle, according to the effective field of view which, according to the simulation has been reduced to
0.09◦ (equal to a maximum effective field of view of the optical system of approximately 3.14 mrad).
For this ray distribution the centroid of the collected rays is displaced approximately 130 µm in
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the vertical direction, while the maximum deviation from the center of the PMT active surface is
4.41 mm, which would lead to a maximum overspill of 22% approximately. The differences with the
ray distribution of Figure 4 are attributable to the non-idealities of the optical components included in
the subsystem. It is likely that the choice of a shorter focal length lens for lens L4 would avoid this
overspill. Some mechanical constraints prevent us currently from shortening this focal length.
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Figure 5. Spot diagram of the distribution of the collected extreme rays, entering the optical system
with an angle equal to half the effective field of view (0.09◦, over the 8-mm diameter active surface of
the photo-multiplier detector tube calculated with ZEMAX® software. This diagram shows that the
centroid of the collected rays is displaced by approximately 130 µm in the vertical (negative sense)
direction, with respect to Figure 4.
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Figure 6. Complete view of the UPC lidar system: the laser on the left (including 2nd and 3rd harmonic
generators), the main telescope in the middle and the depolarization auxiliary channel on the right.

The telephoto lens axis is approximately 40 cm from the laser beams (refer to the laser description
above), which affects to the partial overlap at short distances as indicated earlier in the text. Figure 6
shows the complete system in our laboratory. The lidar is pointed vertically; whenever it is not been
used, a motorized hatch protects the instrument.

The nominal position of the polarization analyzer is 90◦ from the transmitted beam polarization
plane. In this way the channel is sensitive to the cross-polarized fraction of the light backscattered by
the atmosphere.

3. Theory of Operation

The lidar measures along a vertical axis, so in every expression the distance R to the lidar is
equivalent to the height over the system.
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The voltage signal obtained at the total-power PMT output can be written as:

STot(R) = VTot(R)·PTot(R) (1)

where: VTot(R) is the total-power 532-nm channel responsivity, as a function of the distance to the lidar
system R, including the effect of the partial overlap (see Section 2) and PTot(R) is the backscattered
light power collected by the main telescope @532 nm.

The voltage signal obtained at the depolarization channel PMT output can be calculated:

SDep(90◦, R) = VDep(R)·P⊥(R) (2)

where: VDep(R) is the depolarization channel responsivity, as a function of the distance to the lidar
system R, including the effect of the partial overlap, and P⊥(R) is the cross-polar fraction power of the
depolarized backscattered light, function of R.

The depolarization channel system function is defined as:

V∗(R) =
VDep(R)
VTot(R)

(3)

While it is extremely difficult to determine VDep(R) and VTot(R) separately, it is possible to
determine V*(R) by means of a calibration process that compares the output signals of the total-power
channel and the cross-polar channel, when the polarization analyzer of the latter is set successively at
+ and −45◦ from its nominal position [22]:

V∗(R) = 2

√
SDep(90◦ − 45◦, R)

STot(R)
×

SDep(90◦ + 45◦, R)
STot(R)

(4)

The factor 2 takes into account that, at the calibration positions, the auxiliary channel is detecting
half of the total backscattered power.

The volume depolarization is defined as [22]:

δV(R) =
P⊥(R)
P‖(R)

(5)

Accepting that PTot(R) = P‖(R) + P⊥(R), and operating with the previous results, the volume
depolarization can be calculated [36] as:

δV(R) =
δ∗(90◦, R)

V∗(R)− δ∗(90◦, R)
(6)

where:

δ∗(90◦, R) =
SDep(90◦, R)

STOT(R)
(7)

Finally, the particle depolarization ratio can be computed by combining the volume ratio with the
molecular and aerosol backscattering profiles [22]:

δp(R) =
[1 + δm]·δV(R)·ρ(R)−

[
1 + δV(R)

]
·δm

[1 + δm]·ρ(R)− [1 + δV(R)]
(8)

where:

ρ(R) =
βm(R) + βp(R)

βm(R)
(9)



Sensors 2017, 17, 2957 7 of 16

with βm(R) and βp(R) being the molecular and aerosol backscattering profiles, retrieved by means of a
Klett–Fernald [41,42] or Raman [43,44] inversion performed over the signal of the total-power channel.

Finally, the molecular volume depolarization ratio:

δm =
βm
⊥

βm
//

(10)

was computed according to Behrendt and Nakamura [45] and has an approximately constant value of
3.8 × 10−3 for a receiver with a spectral width of 0.5 nm (see Section 2).

The error analysis of the different magnitudes obtained in the data analysis is detailed in the
Appendix A.

4. Calibrations

According to the previous section, the determination of the depolarization channel system
function is made by means of a calibration procedure that compares the outputs of the depolarization
and the total power channels [21,35,36]; during the calibration the polarization analyzer of the
depolarization channel is set first at +45◦, and second at −45◦ from the nominal (cross-polar) position.
Each one of the calibrations runs for 15 minutes, which amounts to 18,000 laser pulses. The outputs of
the depolarization and total power channels are divided and then a geometrical average is computed
(as indicated in Equation (4)) between the system profiles obtained at the two positions; after that a
zero-phase low-pass spatial filter is applied to the average, to reduce noise effects; finally, the values
obtained for heights over ~10 km are discarded, also due to noise effects, considering the value
obtained at 10 km for greater height values.
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Figure 7. History of the calibrations of the depolarization channel system function obtained from
March 2016 to June 2017. The colder colors refer to early calibrations while the warmer ones to the
recent ones.

A number of calibrations have been performed since the implementation of the depolarization
channel, and the history is presented in Figure 7. The color sequence shows the time evolution of
the estimated system functions. As the colder colors point out, the early functions were affected by
mechanical instability in the mutual alignment between the laser and the depolarization channel
receiving telescope. The most recent calibrations are stabilized to a medium-height value around 4.

Figure 8 shows the temporal evolution of the far range value of V* for the different calibrations
presented in Figure 7 with the values obtained between realignment procedures grouped. The first
group of calibrations shows a deviation exceeding 30%. After this period, an improvement in the
anchorage of the receiving optics was implemented and the deviation was reduced to less than 10%,
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which has kept stable after successive realignment procedures. In any case, this diagram points out
that different phenomena (improvements of system alignment, thermal changes, mechanical relaxation,
PMT degradation . . . ) affect V* in a way that cannot be ignored. These uncertainties make the periodic
calibrations unavoidable.
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Figure 8. Stability of the value of the depolarization channel system function for far range; the values
comprised between realignment actions are marked by closed curves.

The system function includes the effect of the different overlap functions [28–35] of the two
channels; it also draws attention on the fact that, even though the ratio of the main telescope and the
telephoto lens collecting surfaces is approximately 25, the depolarization channel optics has a higher
transmission and, possibly, a PMT receiver with higher responsivity. This result also suggests that the
transmission of the 532-nm total-power channel could be lower than that indicated in Section 2.

5. Depolarization Ratio Measurements

Some depolarization measurements are presented in Figure 9 for different aerosol loads.
The volume depolarization ratio is retrieved from both total power and depolarization signals
in Equation (6) and a calibration depolarization channel system function, V*(R). In each case the
depolarization channel system function is taken from the closest (in time) calibration performed prior
to the considered measurement. The particle depolarization ratio is then retrieved with Equation (8)
from the volume depolarization ratio and the particle backscatter coefficient, βp [46]. All the cases
presented are daytime measurements, so no Raman inversion has been performed, and thus βp has
been retrieved with the Klett–Fernald [41,42] method and a constant lidar ratio of 50 srad, except
in the cirrus cloud case. In this case, as there is a molecular region below and above the cloud, the
iterative backward-forward method [47] was applied to invert the cloud backscatter and extinction
coefficients without the need to assume a lidar ratio value. Every profile of the molecule backscatter
coefficient, βm, is calculated with the closest (in time) radio-sounding either at 12 or 00 UT. The error
bars are calculated following the equations detailed in the Appendix A. For the sake of clarity, the
points of the profiles of the particle depolarization ratio for which the error bar is larger than 50% are
not represented.

Figure 9a–e shows the retrieval of volume and particle depolarization for different aerosol loads:
pollen, mineral dust, fire smoke and a case of local urban aerosol, as well as a cirrus cloud case. The
measurements are compared with those from a co-located SigmaSpace MPL-4B-IDS Series micro-pulse
lidar (SigmaSpace Corporation, Lanham, MD, USA) [48].
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Figure 9. Some examples of volume and particle depolarization ratio retrievals showing (left)
time-height plots of range-square corrected signals in arbitrary units, (center) particle backscatter
coefficient at 532 nm, (right) volume and particle depolarization ratios at 532 nm for (a) pollen; (b) dust;
(c) dust and fire smoke; (d) cirrus cloud; (e) local urban. The points of the particle depolarization ratio
profiles for which the associated error is larger than 50% are not represented.

In the case of pollen, Figure 9a, the atmospheric boundary layer (ABL) extends up to ~1.5 km.
In this layer δV is a quite constant value of ~0.055 while δp varies slightly between 0.10 and 0.13.
These values are in agreement with depolarization ratios measured with the MPL during another
pollen event in Barcelona by [49] for which we found mean values of 0.06–0.10 for δV and 0.11–0.18
for δp, averaged over the interval from 9:00 to 17:00 UT. For the day considered here, 14 March 2017,
J. Belmonte [50] counted a total pollen near-surface concentration in Barcelona of 1746 grains per
cubic meter, being 90% of them Platanus, which is in the lower range of values 1082–2830 found
in [49]. The differences that can be observed in the particle depolarization ratio are very likely due
to the MPL sensitivity to the overlap function correction in weak aerosol loads and to the inherent
error associated to low volume depolarization ratios, particularly at low heights. In the second case,
Figure 9b, we obtain typical values of depolarization for mineral dust. It is taken from an outstanding
desert dust intrusion over the Iberian peninsula, which produced aerosol optical depths as large as
2 [51]. Above 1 km δV is in the range 0.17–0.24 and δp in the range 0.23–0.28. The small differences
between δV and δp are due to the high values of the particle backscatter coefficient (~15 Mm−1 sr−1)
inside the dust layer. According to [52] the values of δp found in our work are in the upper range of
desert dust mixtures (0.14–0.28) and below the values of pure desert dust (0.30–0.35). The agreement
with the MPL measurements only takes place at height over 1 km, once again probably because of the
MPL sensitivity to the overlap function correction in weak aerosol loads (here below 1 km).

The example shown in Figure 9c illustrates the transport of smoke from Canadian fires to the
Iberian Peninsula on 24 May 2016, at 15 UT. The smoke layers were first detected on the evening of 22
May (see Barcelona Micro Pulse Lidar quick-looks at https://mplnet.gsfc.nasa.gov/data?v=V3&s=

https://mplnet.gsfc.nasa.gov/ data?v=V3&s=Barcelona&t=20160522
https://mplnet.gsfc.nasa.gov/ data?v=V3&s=Barcelona&t=20160522
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Barcelona&t=20160522) and lasted until the evening of 24 May. In Figure 9c the fire smoke layer can be
seen at ~2 km, under a dust layer above 3.5 km. In the fire smoke plume δp varies in the range 0.05–0.10.
Here again our findings are in agreement with the literature, in particular with [52] which presents
values of δp for pure biomass burning measured in several places around the World in the range
0.02–0.08, being values of fresh smoke slightly lower than for aged smoke. The values we present in
Figure 9c fall into the interval representative of aged smoke. We extend now the illustration of particle
depolarization ratios retrieved with the UPC new depolarization channel to ice particles in cirrus
clouds. In this case there is a remarkable coincidence with the measurements of the co-located MPL.

Figure 9d shows a case of cirrus clouds extending between 10 and 12.2 km with a rather clean
troposphere below. The application of the iterative backward-forward method [47] gives a mean cirrus
lidar ratio of 19 srad and a cirrus optical depth of 0.19. The cirrus cloud is quite heterogeneous in time
and vertical range during measurement (which lasted 60 min), resulting in a large variability of the
particle depolarization ratio which varies between 0.20 and 0.52, being the mean value 0.39 ± 0.11.
This high value of δp is in agreement with former studies such as [53], which found values in the
range 0.30–0.45 for cirrus clouds at ~9.5–11.5 km height observed in north-central Oklahoma. It must
be pointed out that our MPL cannot detect aerosol or cloud structures located at such high altitudes
during daytime given its limited working range.

Finally to give an idea of the particle depolarization ratio in background conditions in Barcelona,
i.e., when the aerosol is from local urban origin and probably mixed with marine particles, a case
without mesoscale transport as this is presented in Figure 9e. The atmospheric boundary layer is
developed up to 1.25 km. δp is nearly constant and its mean value is 0.066 ± 0.005. If we compare this
value to the collection of depolarization ratios of [52] measured around the globe for anthropogenic
pollution (0.06–0.10) and marine aerosols in different relative humidity conditions (0.01–0.10) we
find a good agreement. However, at this point, from the depolarization ratio alone it does not seem
possible to distinguish the fractions of anthropogenic pollution and of marine particles. In this case the
measurements match well with those from the MPL.

6. Conclusions

A new depolarization sensing subsystem has been implemented to a 6-channel elastic/Raman
lidar. The architecture is based on a dedicated sub-telescope (a telephoto lens). The theory of operation
has been presented, including the calibration procedure. Measurements performed during different
aerosol load situations are presented: pollen, dust, fire smoke, cirrus cloud and local urban conditions.
Comparisons of the volume depolarization with a co-located single-wavelength, polarization-sensitive
elastic MPL system show a good agreement between both systems and demonstrate the reliability of
the new depolarization channel of the UPC multi-wavelength lidar.
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Appendix Error Estimation

The error analysis presented in this section is based in the well-known technique of the error
propagation [54,55]. If we have a function y that depends on n uncorrelated variables xi:

y = f = (x1, x2, . . . , xn) (A1)

which are known with a standard deviation ∆xi.
The most reliable value of y can be computed as:

y = f = (x1, x2, . . . , xn) (A2)

With a standard deviation that can be computed as [43,44]:

∆y =

√√√√ n

∑
i=1

(
∂ f
∂xi

∣∣∣∣
xi

)2

(∆xi)
2 (A3)

where ∂ f
∂xi

∣∣∣
xi

is the partial derivative of function f with respect to variable xi, evaluated in the average

value xi.
According to this method, the following standard deviations can be obtained for the observable

δ∗(90◦, R), defined in Equation (7):

∆δ∗(90◦, R) =

√√√√( 1

STOT(R)

)2(
∆SDep(90◦, R)

)2
+

(
SDep(90◦, R)

STOT(R)
2

)2

(∆STOT(R))2 (A4)

where:

STOT(R) is the average value of the signal detected by the total power channel, as a function
of range,
SDep(90◦, R) is the average value of the signal detected by the depolarization channel (with the
polarizer oriented 90◦ from the transmitted beam polarization,
∆STOT(R) is the standard deviation of the signal detected by the total power channel.
∆SDep(90◦, R) is the standard deviation of the signal detected by the depolarization channel.

According to the calibration method, the uncertainty associated to the estimation of the
depolarization channel system function is reduced by the signal smoothing that is performed.
According to the different calibrations presented in Figure 7, an absolute error around |∆V∗(R)| = 1
will be considered in the computation of the error of the volume depolarization ratio, defined in
Equation (6):

∆δV(R) =

√(
V∗(R)

V∗(R)− δ∗(90◦, R)

)2

(∆δ∗(90◦, R))2 +

(
δ∗(90◦, R)

V∗(R)− δ∗(90◦, R)

)2

(V∗(R))2 (A5)

The computation of the error of the backscatter ratio, defined in Equation (9), considers only the
random variations of the retrieved particle backscatter [30–33]:

∆ρ(R) =

√(
1

βm(R)

)2
·(∆βp(R))2 (A6)
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Finally, for the computation of the error of the particle depolarization ratio, defined in Equation (8),
we will simplify the expression by defining:

Num(R) = [1 + δm]·δV(R)·ρ(R)−
[
1 + δV(R)

]
·δm

Den(R) = [1 + δm]·ρ(R)−
[
1 + δV(R)

] (A7)

And then writing:

(∆δp(R))2 =

(
[(1+δm)·ρ(R)−δm ]·Den(R)+Num(R)

(Den(R))2

)2
·(∆δv(R))2+

+

(
(1+δm)·δv(R)·Den(R)−(1+δm)·Num(R)

(Den(R))2

)2
·(∆ρ(R))

(A8)
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