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Abstract
Viral infection of the central nervous system increasingly places people at risk of developing life-threatening and treatment-resistant
acute and chronic seizures (epilepsy). The emergence of new human viruses due to ongoing social, political, and ecological changes
places people at risk more than ever before. The development of new preventative or curative strategies is critical to address this
burden. However, our understanding of the complex relationship between viruses and the brain has been hindered by the lack of
animal models that survive the initial infection and are amenable for long-term mechanistic, behavioral, and pharmacological studies
in the process of viral-induced epileptogenesis. In this review, we focus on the Theiler’s murine encephalomyelitis virus (TMEV)
mouse model of viral infection–induced epilepsy. The TMEV model has a number of important advantages to address the
quintessential processes underlying the development of epilepsy following a viral infection, as well as fuel new therapeutic de-
velopment. In this review, we highlight the contributions of the TMEV model to our current understanding of the relationship
between viral infection, inflammation, and seizures.
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Epilepsy is a devastating neurological disorder characterized by
unprovoked recurrent seizures, affecting more the 70 million
people worldwide and can result in comorbidities and dis-
abilities. Furthermore, 30% of people with epilepsy are re-
fractory to the currently available medications.1 While greater
than 50% of the epilepsies have an underlying genetic abnor-
mality, epilepsy can also arise from central nervous system
(CNS) insults, such as traumatic brain injury, brain tumors, and
CNS infections. These CNS traumas set in motion both acute
inflammation and long-term changes which are not well un-
derstood and thus hinder the development of treatment ap-
proaches to prevent long-term epilepsy. Specifically, brain
infections are a significant risk factor for the development of

seizures and epilepsy.2,3 Along with bacteria, parasites, and
fungi, more than 100 different viruses are capable of causing
encephalitis in humans, such as herpes simplex virus type-1
(HSV-1), non-polio picornavirus, Zika virus (ZIKV), West Nile
virus (WNV), Japanese encephalitis virus (JEV), cytomegalo-
virus (CMV),4 and human herpes virus-6 (HHV-6).5 Recent
reports suggest that SARS-CoV2,6 the causative agent of
COVID-19, can also cause viral encephalitis.7 Viral encephalitis
can result in acute seizures, which develop up to 2 weeks after
infection, and epilepsy that can manifest months to years fol-
lowing the initial infection. For example, in congenital CMV
infection, 7 out or 19 infants developed epilepsy,4 and HHV-6 is
also associated with seizures and epilepsy development.5
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To identify new disease-modifying therapies to prevent
epilepsy from developing in high-risk groups and/or treat
seizures/epilepsy following viral encephalitis, we need to un-
derstand the mechanisms underlying seizure development after
viral infection. Determining mechanisms often requires the use
of pre-clinical animal models. Some groups have used HSV-1
and WNV to study seizures and epilepsy in rodent models;
however, a limitation in these studies is the high mortality rate
observed in infected animals during the acute phase of the
neurotropic infection.8,9 Mouse Zika infections also have a high
mortality, and only subcutaneous Zika infection of P3 Swiss
mice resulted in a survivable infection with behavioral and
motor seizures in juvenile mice.10,11 Perhaps the most suc-
cessfully utilized viral infection model of epilepsy is the
Theiler’s murine encephalomyelitis virus (TMEV) in C57BL/6J
mice. Mice infected with TMEV develop seizures shortly after
infection that resolve by 8–10 days post-infection. The mice
survive the infection, and, following a latent period, many of the
mice go on to develop epilepsy. The present review will focus
on the TMEV mouse model of infection-induced epilepsy, but
will also note how findings related to this model are relevant to
consequences of other CNS infections.

TMEV Infection as a Mouse Model of
Viral-Induced Acute Seizures and Epilepsy

TMEV is a non-enveloped, single-stranded RNAvirus from the
cardiovirus genus, picornavirus family. TMEV causes enteric

infection in rodents via fecal-oral route transmission. While
these infections are usually asymptomatic or mild, virus can
spread to the CNS and cause encephalitis and/or encephalo-
myelitis. The use of TMEV in experimental models of myo-
carditis, demyelination, and epilepsy is viral and mouse-strain
dependent (reviewed elsewhere12-14). In this review, we only
focus on the TMEV DA strain in C57BL/6J mice.

In this model (Figure 1A), intracerebral (IC) infection of
C57BL/6J mice with TMEV results in acute behavioral seizures
between 3 and 8 days post-infection (dpi), followed by a latent
period, where no seizures are observed. Around 14 dpi, the virus
is cleared from the CNS, presumably due to activation of the
adaptive immune response. 30–90 dpi, 50–70% of the mice that
experienced acute seizures show a significant decrease in sei-
zure threshold and develop epilepsy.15,16 The initial viral titer
for the infection determines the percentage of mice that develop
acute seizures. Convulsive seizures can be induced by handling
during the acute infection period or observed to occur sponta-
neously via video-electroencephalogram monitoring (Figure 1B). A
modified Racine scale is used to score seizure severity, as the
seizures are limbic in origin.17 Handling induced seizures no
longer occur after the acute infection period, but spontaneous
seizures can develop in 50–70% of the mice that experienced
seizures in the acute phase of the infection, reflecting the de-
velopment of epilepsy.

TMEV has a tropism for the pyramidal neurons of the CA1
and CA2 regions, resulting in extensive neuronal loss in this
region of the hippocampus. This mouse model recapitulates

Figure 1. Mousemodel of viral-induced epilepsy. (A) C57BL/6J mice are i.c. injected with Theiler’s murine encephalomyelitis virus, a neurotropic
virus member of the Picornaviridae family that can cause encephalitis in infected mice. Between 3 and 8 days post-infection (d.p.i.), mice develop
acute seizures, followed by a latent period in which seizures are no longer observed. Between 30 and 100 d.p.i., some mice that experienced acute
seizures develop spontaneous recurrent seizures (epilepsy). (B) Representative electroencephalogram from a phosphate-buffered saline-injected
mouse, showing normal electroencephalogram recording, and Theiler’s murine encephalomyelitis virus-injected mouse, 5 d.p.i., showing
generalized convulsive seizures.
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pathological and behavioral features observed in people with
temporal lobe epilepsy (TLE),18 including neuronal loss, as-
trogliosis, microgliosis, infiltration of peripheral macrophages,
cognitive deficits, and anxiety-like behavior. Secretion of pro-
inflammatory cytokines, especially by microglia and macro-
phages, amplify neuroinflammation and alter neuronal excitation
leading to seizures during the acute infection period (Figure 2).
Thus, this model offers an opportunity to understand how in-
flammation and infection lead to epilepsy. This review will focus
on the acute phase of the infection, when seizures are quite
prevalent.

Innate Immune Response

Upon viral invasion of the CNS, activation of the innate and
adaptive immune response is critical to control viral replication
and spread. Following TMEV infection, the innate immune
response is activated within hours, and both failure in con-
trolling viral infection and persistent immune response acti-
vation can exacerbate CNS inflammation. When mice deficient
in TNF-RI, TNF-α, or IL-6 are infected with TMEV, the in-
cidence of seizures is significantly decreased.17,19 In addition,

increased levels of the pro-inflammatory cytokines IL-6 and
TNF-α are also observed in the serum and in the brains of
TMEV-infected mice and in the serum of TLE patients.
Therefore, these 2 cytokines may play an integral role in
contributing to seizure activity.

The 2 primary innate immune cells that participate in the
immune response to TMEV infection of the CNS are microglia
and macrophages. However, other glial cells such as astrocytes20

and NG2 cells21,22 can also influence the innate response.
Looking at microglia and macrophages in TMEV-infected chi-
meric mice, Cusick et al.23 demonstrated that while IL-6 ismainly
produced by infiltrating macrophages, microglia produce high
levels of TNF-α during the acute phase of the infection. Inter-
estingly, inhibition of TNF-α during the acute phase of the ZIKV
infection prevented hyperexcitation in mouse brains and de-
creased seizures,10 thus elevated TNF-α is likely to be a common
cytokine observed during encephalitis.

γ-aminobutyric acid (GABA) is the principal inhibitory
neurotransmitter, and decreased GABAergic inhibition in the
CA3 region of the hippocampus is found in TMEV-infected
mice during the acute infection period.24 α-Amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid type glutamate receptors

Figure 2. Neuroinflammation paradigm in the development of Theiler’s murine encephalomyelitis virus-induced encephalitic seizures and
epilepsy. In the Theiler’s murine encephalomyelitis virus model of infection-induced epilepsy, Theiler’s murine encephalomyelitis virus infects
pyramidal neurons in the CA1 and CA2 region of the hippocampus. Viral replication causes large-scale neuronal death and damage. Microglia are
the initial responders to infection in the brain and contribute to the infiltration of peripheral macrophages. Together, these immune cells release a
combination of cytokine damage signals that initiate reactivity of other glial cells, such as NG2-glia, and astrocytes. Glial reactivity contributes to
release or increased concentration of a variety of soluble factors that can cause overactivation of AMPA receptors on neurons, leading to
increased neuronal damage, and sustained overproduction of cytokines. This cyclical pattern of neuron-glia-immune cell interactions initiates
hyperexcitability and seizures in this model.
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(AMPARs) are associated with excitatory neurotransmission,
and CA3 neurons show increased excitation during the acute
phase of TMEV infection. While evidence supports the idea that
TNF-α increases AMPAR expression in the hippocampus of
TMEV-infected mice,17 IL-6 was shown to decrease cell surface
expression of GABAR in a rat study.25 Thus, the cytokines
secreted during infection may contribute to enhanced excitation
and decreased inhibition and lead to a more seizure prone state.

Peripheral macrophages are not found in the CNS paren-
chyma unless there is a CNS injury and the BBB is dam-
aged.26,27 While microglia are considered the “macrophages of
the brain,” these cells are transcriptionally and functionally
distinct from peripheral macrophages.28-30 Microglia and
macrophages are heterogeneous and highly plastic cells,
meaning they can rapidly change their phenotypic state based on
microenvironment stimuli. Simplistically, these cells can ac-
quire pro-inflammatory and anti-inflammatory phenotypes,
characterized by the secretion of pro- and anti-inflammatory
mediators, respectively. Activation of microglia and polariza-
tion toward an inflammatory state, together with infiltration of
inflammatory macrophages into the CNS, are hallmarks of
neuroinflammation. Their roles in viral encephalitis-induced
epilepsy, along with that of NG2-glia and astrocytes, are dis-
cussed below.

Microglia

In TMEV-infected mice, microglia acquire a reactive state and
secrete pro-inflammatory cytokines that highly influence sei-
zure development. Interestingly, seizure incidence and severity
were not affected in TMEV-infected mice depleted of microglia;
however, these mice could not control viral infection, developed
paralysis, and had fatal encephalitis that was independent of the
viral titer used in the initial infection, suggesting that microglia
have a particular role in controlling viral infection and par-
ticipating in the adaptive immune response.31,32 TNF-α ex-
pression in the brain of TMEV-infected mice was not affected
by microglia depletion, suggesting that CNS and/or infiltrating
cells other than microglia are also secreting this cytokine.32

Similarly, mice lacking microglia died during the acute phase of
MHV infection.33 Additional studies in animal models dem-
onstrate that microglia exert an antiviral role during ZIKV, HSV,
MHV, and VSV infections.34 While microglia are key to res-
olution of infection, they also contribute to increased cytokine
expression that can lead to increased hyperexcitability. Thus,
therapies designed to reduce the impact of microglia cytokine
production need to be carefully designed so as not to impair
viral clearance.

Macrophages

Macrophages are derived from monocytes originated from bone
marrow hematopoietic stem cells. While they are primarily
found in the periphery, CNS border-associated macrophages are
found in the choroid plexus and meninges.35-37 Under physi-
ological conditions, the BBB limits the access of peripheral

immune cells to the CNS; however, disruption of the BBB and
secretion of chemokines allow these cells to migrate into the
CNS, contributing to neuroinflammation.38,39 The macrophage
chemoattractant factor C-C motif ligand 2 (CCL2) is produced
by several CNS cells such as microglia, neurons, astrocytes, and
endothelial cells. CCL2 signals via the C-C motif chemokine
receptor 2 (CCR2), expressed by circulating inflammatory
monocytes, resulting in the recruitment of monocytes/
macrophages into the brain. Notably, CCL2 is significantly
upregulated in the brains of people with epilepsy,40,41 and in the
brains of animals with epilepsy42,43; similarly, a high number of
infiltrating macrophages is found in the hippocampus of drug-
resistant TLE patients and the hippocampus from patients who
died after status epilepticus,44 pointing to a substantive role for
macrophages in neuroinflammation and seizure/epilepsy path-
ogenesis. Also, increased infiltration of peripheral macrophages
into the brain is found during encephalitis in Simian immu-
nodeficiency virus (SIV)-infected monkeys and WNV en-
cephalitis.45 Therefore, macrophage recruitment to the CNS
appears to be a common outcome of CNS infection.

In the TMEV model, infiltration of macrophages from the
periphery occurs as early as 3 days post-infection.23,46 Once in
the CNS, macrophages secrete high levels of IL-623 and seizure
frequency is drastically reduced when macrophages are de-
pleted from mice before TMEV infection.46,47 These data
support the role of macrophages in seizure generation. Simi-
larly, reduced seizure incidence was observed by limiting CNS
macrophage infiltration and inflammation followed by treat-
ment with the anti-inflammatory drugs wagonin and minocy-
cline.23 Interestingly, knock out of CCR2, which inhibits
macrophage migration to the CNS, although it did not prevent
seizures from occurring in TMEV-infected mice, reduced sei-
zure severity and inhibited hippocampal damage.48 Comparing
results from the depletion and migration studies may imply that
(a) infiltration of macrophages into the CNS, alone, is not
sufficient to drive seizures and (b) activation of macrophages
and secretion of pro-inflammatory cytokines by these cells in
the periphery could be sufficient to alter glial function, promote
CNS inflammation, and decrease seizure threshold. However,
these hypotheses remain to be tested. In addition, the mecha-
nisms and signaling pathways activated in macrophages that
contribute to its inflammatory phenotype and how it directly
affects glial function and neuronal excitation is still unknown.

Using flow cytometry, microglia and macrophages can be
discriminated by CD45 level of expression (microglia is
CD45lowCd11b+, while macrophages as CD45hiCD11b+).12,23,49

However, for a direct visualization method (e.g.,, IHC), distinct
markers are required. While CCR2 can be utilized to label in-
flammatory infiltrating macrophages,50,51 proteins found to be
specifically expressed by microglia, such as P2RY12 and
TMEM119, can be downregulated during inflammatory condi-
tions,52,53 and TMEM119 can also be expressed by
macrophages.52,54-56 Despite advancements in technology such
as single-cell RNA sequencing, it remains difficult to differentiate
between microglia and macrophages that have infiltrated the
brain.28,53,57-59
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NG2

NG2-glia are a glial cell-type known to react to a variety of CNS
infectious diseases. Although primarily known for their role as
being oligodendrocyte precursor cells, adult animals maintain
an abundant population of NG2-glia whose functions, aside
from being progenitors of oligodendrocytes, remain largely
unknown. NG2-glia are shown to react to CNS injury and
infection, though participation within the inflammatory milieu
can range from being the primary target of infection, such as
during persistent infections causing chronic demyelinating
disease such as TMEV infection of SJL mice60,61 or Human
herpes virus,62,63 or as responders to infection and participants
in the overall inflammatory responses and mechanisms of brain
protection, such as in ZIKV infection64 or TMEV infection of
C57B/L6J mice in the viral infection–induced model of TLE.

Reactive NG2-glia are shown to undergo morphological and
functional changes that may contribute to epileptogenesis fol-
lowing TMEV infection.21 Recent studies indicate that NG2-glia
are in part responsible for maintaining microglia homeostasis,
and dysregulation of NG2-glia signaling to microglia during
inflammation and disease heavily exacerbates the pro-
inflammatory response,22 a key factor driving seizure develop-
ment. Additionally, NG2-glia are known to deposit the highly
negatively charged NG2 protein, otherwise known as chondroitin
sulfate proteoglycan 4 (CSPG4), which, when embedded in the
dense extracellular matrix of the glial scar, likely contributes to
long-term disruptions in intracellular and extracellular ion ho-
meostasis.65-67 Moreover, disruption in ion homeostasis can
affect the transmembrane chloride gradient and the excitatory or
inhibitory nature ofGABAergic neurotransmission, which can, in
turn, facilitate the development of seizure activity.62,68,69 Because
of their significant roles in contributing to network function and
homeostasis, targeting physiological functions of NG2-glia fol-
lowing viral infection may be a way to reduce the sustained
inflammatory changes that facilitate epileptogenesis. How and
why NG2-glia react is important for considering how the nervous
system protects us from pathogens and in considering how to
prevent and protect brain structures that are sensitive to in-
flammatory damage and circuit rewiring that can lead to the
development of epilepsy.

Astrocytes

Since astrocytes play many critical roles in normal CNS
function, alterations in these cells due to CNS infection can lead
to serious neurological complications. Astrocytes support a
functional BBB, regulate glutamate homeostasis, participate in
innate and adaptive immune responses to viral infections, and
express many pattern recognition molecules such as toll-like
receptors, chemokines, and cytokines.20 They can also be the
target cell of many viruses such as JEV, WNV, and, HIV-1.
Astrocyte reactivity to infection is linked to increased BBB
permeability, peripheral immune cell infiltration, and CNS
inflammation.70 Also, glutamate excitotoxicity is associated
with CNS viral infection. In TMEV-infected mice, persistent

astrogliosis is observed and altered expression of ion channels
and glutamate transporters may contribute to the development
of long-term changes in network excitability that lead to chronic
epilepsy.71,72 However, whether reactive astrocytes have a
causative role in the development of epilepsy remains uncertain.
Interestingly, in a genetic mouse model of chronic astrogliosis,
in which CNS inflammation and BBB dysfunction are not
present, spontaneous seizures were observed,73 suggesting
astrocytes play a role in seizure development, but further studies
are required.

Conclusions and Future Directions

CNS infections are associated with seizures and epilepsy. Viral
infections can alter brain homeostasis leading to glial activation,
breakdown of the BBB, immune cell infiltration, and neuro-
inflammation resulting in neuronal excitation and seizure de-
velopment. The use of animal models to study epilepsy has
contributed extensively to the field of neuroscience, especially
in regards to elucidating functional changes in neurons during
epilepsy. The mouse model of TMEV-induced seizures/epilepsy
has been critical in studying acquired epilepsy and elucidating
roles for different brain resident and peripheral immune cells in
both inflammation and seizure development. However, the
mechanisms of how these cell types contribute to seizures/
epilepsy are still not fully understood. Also, studies on
microbiota-gut-brain axis suggest that the gut microbiota can
also regulate CNS inflammation and function.74-76 It is un-
known whether and how changes in the microbiota can mod-
ulate seizures induced by TMEV infection. Further mechanistic
investigation is therefore necessary and may set the stage for
identifying novel disease-modifying targets.
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Hansmann F. Comparison of Theiler’s murine encephalomyelitis
virus induced spinal cord and peripheral nerve lesions following
intracerebral and intraspinal infection. Int J Mol Sci. 2019;20(20):
5134. doi:10.3390/ijms20205134.

61. Pringproa K, Rohn K, Kummerfeld M, Wewetzer K, Baumgärtner
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