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The early diagnosis of Alzheimer’s disease (AD) is particularly challenging. Mild cognitive impairment (MCI) has been linked to AD and
electroencephalogram (EEG) recordings are able to measure brain activity directly with high temporal resolution. In this context, with
appropriate processing, the EEG recordings can be used to construct a graph representative of brain functional connectivity. This work
studies a functional network created from a non-linear measure of coupling of beta-filtered EEG recordings during a short-term memory
binding task. It shows that the values of the small-world characteristic and eccentricity are, respectively, lower and higher in MCI patients
than in controls. The results show how MCI leads to EEG functional connectivity changes. They expect that the network differences
between MCIs and control subjects could be used to gain insight into the early stages of AD.
1. Introduction: It is useful to identify people with mild cognitive
impairment (MCI) as they would be at higher risks of developing
Alzheimer’s disease (AD). This is important given that,
nowadays, 35.6 million people live with dementia worldwide [1],
posing a big strain on the economy and society. Furthermore, as
the world has an ageing population, the number of people
affected by dementia is expected to increase significantly in the
future [1].
Further understanding of MCI could contribute to developing an

earlier diagnosis of AD, something that could help dementia
patients and their caregivers to make better, informed decisions
about their lives. An earlier diagnosis means earlier access to infor-
mation and support [2]. There are medical benefits of an early diag-
nosis of dementia too. The patient can obtain earlier access to
therapies to improve their quality of life. The earlier diagnosis
also means that patients can take part in further research [2].
The analysis of brain activity via the processing of electroencep-

halogram (EEG) recordings is a promising avenue to characterise
MCI and early AD. In an EEG, electrodes are placed on the
surface of the scalp to record the electrical activity generated by
groups of neurons in the brain. When a neuron is activated, an elec-
trical signal is transmitted between nerve cells at the synapse. From
here, the signal is conducted to the cell body, along the axon and
finally to the axon terminal where the neuron synapses with a
new cell. For this conduction to happen, ion channels transport
ions through the cell membrane, both at the axon and at the
synapse [3]. As the electrodes are placed on the patient’s scalp,
larger groups of active neurons will produce EEG signals that can
be seen in recordings [3]. EEG signals were chosen as the way to
measure electrical signals, due to being a non-invasive method,
and being a portable method to use. EEG recordings also have
very high temporal resolution which is desirable for detecting
rapid changes in brain activity [4].
Some frequency bands of the EEG signals are of particular inter-

est in different applications. Among them, we focus on the alpha
band at 8–13 Hz and the beta band at 13–30 Hz. Alpha activity
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has been prominent in the study of AD and higher-frequency
bands (e.g. beta) have been associated with cognitive processes.

Brain graphs (or networks) are mathematical representations of
(structural or functional) interactions in the brain [5]. Such net-
works can be produced from EEG recordings. Here each electrode
can be represented as a node in the network. The edges between the
nodes are defined by coupling between the EEG signals. Networks
are a way to represent complex systems, which the brain’s structural
and functional systems can be considered [6]. The production of
brain graphs enables the analysis of EEG signals due to the gener-
alisability and interpretability of brain graphs [5]. When analysing
brain graphs, network parameters are compared.

Indeed, there have been several findings of how network
parameters in brain graphs have been linked to various diseases.
The ones of most interest to this Letter are ones concerning MCI
and dementia, of which the latter many studies have been done
with focus on AD.

There are numerous network parameters. Some of the most com-
monly used are clustering coefficient, characteristic path length,
small-world phenomenon, and eccentricity. The clustering coeffi-
cient indicates how much the nodes of the network tend to create
tightly related groups. It measures the proportion of neighbours of
a node that is also direct neighbours of each other. The characteris-
tic path length is the average shortest path length of the network.
Thus, well-integrated networks have low characteristic path
lengths. Networks are deemed to exhibit small-world phenomenon
when they are seen to have a high clustering coefficient and a com-
paratively smaller characteristic path length, when compared with
a random network [7]. Thus, the small-world characteristic is a
measure of the balance between segregation and integration in
a network. Eccentricity is the maximum shortest path length
between any two nodes in the network [8].

In previous studies, brain networks of AD patients, compared
with controls, have been reported to have longer characteristic
path lengths in the beta band and lower small-world character-
istics [9]; and lower small-world characteristics in networks based
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on cortical thickness [10]. Eccentricity in the alpha band was
reported to be higher amongst AD patients than subjective cognitive
decline patients [11], which has been hypothesised as an earlier
indication of AD than MCI [12]. In a study comparing AD and
patients with frontotemporal lobar degeneration (FTLD) and
control subjects, a lower clustering coefficient was seen in the
lower alpha and beta band of AD compared with other subjects.
The characteristic path length was shorter in the alpha band of
AD patients. The AD patients were seen to have lower small-world
characteristics than the control and FTLD subjects [13]. In a study
looking at magnetoencephalogram recordings of AD patients
during a no-task, eyes-closed condition, it was found that AD
patients had a lower clustering coefficient in the lower alpha band
and path length than control patients [14]. It has, however, been
seen that eccentricity has become higher in the frontal and temporal
regions for Parkinson’s disease patients as the disease progressed
when looking at the alpha band [15]. As Parkinson’s disease
patients are more likely to develop dementia [16], the results of
this Letter may be of interest.

The main objective of this Letter was to find whether any differ-
ences in the beta band could be seen between the MCI and control
subjects during a relevant short-term memory binding task. The
dataset used has been previously described [17]. These differences
were then evaluated from a network point of view. The brain
networks are produced by applying a nonlinear coupling algorithm
to the signals.

2. EEG recordings: The data analysed in this Letter comes from
EEG recordings of patients subjected to a test. The subjects
consisted of 13 patients with MCI. There were also 19 control
subjects who did not have MCI. Five of these subjects’ data were
removed from analysis as the recordings were deemed noisy
when used for other purposes. This leaves a control group of 14
control subjects.

The EEG recordings used in this Letter are of when these patients
were asked to recall an image they had been shown previously in a
visual short-term memory binding tasks [17]. Of the experiment, we
consider the binding condition. For additional details, the reader is
referred to [17]. The recordings were achieved using an EEG
montage with 128 channels.

The recordings were sampled at a frequency of 256 Hz over
1.40 s, with 0.2 s pre-stimuli. This pre-stimulus section was
removed to focus only on the activity elicited by the task, which
leaves 1.20 s of data. The EEG recordings were epoched with the
number of epochs ranging from 23 to 87 for each subject.

The recordings were preprocessed using standard toolboxes [18]
in order to remove artefacts and noisy epochs. The same dataset has
been used before and is further described there [17].

Each sample in a channel was averaged across the epochs for
the subject. After this, the beta band of the EEG recordings was
extracted through filtering. The recordings were cascaded through
a high-pass and low-pass Butterworth infinite impulse response
(IIR) filter. Butterworth IIR filters were used due to their maximally
flat passbands in order to minimise distortions to the signal as dis-
tortions in the passband could affect the nonlinear coupling between
the signals. In addition, a zero-phase delay was achieved for each
filter by two-pass filtering [19]. The signal is first two-pass filtered
through a Butterworth IIR high-pass filter of filter order 4 and a half
power frequency of 9 Hz. The output from the high-pass filter is
then two-pass filtered through a Butterworth IIR low-pass filter of
filter order 8 and half power frequency of 34 Hz.

3. Methods: The joint distribution entropy method [20] was used to
find the coupling between each two channels in order to produce
an adjacency matrix representing the network. Thus, the
adjacency matrix produced is a square matrix corresponding to
the coupling between 128 channels.
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Nonlinear methods can detect coupling in physiological systems,
but many require long time series, which the EEG recordings used
here are not, particularly when recorded during tasks such as
the visual short-term memory binding. However, the joint distribu-
tion entropy method has shown promising results in detecting
weak coupling in short physiological series [20]. Therefore,
this method was used. The method is briefly described below.
For additional details, the reader is referred to [20].

The filtered data in each channel are first rescaled according to

ūw(i) =
uw(i)−min (uw)

max(uw) −min(uw)
(1)

where ūw(i) denotes the rescaled signal data of a temporal sample i
and w denotes the channel that is being looked at. The filtered data
of a temporal sample in a channel before being rescaled is denoted
as uw(i) and min(uw) and max (uw) are the minimum and maximum
values within the data channel uw across all temporal samples. This
rescaling leads to the data in each channel being in the range 0–1.

The state space can then be constructed. The state space Xw(i) is
given by

Xw(i) = ūw(i), ūw(i+ tw), . . . , ūw(i+ (mw − 1)tw)
[ ]

(2)

where mw is the embedding dimension and tw is the time delay of
the channel. Each channel’s rescaled samples are delayed. The
delay is needed to reconstruct the attractor of the signal recorded
at that channel following Takens theorem [21]. The delay ranges
from 0 to [(mw − 1)tw] across the samples. The bivariate state-space
reconstruction considers the fact that there may be a time delay
between related signals, as it takes time for different parts of the
brain to communicate with each other. In this case, tw was consid-
ered to be 1 sample, and mw has been set to 2. These parameters
were chosen since they have been seen to work in nonlinear analysis
of EEG signals in AD with the similar methods SampEn and
ApEn [22].

Xw(i) is performed for samples (i = 1, 2, 3, . . . , N − n), where
N is the total number of samples. The constant n is determined in
the following manner: n = max(mw)max(tw).
3.1. Joint distance matrix construction: First, distance matrices are
found for each of the channels. A distance matrix D̄w for channel
w is defined by

D̄w = ‖Xw(i), Xw(j)‖ for i, j = 1, 2, . . . , (N − n)
{ }

(3)

where ‖ · ‖ denotes the maximum norm. Dw gives the maximum
distance between all samples within the specified channel.

The maximum distance is found between two columns of the
state-space matrix assuming that the columns of the matrix
contain the rescaled value at a sample i to i+ (mw − 1)tw, i.e. the
column contains the rescaled value at that sample as well as the cor-
responding delays. The maximum distance is then found between
two such columns of the state-space matrix. This is done by

‖Xw(i), Xw(j)‖ = max[max (Xw(i))−min (Xw(j)),

max (Xw(j))−min (Xw(i))]

for a single sample i and sample j. This distance matrix is produced
for each channel such that a joint distance matrix can be produced
between two channels.
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Fig. 2 Histogram distribution fits of MCI subject coupling values

Fig. 1 Histogram distribution fits of control subject coupling values
A symmetric distance matrix, called the joint distance matrix JD,
for two channels is given by

JD = J̄ −
����������������������
J̄ − D̄1

( )
J̄ − D̄2

( )√
(4)

where D̄1 and D̄2 are distance matrices of two channels and J̄ is an
all-ones matrix of same size as D̄w. JD is created for all pairs of
channels. This represents the joint distance between the pairs of
channels.

3.2. Probability density estimation: The next step is to produce a
probability density estimation from the distance of all elements,
except the diagonal in the joint distance matrix. The diagonal is
excluded from this calculation as this represents connections the
sample has with itself.
First, the number of bins is calculated using Doane’s formula

B = 1+ log2 nobv + log2 1+ |g1|
sg1

( )
(5)

where B is the number of histogram bins; g1 is the skewness of JD;
and nobv is the number of observations. The number of observations
nobv is given by

nobv = N − n( )2− N − n( ). (6)

sg1 is defined as

sg1 =
�����������������������

6 nobv − 2
( )

nobv + 1
( )

nobv + 3
( )

√
. (7)

The number of bins, B, is rounded to the nearest integer, called
Bins. This is then used to create a histogram JDhist of the elements
of JD with the number of bins calculated Bins. When doing this,
the elements of JD are excluding the diagonal.
This is then normalised to the sum of the histogram values.

3.3. JDistEn calculation: Using the normalised JDhist, called r, the
joint distribution entropy, JDistEn, given by

JDistEn = −1

log2 Bins

∑Bins
t=1

rt × log2 rt

( )
(8)

can be found. It is also ensured that r = 0 within this calculation,
as this will give an invalid answer due to the logarithm.
The range of JDistEn is 0 ≤ JDistEn ≤ 1, where 0 means the two

channels are not coupled at all and 1 means they are fully coupled.
The JDistEn results of all channels to each other are stored

in a 128×128 matrix corresponding to the coupling between all
128 channels. This is a weighted adjacency matrix with values
theoretically ranging between 0 and 1.

3.4. Constructing binary adjacency matrices: For simpler analysis,
these adjacency matrices were turned into binary adjacency
matrices. The ranges of the coupling values in the different MCI
and control subjects’ adjacency matrices varied. This can be seen
in Figs. 1 and 2. Therefore, a fixed density method is used to
produce a threshold. By this meaning that the proportion being
coupled for each subject remains the same. A threshold was set
such that the top 10% of each adjacency matrix values were
considered coupled, being 1, and the remaining proportion not
considered coupled, being 0.
Healthcare Technology Letters, 2019, Vol. 6, Iss. 2, pp. 27–31
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3.5. Network parameter analysis: Once networks had been
produced for the MCI and control subjects, network parameters
can be looked at. The network parameters looked at were the
clustering coefficient and characteristic path length, the level of
small-world network characteristics, and the eccentricity.
Small-world networks can be defined by the clustering coefficient
and the average shortest path length (also known as the
characteristic path length) [7]. The small-world phenomenon can
be quantified into one parameter in the following manner:

Q = (Cactual/Crandom)

(Lactual/Lrandom)
. (9)

Here, Cactual and Lactual are the clustering coefficient and
characteristic path length of the network produced using the
previously described method.

Crandom and Lrandom are the clustering coefficient and characteris-
tic path length of random networks produced. Random networks of
the same size were produced with the top 10% of the adjacency
matrix being considered coupled in the same manner as the MCI
and control subjects’ adjacency matrices were done. Ten networks
were created. The clustering coefficient and characteristic path
length of the random networks were found. These values were
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averaged for the ten networks. The averaged values were considered
Crandom and Lrandom. Eccentricity was measured.

3.6. Statistical analysis: The validity of the differences seen
between the MCI and control subject sets was tested. First, it is
checked whether the data are normally distributed through the use
of a Jarque–Bera test. If the data are normally distributed, then an
unpaired two-sample student’s t-test can be used. This tests the
null hypothesis that the two independent sets come from
distributions with the same mean. Simply put, the t-test described
indicates whether the two sets may be coming from the same
distribution. The exact p-value is calculated. It is checked
whether the null hypothesis is rejected at the 5% significance
level. If one or both of the sets are seen to not be normally
distributed, a Wilcoxon rank sum test was used instead, as the
student’s t-test work under the assumption that the distribution is
normally distributed. This tests a similar null hypothesis which is
that the two independent sets come from distributions with equal
medians. Similar to the t-test, the exact p-value is calculated and
it is checked whether the null hypothesis is rejected at the 5%
significance level.

All results were also checked for outliers using Chauvenet’s
Criteria and an interquartile range test.

4. Results: The histogram distribution fits for the individual
subjects can be seen in Figs. 1 and 2. The distribution plots
included only the values in the lower triangle of the adjacency
matrices as the adjacency matrices are symmetric. The differing
ranges of values for different subjects led to the decision of using
a fixed density method for thresholding to produce a binary
adjacency matrix.

The results can be seen in Table 1. The result from the
Jarque–Bera test showed that none of the networks parameters
looked at were normally distributed for both the MCI and control
set. Therefore, only the rank sum results are shown in Table 1.
The results that upheld the 95% certainty threshold were considered
to be statistically significant. The statistically significant results are
highlighted in bold.

Three differences between the MCI and control group were seen to
be statistically significant. First, clustering was seen to be lower in
beta-filtered MCI subjects than in beta-filtered control subjects.
The small-world phenomenon, which is connected to clustering
according to (9), also showed a significant difference between the
subject groups. The small-world phenomenon was seen to be less
prominent in beta-filtered MCI subjects than in the beta-filtered
control subjects. Finally, there was seen to be higher eccentricity in
beta-filtered MCI subjects than in the beta-filtered control subjects.

5. Discussion: Network parameters in the beta band of MCI and
control subjects during a visual short-term memory binding task
have been compared. The EEG signals were filtered to retrieve
the beta band. A joint distribution entropy method was used to
produce adjacency matrices for each subject. The choice of
method was particularly important given the short recordings
Table 1 Comparison of network parameters of beta-filtered MCI and control subj

MCI (n= 13)

network parameter mean SD

clustering 0.572475 0.094392
characteristic path length 1.940423 0.116031
small-world phenomenon 6.334746 1.080554
eccentricity 2.888048 0.468259

Statistically significant results are highlighted in bold.

30
This is an open access article published by the IET under the
Creative Commons Attribution License (http://creativecommons.
org/licenses/by/3.0/)
acquired during rapid memory tasks. The non-binary adjacency
matrices were transformed into binary adjacency matrices by
defining the top 10% in terms of values in each matrix to be
coupled and the rest to be non-coupled. The clustering
coefficient, characteristic path length, small-world phenomenon,
and eccentricity network parameters were then looked at and
compared between the MCI subject set and control subject set.

The preliminary results found, which are discussed in this Letter,
agree with some of the results seen in other studies. Lower small-
world characteristics have been seen in beta-filtered AD patients
when compared with controls [9]. Lower small-world character-
istics for subjects with AD were found as well as presented in the
introduction [10, 13]. The preliminary result of higher eccentricity
in beta-filtered MCI subjects is an interesting result that had not pre-
viously been analysed much in relation to AD or dementia patients.
There may be a correlation between the increased eccentricities that
was also seen amongst Parkinson’s disease patients [15]. The lower
clustering coefficient amongst beta-filtered MCI subjects was
supported by some of the other studies. Two studies showed
lower clustering coefficient for AD patients in the lower alpha
band [13, 14]. So whilst the preliminary result of a lower clustering
coefficient in the beta band of MCI subjects sounds promising, it
has not been found in the other studies to the best of our knowledge.
However, it is crucial to bear in mind that a key characteristic of this
Letter is that we analysed data recorded during a visual short-term
memory binding task.

There were some limitations with the method used. One potential
limitation may be that when producing the adjacency matrices,
the number of edges was fixed across subjects, as being 10% of
the nodes, excluding connections of nodes to themselves. This
fixed edge distribution, means that quantity of particular network
parameters may not be comparable across subjects, as this may be
merely caused by the fixed density approach. However, it was
deemed that this fixed density approach would produce appropriate
sparse networks for topological network analysis. However, the
selection of a binarising threshold is an active area of research in
the analysis of brain functional networks and other alternatives
could be considered in the future [23]. Another effect of using
the cut-off approach used here is that certain network parameters
could not be evaluated.

The results seen give several opportunities for future work.
As the difference in eccentricity of beta-filtered MCI and control
subjects was statistically significant, it may be interesting to look
further into the locations of high or low eccentricity. This way
eccentricity could be used to view centrality as well. Instead of
averaging eccentricity across nodes, it could be seen which points
had lower and higher eccentricity.

It would also be of interest to see if a classifier, which could
determine if the subject was an MCI subject, could be formed
from the results found in this Letter. Such a classifier would
likely include a combination of the network parameters found in
this report.

As patients with MCI are more likely to develop dementia, the
approach in this Letter could potentially be evaluated in the early
ects

Controls (n= 14) Rank sum

mean SD p

0.645624 0.09575 0.04938
1.886695 0.071737 0.13886
7.329532 1.038798 0.01860
2.486873 0.453488 0.01630
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detection of dementia which has been highlighted to be of utmost
importance in recent years [2]. However, our results are preliminary
and limited by the small sample size. Therefore, the algorithms
should first be applied to a larger sample to verify the results.
If such results were to agree with the ones presented here, then it
would be of interest to compare these when the same method is
applied to patients with confirmed dementia. This would lead to a
better understanding of how dementia develops and the relationship
between MCI and dementia.

6. Conclusion: Network parameters of beta-filtered MCI subjects
can be seen to be different from those of control subjects during
a visual short-term memory binding task. The small-world
characteristics were seen to be smaller in MCI subjects and the
eccentricity was seen to be higher. This Letter contributes to the
understanding of EEG activity in MCI during a visual short-term
memory binding task.
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