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Abstract

Background: Microarray technologies are emerging as a promising tool for genomic studies. The
challenge now is how to analyze the resulting large amounts of data. Clustering techniques have
been widely applied in analyzing microarray gene-expression data. However, normal mixture
model-based cluster analysis has not been widely used for such data, although it has a solid
probabilistic foundation. Here, we introduce and illustrate its use in detecting differentially
expressed genes. In particular, we do not cluster gene-expression patterns but a summary statistic,
the t-statistic.

Results: The method is applied to a data set containing expression levels of 1,176 genes of rats
with and without pneumococcal middle-ear infection. Three clusters were found, two of which
contain more than 95% genes with almost no altered gene-expression levels, whereas the third
one has 30 genes with more or less differential gene-expression levels.

Conclusions: Our results indicate that model-based clustering of t-statistics (and possibly other
summary statistics) can be a useful statistical tool to exploit differential gene expression for

microarray data.

Background

The pattern of genes expressed in a cell can provide impor-
tant information about the cell state. DNA microarray tech-
nology can measure the expression of thousands of genes in
a biological sample. DNA microarrays have been increas-
ingly used in the last few years and have the potential to help
advance our biological knowledge at a genomic scale [1,2]. In
analyzing DNA microarray gene-expression data, a major
role has been played by various cluster-analysis techniques,
most notably by hierarchical clustering [3], K-means cluster-
ing [4] and self-organizing maps [5]. These clustering tech-
niques contribute significantly to our understanding of the
underlying biological phenomena. A recent review of various
methods is provided by Tibshirani et al. [6]. However, many
methods, including the three mentioned above, have some

restrictions, one of which is their inability to determine the
number of clusters. The difficulty may be related to the fact
that in many methods there is no clear definition of what a
cluster is in the first place. Furthermore, their clustering
results may not be stable [7,8]. An important clustering
technique that improves on and/or provides alternative
solutions to these issues is model-based clustering (see, for
example, [9]). It has a clear definition that a cluster is a sub-
population with a certain distribution, and several statistical
methods can be applied to estimate the number of clusters.
Some authors have considered its application to cluster
gene-expression patterns [10-12].

Here we consider the use of model-based clustering in the
context of detecting differentially expressed genes, which is
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to identify all the genes with altered expression under two
experimental conditions (for example, normal cells versus
cancer cells). We note that the goal here is different from
that of clustering gene-expression patterns, as done by other
researchers in using model-based clustering. In modeling
differential expression levels of genes, it is natural to assume
that genes are from two subpopulations, one with constant
and another with changed expression levels. Hence, a two-
component mixture is a reasonable model. This is the
approach proposed by Lee et al. [13], where it is assumed
that each of the two components has a normal (in the statis-
tical sense) distribution. However, in general, each compo-
nent does not necessarily have a normal distribution. It is
well known that many distributions can be well approxi-
mated by a finite mixture of normal distributions. Hence, the
normal mixture model-based clustering can be regarded as a
more general and flexible approach along these lines and we
pursue this approach here. In particular, we summarize a
possible change of expression of a gene using a t-statistic,
which automatically accounts for differential variations of
expression levels across genes. Then we apply model-based
clustering to these t-statistics to exploit which genes have
differential expression levels. The methodology is illustrated
with an application to a dataset containing the expression
levels of 1,176 genes of normal rats and those with pneumo-
coccal middle-ear infection.

Results and discussion

Data and preprocessing

Pneumococcal otitis media is one of the most common dis-
eases in children. Almost every child in the United States
experiences at least one episode of acute otitis media by the
age of 5 years. To understand the pathogenesis of otitis
media, it is important to identify genes involved in response
to pneumococcal middle-ear infection and to study their
roles in otitis media. A study was recently carried out at the
University of Minnesota, applying radioactively labeled
cDNA microarrays [14] to the mRNA analysis of 1,176 genes
in middle-ear mucosa of rats with and without subacute
pneumococcal middle-ear infection. It consisted of six
experiments: two cDNA microarrays were run with controls
while four were run with pneumococcal middle-ear infec-
tion. We first take a natural logarithm transformation for all
the observed gene-expression levels so that they are more
likely to have a normal distribution, which will reduce the
number of clusters found in a model-based clustering. The
histograms of gene-expression levels before and after log-
transformation for the first experiment are shown in
Figure 1. It can be seen that the log-transformation reduces
the skewness of the distribution of gene-expression levels.

After taking log-transformation, for each experiment we
then standardize the transformed gene-expression levels by
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Histograms of radioactivity intensity levels for the first experiment, a cDNA microarray analysis of 1,176 genes in middle-ear mucosa of healthy (control)

rats. (a) Before log-transformation; (b) after log-transformation.




subtracting their median value. The above standardization is
based on the assumption that most genes, at least a half, will
not be expressed. The median is used because it is more
robust against outliers than is the more commonly used
mean. We use x; to denote the resulting expression level of
gene 1 from experiment j. Note that the first two experiments
(that is, j=1 and 2) were conducted using control rats
whereas the last four (that is, j = 3, 4, 5, 6) using infected
rats. Some scatterplots showing comparisons between
experiments are presented in Figure 2. It can be seen that, in
general, there is a good agreement as well as some variation
between the experiments under the same condition, that is,
either within the control group or within the infected group.
It appears that expression of some genes are altered with
pneumococcal infection.

On the basis of the above observation, we calculate the fol-

lowing two-sample t-statistic for each gene as its measure of
possible differential expression:

- .
/ Z] — 15~ Zy . Zj=1 (- 20
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where:
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fori = 1, ...,1176. The numerator of y; is the difference of
average gene-expression levels under the two conditions
(infected versus control), whereas the denominator is the
sample standard error of the numerator and serves to stan-
dardize the observed difference by penalizing those with
large (and thus less reliable) variations. Previous studies
have found evidence that genes may have differential vari-
ability of expression levels [15-17]. Note that although the
t-statistic is constructed, we shall not conduct t-tests because
there is no evidence to support the questionable normality
assumption required by the t-test. We also do not carry out
permutation or other nonparametric tests [18] because of
the small sample size (that is, 2 + 4). This is also related with
the fact that there exists the problem of multiple compar-
isons if we test gene by gene [18]. Our goal here is to apply
model-based cluster analysis to the preprocessed relative
gene-expression levels y;, 7 = 1, ... , 1176, and see which genes
will have relative levels far away from the majority.

Model-based clustering

Finite mixtures of distributions provide a flexible as well as
rigorous approach to modeling various random phenomena
(for example, [19]). For continuous data, such as gene-
expression data, the use of normal components in the
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mixture distribution is natural. With a normal mixture
model-based approach to clustering, it is assumed that the
data to be clustered are from several subpopulations (or
clusters or components) with distinguished normal distribu-
tions. That is, each data point y is taken to be a realization
from a normal mixture distribution with the probability
density function:

g
f@; ) => mg (s 1 V), €))

i=1

where ¢(y; p;, V;) denotes the normal density function with
mean p; and (co)variance matrix V;, and x;’s are mixing pro-
portions. We use @/ to represent all unknown parameters
(m;, uyy V)i 1 =1, ... g in a g-component (or g-cluster) mixture
model.

In model-based clustering, first, the above mixture model is
fitted to the data and obtain the maximum likelihood esti-
mate <’I\>g. Second, the posterior probabilities of each data
point belonging to each of the g normal components can be
calculated. Finally, each data point is assigned to the compo-
nent with the largest posterior probability. We review the
major steps in the following.

The mixture model is typically fitted by maximum likelihood
using the expectation-maximization (EM) algorithm [20].
Given n observations y,, ..., y,,, we want to maximize the log-
likelihood

log L (®,) = > log f (y;; @,)

Jj=1

to obtain the maxunum likelihood estimate <1) The EM algo-
rithm computes <D by iterating the following steps

Suppose that at the kth iteration, the parameter estimates
are 7,0’s, u,(&’s and V,®’s. Then in the (k + 1)th iteration, the
estimates are updated by

n
;D) = Z 1.l.ch) /n,

Jj=1

n n
kD) = z Tij(k) y; / Z Tij(k)
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fori=1,...,g, where

-
L
o
j
o
o
Q.
-
I}
(7]
[]
)
g
a
>




4 Genome Biology Vol3No2 Panetal

n [Te) [Te)
S o <
o o . o *e
N N . N .
1) N 0 . To)
- : —i : — .
N * < . [Te]
€ € IS .
(V] [0} (]
E o ’ £ o ' £ o . y
& < s & < * & <
o o o .
> X x .
] . i o ] LA
|_n. :. m .~;.p° LD . .
o S o e o o fov.
3 Y/ kel
. A3
Iy TN * ':"'.
At ,
o 3 o o .
o S S - .
n n Yo}
3 S 3
-05 00 05 10 15 2.0 25 -05 0.0 05 10 15 20 25 -05 00 05 10 15 20 25
Experiment 1 Experiment 3 Experiment 3
n [Te) [Te)
N N N
N . N ) N
SV . « . SV
0 co 0 0 )
— 7 - — 7
. * o~ .
© - -
1< y = . 12}
o b o . S .
£ o | £E o - £ o | -/
o . o . = o
o . . Q 0] .
i : 5 =3
L. R ° L [} t
0 *) - o) ' ._ ‘.' * n " .. : *
=} RO o AN . o Ve
& L A
whe s et L
vy il S 7RI
o o ~ o i
o : IS 3 o
T .
n [Te) [Te)
S S S 1
-05 00 05 10 15 20 25 -05 0.0 05 10 15 20 25 -05 00 05 10 15 2.0 25
Experiment 3 Experiment 3 Experiments 3-6
Figure 2

Comparison of the log-transformed, standardized expression data between experiments. Experiments | and 2 were conducted using control rats;
experiments 3-6 used infected rats.




ni(k) ¢(yj, :ui(k)’ ‘/l(k)j

; , (2)
Slyj; @®)

70 =

is the posterior probability that y; belongs to the ith compo-
nent of the mixture, using the current parameter estimate
cDg(k) for@,fori=1,..,gandj=1,.., n

At convergence, we obtain C/I\DQ = dhg"’) as the maximum likeli-
hood estimate. As local maxima can be found by the EM
algorithm, it is desirable to run the algorithm multiple times
with various starting values and choose the estimate as the
one resulting in the largest log-likelihood.

One interesting but difficult problem in cluster analysis is to
determine the number of components g. In contrast to many
other approaches that fail to accomplish this goal, model-based
clustering provides several useful and objective selection crite-
ria, which have been used in other model selection problems.
The best known are the Akaike Information Criterion (AIC)
[21] and the Bayesian Information Criterion (BIC) [22]:

AIC=-2log L (&) + 2u,,
BIC=-2log L (&) + v, log(n),

where v, is the number of independent parameters in @,. In
using the AIC or BIC, one first fits series of models with
various values of g, then one picks up the g with the smallest

AIC or BIC.

In many studies related to model selection, it is found that
AIC may select too large a model whereas BIC may select
too small a model. This phenomenon appears to hold in
selecting g in the mixture analysis [23]. Some other criteria
have been studied but there does not seem to be a clear
winner [23]. Banfield and Raftery [24] proposed using
approximate weight of evidence as an approximate
Bayesian model selection criterion. Some empirical studies
seem to favor the use of BIC [25]. We feel that a combined
use of AIC and BIC is helpful, at least in providing a range
of reasonable values of g.

A different approach to selecting g is through hypothesis
testing. This could be done through the use of the log-likeli-
hood ratio test (LRT) to test for the null hypothesis H,: g =
g, against the alternative H,;: g = g, +1 f/(\)r any given pos/i\tive
integer g,. The LRT statistic is 2 log L((Dgo +1) - 2log L((Dgo),
which, however, does not have the usual asymptotically chi-
squared distribution as a result of violation of required regu-
larity conditions (for example, the maximum likelihood
estimate may lie in the boundary of its parameter space).
McLachlan [26] proposed using the bootstrap to approxi-
mate the distribution of the LRT statistic under the null
hypothesis. On the basis of the resulting p value, one can
decide whether to reject H,,.
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Implementation

McLachlan et al. [27] have implemented model-based clus-
tering in a stand-alone Fortran program called EMMIX,
which is freely available from the web [28]. It supports all
the functions we described above, including multiple start of
the EM algorithm using random partition or K-mean clus-
tering, calculation of the model selection criteria AIC and
BIC, and the use of the bootstrap to test a given number of
components g,. We will use EMMIX to analyze the gene-
expression data described earlier.

The MCLUST software [29], implementing model-based
clustering, is also freely available [30]. It is designed to
interface with the commercial statistical package S-Plus. For
users familiar with S-Plus, it is convenient to take advantage
of the power and flexibility of S-Plus. However, at the same
time, it can have some serious restrictions on the size of the
data being analyzed because of the overhead on CPU speed
and memory induced by S-Plus.

Application

We fitted five mixture models with g ranging from 1 to 5.
Table 1 summarizes the model fitting results. Using AIC or BIC,
we would select g = 4 or g = 3 respectively. Also, from the log-
likelihood values, there is a dramatic change when g is
increased from 1 or 2. However, from g = 3 log L increases very
slowly. Hence, both g = 3 and g = 4 appear reasonable. To
determine which one is better, we applied the bootstrap method
(also implemented in EMMIX) to test H,: g = 3 versus H,: g = 4.
Using 100 bootstrap resamples, we were unable to reject H, as
the resulting p value is 0.18, larger than the usual 0.05 nominal
level. In contrast, if we test H,: g = 2 versus H,: g = 3, then we
will reject H,, with a small p value 0.01. Therefore, we choose to
fit a three-component normal mixture model.

The fitted mixture model is

fy; <’I\)) = 0.042 x N(6.74, 77.07) + 0.510 x N(0.88, 5.56) +
0.448 x N(-0.31, 1.15).

More than 95% of data points fall into the two clusters with

means close to 0. That means there is either no or little
change in gene-expression levels for most genes. On the

Table |

Clustering results with various number of components g

g AIC BIC AWE log L p value
| 5,867.12 5,877.26 5,897.40 -2,931.56 -

2 5,257.50 5,282.85 5,333.20 -2,623.75 0.0l
3 5,208.24 5,248.80 5,329.36 -2,596.12 0.18
4 5,207.29 5,263.06 5,373.82 -2,592.64 -

5 5,209.97 5,280.94 5,421.92 -2,590.98 -

AWE, approximate weight of evidence.
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Figure 3

Gene-expression profiles of the four clusters found using the method described. Each line represents a single gene. Clusters 2 and 3 (containing over
95% of genes) show little change in gene-expression levels; cluster | (30 genes) and cluster 4 (6 genes) do show changes in gene-expression levels.

other hand, 30 genes classified into the first cluster seem to
have a change in gene-expression levels. This can be verified
from Figure 3, which shows the profiles of gene-expression
levels across all six experiments for each cluster.

In addition to determining the number of clusters, model-
based clustering has another advantage in providing poste-
rior probabilities of observations belonging to each cluster.
The posterior probabilities are calculated using Equations
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Posterior probability of a gene being in each cluster as a function of the t-statistic y, calculated using Equations (1) and (2). A gene is classified to a cluster

if its posterior probability of being in the cluster is the largest.

(1) and (2), and are presented in Figure 4. Recall that a gene
is classified to a cluster if its posterior probability of being in
the cluster is the largest. From Figure 4, it can be seen that if
a gene’s t-statistic has a large absolute value, then it will be
classified into cluster 1. Specifically, if a t-statistic, y;, is
smaller than -6.54 or larger than 7.39, then the correspond-
ing gene i is judged to be from cluster 1. Hence, cluster 1 con-
sists of genes with large absolute values of t-statistics,
implying that cluster 1 corresponds to genes with large
changes of expression levels (after standardization by the
variation of expression levels).

Furthermore, the posterior probability can serve as a quanti-
tative measurement of the strength of each gene being classi-
fied into each cluster. For instance, among 30 genes
classified into the first cluster, there are respectively 17, 18,
20 and 21 genes with a posterior probability of being in the
first cluster greater than 0.99, 0.95, 0.90 and 0.85. Hence,
those 17 or 18 genes are likely to have expression levels sig-
nificantly different from those of other majority genes. The
posterior probability might also provide information about
possible misclassifications. In addition to those classified
into cluster 1, there might be other observations classified
into the other two clusters but nevertheless with not too
small probabilities of being classified into cluster 1. The
lower right panel of Figure 4 shows six such observations, all
belonging to cluster 2 but with probabilities of being in
cluster 1 ranging from 0.30 to 0.48. These six genes show
somewhat differential gene-expression levels, but the

evidence is not strong and more experiments may be needed
to verify this.

We hope we have shown that model-based clustering is a
powerful method that is useful in analyzing gene-expression
data. It is flexible as well as intuitively understandable.
However, it does have some limitations. Although it provides
posterior probabilities for classification results, in the
context of detecting differentially expressed genes its use is
more in the line of exploratory data analyses. For instance,
in our example, we treat cluster 1 as representing genes with
changed expression whereas clusters 2 and 3 consist of
genes without expression changes. Although this treatment
is reasonable, it is somewhat subjective and is debatable.
Some new statistical approaches [31-33] are interesting
alternatives that provide a more quantitative answer to
detecting genes with altered expression, but they require
replicates of spots or arrays. Model-based clustering is less
restrictive and can be applied to data without replicates and
to cluster (relative) gene-expression levels directly [13].

Materials and methods

Three young pathogen-free Sprague-Dawley rats were inocu-
lated with pneumococcus in phosphate-buffered saline
(PBS) and served as the pneumococcus group. Three other
rats inoculated with PBS served as controls. All animals were
sacrificed on day 42 after inoculation. The bullae from each
of the pneumococcus- or PBS-inoculated groups were pooled
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and submitted for mRNA purification. Purified mRNAs,
[a-32P]JdATP, ANTP mix and reverse transcriptase were
incubated at 50°C for 25 min for the synthesis of radioac-
tively labeled ¢cDNA probes. The Atlas ¢cDNA array mem-
branes (Atlas rat 1.2 array, Clontech, CA) were hybridized
with the cDNA probes and nonspecific binding washed away.
Specific binding of cDNA probes with the membranes was
scanned into a computer and the radioactive signal intensi-
ties of specific binding were quantitated with the OptiQant
software (version 3.0, DeltaPackard, Boston, MA) and pre-
sented in digitalized light unit (DLU). The intensity level in
DLU is the observed gene-expression level. As described
earlier, the log-transformation was conducted on the inten-
sity level in DLU, and the centering and scaling procedures
were followed using the log-transformed data. The original
data representing the intensity level (in DLU) for each gene
from each of the six experiments are available from our
website [34].
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