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Background: Acute kidney injury (AKI) is a clinical emergency characterized by a dramatic decline in renal function and the
accumulation of metabolic waste products in the body, with a high morbidity and mortality rate. The pathogenesis of AKI remains
unclear and there are no effective treatment options.
Methods: We aimed to identify critical genes involved in the pathogenesis of AKI and construct a miRNA–mRNA regulatory
network using gene expression data downloaded from Gene Expression Omnibus (GSE85957) for 38 kidneys of AKI and 19 control
rats and cisplatin treated kidneys of 3 AKI and 3 control rats. Data in GSE85957 were processed using weighted gene co-expression
network analysis (WGCNA), and biological function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were
used to analyze the functions associated with critical genes.
Results: Twenty-eight modules in the GSE85957 dataset were identified by WGCNA, of which 103 genes in the orange module and
30 genes in the black module were closely associated with AKI and dose. Biological function analysis of genes in the orange and black
modules revealed that skeletal muscle cell differentiation, tissue development and organ development were involved in the patholo-
gical changes of AKI. Combining with our experimentally processed AKI rat kidney data, eight genes (Atf3, Egr1, Egr2, Fos, Fosb,
Gdf15, Serpine1 and Nr1d1) were identified as potential biomarkers of AKI, and miRNA–mRNA regulatory networks were
constructed based on the above eight critical genes. Further tissue validation revealed that Egr1 and Fos were highly expressed in AKI.
Conclusion: Our study identified potential biomarkers of AKI and constructed an associated miRNA–mRNA regulatory network,
which may provide new insights into the molecular pathogenesis of AKI.
Keywords: acute kidney injury, critical genes, WGCNA analysis, miRNA–mRNA regulatory networks

Introduction
Acute kidney injury (AKI) is a clinical syndrome of rapidly declining kidney function caused by multiple etiologies and
manifested by rapid increase in serum creatinine, decrease in urine output, or both.1 The incidence of AKI in
Hospitalized adult patients ranged from 3.0% to 18.3% globally.2 These differences may result from factors such as
different backgrounds of patients and the different criteria used to define AKI. However, even the low end of the AKI
incidence range makes it abundantly clear that AKI affects a very large number of people worldwide. AKI causes
approximately 1.7 million deaths worldwide each year, and this approximation may even be underestimated in view of
the silent nature of AKI.3,4

AKI has become a worldwide health concern, but its diagnosis and treatment remain challenging. The current
diagnosis of AKI still relies on serum creatinine and urine output.5 Unfortunately, owing to the lag time between the
onset of injury and changes in serum creatinine and urine output, the diagnosis is often not clarified until after the
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initiation and extension phases of kidney injury have transitioned to the maintenance phase of injury.6 The available
evidence suggests that even mild AKI is associated with increased mortality.3,4 No interventions to improve established
AKI outcomes have yet been developed, and its therapeutic strategy is limited to supportive care, in which renal
replacement therapy (RRT) plays an important role.7 However, clinicians also lack effective decision-making tools on
whether and when RRT should be commenced to improve the outcome of these patients with AKI, considering that AKI
is usually a continuum of kidney injury rather than a single-hit, freestanding condition.7,8

Early diagnosis and timely intervention can minimize kidney injury and promote kidney function recovery.9 Although
several novel AKI biomarkers, including kidney injury molecule 1 (KIM-1), IL-18, cystatin C, and neutrophil gelatinase-
associated lipocalin (NGAL) have been intensively studied in the last decades, there is still a lack of recognized
biomarkers for clinical applications.10 Therefore, in this study, we searched for potential biomarkers of AKI with the
aim of guiding clinical interventions and providing valuable insights into the complex molecular mechanisms of AKI.

Materials and Methods
Microarray Data Processing
The GSE85957 microarray dataset was concluded and downloaded from the Gene Expression Omnibus (GEO) (https://
www.ncbi.nlm.nih.gov/geo/) through the GEO query package in the R environment (Version 4.2.0). The GSE85957
dataset (platform: GPL1355; Rat230_2; Affymetrix Rat Genome 230 2.0 Array) compared gene expression profiles of
kidney tissues from male Han Wistar rats (8 weeks old) with intraperitoneal injection of cisplatin (0, 1 or 3 mg/kg) for 3,
5, 8 and 26 days induced AKI model (n = 38) and controls (n = 19). The corresponding annotation file-GPL1355 matrix
containing more than 31,000 probe sets and more than 28,000 annotated rat genes were obtained for conversion of probes
to target genes. If two or more probes were annotated in a gene, the mean was calculated for further analysis. The matrix
was preprocessed and normalized by using the bead array software package. Outlier microarray samples were identified
using a sample network approach based on Euclidean distance and a cutoff value of −5 for Z.ku was calculated as ku-
mean(k)/sqrt(var[k]).11

Weighted Gene Co-Expression Network Analysis (WGCNA) Construction
WGCNAwas performed to identify clusters with high correlation using the WGCNA package.11 The soft threshold β was
evaluated by the R function pickSoft Threshold for scale-free topology. A β value of 5 (R2 > 0.8) was chosen to construct
the gene network by applying the default WGCNA method. The topology matrix was obtained based on the β value, and
the topology matrix was clustered and analyzed, and then the tree was cut into different modules using the dynamic cut
method, and the modules with correlation higher than 0.8 were merged, and finally a total of 28 modules were obtained.

Identification of Significant Modules
For detection of module which were significantly associated with AKI and dose, we performed Pearson correlation
analysis to assess the associations. Modules with P-value <0.01 were considered to be significantly associated with AKI.
In the co-expression network, the module eigengene (ME) as the summary of the gene expression profiles was correlated
with these characteristics to find the most important associations. Gene significance (GS) is used to determine the
connective degree between the gene and the specific trait in the association quantification of individual genes with AKI,
which was further measured by quantification of module membership (MM) in the correlation of ME and the gene
expression profile.

Conduction of AKI Models and mRNA Sequencing
In this study, mRNA sequencing was performed by intraperitoneal injection of cisplatin to induce AKI model to detect
differentially expressed genes. All SD rats (male, 6 weeks, n = 6) were purchased from Shanghai Slac Laboratory Animal
Co. Ltd and housed in the Experimental Animal Center of Tongji University. Rats were raised in a 2-hour dark-light
cycle with free access to feed and water. And the room temperature was maintained in 20–24 °C with relative humidity of
45 ~ 55%. Cisplatin at 3 mg/kg was diluted in 0.9% saline and then administered intraperitoneally. One week later rat
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kidneys were collected for further mRNA sequencing. The total RNA was extracted using the TRIzol (Invitrogen, USA)
and quantified by NanoDrop 2000 spectrophotometer (Thermo, USA) and the high-quality RNA sample (OD260/280 =
1.8~2.2, OD260/230 ≥ 2.0, RIN ≥ 6.5, 28S:18S ≥ 1.0, > 1μg) was further applied in the sequencing. RNA-seq
transcriptome library was prepared using 1μg RNA by TruSeqTM RNA sample preparation Kit from Illumina (San
Diego, CA) and the expression of mRNA was profiled using HiSeq xten/NovaSeq 6000 sequencer (Illumina, Inc.).

Identification of Critical Genes
The identification of critical genes was conducted based on significant differential expression between AKI and control
samples. The limma package was separately applied to identify differential expressed genes (DEGs) in the two traits with
the cut-off criteria |log2 fold change (FC)| ≥ 1 and P value < 0.05. And the critical genes were subsequently visualized
among the DEGs and MEs through the Venn diagrams package. Additionally, the diagnostic performance of critical
genes was also verified by receiver operating characteristic (ROC) curves in this study, and the results were presented as
the area under the curve (AUC).

Functional Enrichment Analysis of Critical Genes
Gene Ontology (GO) and KEGG enrichment analysis were applied in the exploration of the related biological function in
critical genes through Metascape (http://metascape.org/). The visualization of top 10 GO and Kyoto Encyclopedia of
Genes and Genomes (KEGG) terms were established by using ggplot2 package.

Construction of miRNA–mRNA Regulatory Network
TargetScan was used to predict miRNAs interacting with eight critical genes, and the relevant miRNAs were screened
using score.percentile > 95 as criteria, and the miRNA–mRNA network was visualized in Cytoscape 3.5.1. The workflow
of this study is shown in Figure 1.

Figure 1 The workflow of this study.
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Figure 2WGCNA selected two modules associated with AKI and dose. (A) Analysis of scale-free fit index and mean connectivity for different soft thresholds (β). (B) Gene
enrichment modules in the co-expression network with 28 modules identified. (C) Correlation between each module and AKI and dose. (D) Pearson correlation analysis of
Orange and black modules for gene significance (GS) and module membership (MM). (E) Relationship between gene expression in Orange and black modules with AKI and
dose. (*p<0.05; ***p<0.001; ****p<0.0001).
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Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
Total RNA was extracted from tissue specimens using Trizol reagent (TaKaRa, China). cDNA was obtained by reverse
transcription and qRT-PCR reactions were performed according to the previous study steps.12 The relative expression of
each gene was calculated using the 2−ΔΔCt method. All primer sequences are shown in Table S1.

Results
Data Processing
The GSE85957 matrix data file was downloaded and 15323 gene expression data were annotated using the GPL1355
platform annotation file. The dataset contained 38 AKI samples and 19 control samples, and all samples had Z.ku higher
than the standard Z.ku (−5) in the Euclidean distance-based sample network analysis. Therefore, expression data from all
57 samples were applied in the WGCNA.

WGCNA Construction
In WGCNA, the R function pickSoft Threshold was used to evaluate the soft threshold β. We chose a β value of 5 (R2>0.8)
and constructed the gene network by applying the default WGCNA method (Figure 2A). Based on the β values to the
topology matrix and further analysis, a total of 28 modules were finally obtained (Figure 2B). We then evaluated the
association between modules eigengenes and AKI and dose using Pearson correlation analysis. Among the modules, black
(AKI: P = 2e-08; Dose: P = 1e-09), royalblue (AKI: P = 0.007; Dose: P = 4e-05), steelblue (AKI: P = 0.004; Dose: P = 3e-
05), darkgrey (AKI: P = 8e-05; Dose: P = 1e-10), blue (AKI: P = 9e-04; Dose: P = 5e-07), midnightblue (AKI: P = 0.003;
Dose: P = 2e-06), orange (AKI: P = 0.004; Dose: P = 1e-11), salmon (AKI: P = 0.005; Dose: P = 3e-04), and paleturquoise
(AKI: P = 4e-04; Dose: P = 3e-06) were strongly correlated with AKI and dose (P < 0.01) (Figure 2C). Correlation line
analysis of the modules with AKI and dose revealed that the MEorange module (103 genes) had the highest positive
correlation with AKI (cor = 0.97, p = 1e-73) and dose (cor = 0.98, p = 6.9e-84), and the MEblack module (30 genes) had the
highest positive correlation of genes with AKI (cor = −0.98, p = 1e-24) and dose (cor = −0.97, p = 7.6e-22) had the highest

Table 1 Top 10 GO Biological Processes and KEGG Pathway for Orange and Black Modules

Category Description LogP

GO biological processes Skeletal muscle cell differentiation −9.7
GO biological processes Skeletal muscle tissue development −8.4
GO biological processes Skeletal muscle organ development −8.1
GO biological processes Muscle structure development −7.2
GO biological processes Striated muscle tissue development −6
GO biological processes Muscle tissue development −5.7
GO biological processes Muscle organ development −5.6
GO biological processes Rhythmic process −5.5
GO biological processes Regulation of neurogenesis −5.4
GO biological processes Fat cell differentiation −5.3
KEGG pathway Circadian rhythm −4.4
KEGG pathway Bladder cancer −3.9
KEGG pathway MAPK signaling pathway −3.6
KEGG pathway p53 signaling pathway −3.1
KEGG pathway Cell cycle −3
KEGG pathway HTLV-I infection −2.7
KEGG pathway Apelin signaling pathway −2.7
KEGG pathway Hepatitis B −2.6
KEGG pathway IL-17 signaling pathway −2.6
KEGG pathway Endocrine resistance −2.6
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negative correlations (Figure 2D). In addition, gene expression in the orange module was positively correlated with AKI
and dose, while the opposite result was observed for the black module (Figure 2E).

Module Genes and Functional Enrichment Analysis
We uploaded 103 genes from the MEorange module and 30 genes from the MEblack module to Metascape to explore
gene related biological functions. Figure S1 shows the top 10 biological processes (BPs) and KEGG pathways annotated
with genes in the orange and black modules. The BP annotations show that genes in the orange and black modules are
significantly enriched in skeletal muscle cell differentiation, skeletal muscle tissue development, skeletal muscle organ
development, muscle structure development, striated muscle tissue development, muscle tissue development, muscle
organ development, rhythmic process, regulation of neurogenesis and fat cell differentiation (Table 1). The KEGG
pathway enrichment analysis shows that genes in the orange and black modules are mainly involved in circadian rhythm,
bladder cancer, MAPK signaling pathway, p53 signaling pathway, bell cycle, HTLV-I infection, apelin signaling pathway,
hepatitis B, IL-17 signaling pathway and endocrine resistance (Table 1).

Identification and Validation of Critical Genes
To screen for critical genes, we analyzed gene expression between AKI and controls in the GSE85957 dataset and our
own experimentally processed data (raw count) using the limma software package. The screening criteria were |log2 fold
change (FC)| ≥ 1 and P value < 0.05. The DEGs in the GSE85957 dataset and raw count are shown in Figure 3A. In the
GSE85957 dataset, 74 differentially expressed genes (65 up-regulated and 9 down-regulated) were obtained and raw

Figure 3 Selection of critical genes. (A) Volcano map of differential expressed genes (DEGs) in GSE85957 and our raw data. (B) Screening of eight critical genes by Venn
diagram.
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count yielded 2596 differentially expressed genes (603 up-regulated and 1993 down-regulated). We intersected the
GSE85957 dataset, raw count, orange module and black module, and the results showed that eight genes (Atf3, Egr1,
Egr2, Fos, Fosb, Gdf15, Serpine1, Nr1d1) were screened as DEGs (Figure 3B). Table 2 shows the BPs annotated with the
eight critical genes. These eight up-regulated genes were defined as important in the development of AKI (Figure 4A and
Figure S2). In addition, the ROC curves showed that all critical genes had AUCs above 0.8 (Figure 4B), indicating that
they could be used as potential biomarkers for the diagnosis of AKI. Moreover, we also predicted miRNAs interacting
with eight genes in TargetScan and constructed a possible miRNA–mRNA regulatory network (Figure 5).

In addition, we extracted total RNA from the kidneys of 15 AKI and 15 control rats, and verified the expression of the
above eight critical genes by qRT-PCR, and found that Egr1 and Fos expression was increased in AKI (Figure 6),
demonstrating that Egr1 and Fos may be potential key biomarkers of AKI.

Discussion
AKI is a clinical syndrome caused by multiple clinical factors and characterized by a dramatic decline in renal function.
AKI patients are often accompanied by metabolite retention and water, electrolyte, and acid-based imbalances.2

Unfortunately, without early treatment, AKI patients are associated with a very poor prognosis and may progress to
chronic kidney disease (CKD) and end-stage renal disease, resulting in increased mortality.13 Therefore, exploring the
genes and modules specific to AKI can help in early diagnosis and treatment, thus effectively reducing mortality and
adverse prognostic responses in patients.

In the present study, according to WGCNA, we found two specific modules highly associated with AKI, containing a
total of 133 hub genes. Development-related processes in skeletal muscle and inflammatory response-related processes
were significantly involved in the pathology of AKI as revealed by BP and KEGG enrichment analysis. Eight of these
hub genes were differentially expressed between the AKI and control groups and were identified as playing a key role in
the development of AKI, with promising applications in early predicting AKI. Finally, we predicted and integrated the
miRNAs interacting with eight hub genes in TargetScan.

Table 2 GO Biological Processes for Eight Critical Genes

Category Description LogP

GO biological processes Skeletal muscle cell differentiation −7.7
GO biological processes Skeletal muscle tissue development −6.2
GO biological processes Skeletal muscle organ development −6.1
GO biological processes Rhythmic behavior −5.8
GO biological processes Muscle structure development −5.7
GO biological processes Cellular response to interleukin-1 −5.5
GO biological processes Response to interleukin-1 −5.3
GO biological processes Muscle organ development −5.2
GO biological processes Striated muscle tissue development −4.8
GO biological processes Muscle tissue development −4.7
GO biological processes Cellular response to growth factor stimulus −4.2
GO biological processes Response to growth factor −4.2
GO biological processes Response to hormone −4.1
GO biological processes Behavior −4
GO biological processes Rhythmic process −3.8
GO biological processes Response to peptide hormone −3.6
GO biological processes Response to extracellular stimulus −3.5
GO biological processes Transmembrane receptor protein serine/threonine kinase signaling pathway −3.5
GO biological processes Response to peptide −3.4
GO biological processes Small molecule biosynthetic process −3.1
GO biological processes Positive regulation of cell death −2.8
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Within these critical genes, Egr1, Egr2, Fos and Fosb are closely associated with cytoprotective or immune-related
responses. Egr1 and Egr2, as members of the zinc finger transcription factor family, are characterized by a highly
conserved DNA binding domain consisting of three zinc finger motifs.14 Egr1 gene is an important transcription factor,
which is located in the human chromosome 5q23-31 region and is mainly involved in processes such as tissue damage,
immune response and fibrosis.15 Egr1 can promote T cell activation after T cell receptor (TCR) stimulation.16 EGR2 is
induced by TCR binding and plays a key role in the induction of T cell incompetence.17 After T cell activation, EGR2 is
highly induced in order to control the inflammatory response and thus negatively regulate T cell activation.18 TCR
signaling upregulates Fas ligand (FasL) on CD4+ T cells, while EGR2 acts as a potent activator of FASL expression to
maintain immune homeostasis by inducing apoptosis.19 In the present study, Egf1 and Egf2 were significantly upregu-
lated in the AKI group compared to the control group, suggesting that elevated Egf1 and Egf2 transcripts in AKI patients
are associated with T lymphocytes activation and proliferation. This is consistent with previous studies finding that after
AKI, T cells are dramatically elevated in renal draining lymph nodes, transferring and producing pro-inflammatory
cytokines to the injured kidney, activating macrophages and promoting renal inflammation.20 Thus, Egf1 and Egf2 may
be a predictive biomarker for patients with AKI. Fos and Fosb are members of the activator protein-1 family (AP-1) of
transcription factors. Fos and Fosb are regulators of cell proliferation, differentiation and transformation. They are

Figure 4 Expression profile of critical genes. (A) Expression profile of critical genes in GSE85957 dataset. (B) ROC curve of critical genes.
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Figure 5 miRNA–mRNA regulatory network of critical genes.

Figure 6 Relative expression of eight critical genes in tissue samples.
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characterized by a conserved basic leucine zipper domain, and a trans-activating domain that is primarily responsible for
providing binding sites for other transcriptional co-regulators.21 However, it is unknown the role of Fos and Fosb in AKI
and further research to explore the underlying mechanisms is needed.

Activating transcription factor 3 (ATF3) as a member of the ATF/cAMP response element-binding (CREB) family
binded to the cyclic AMP response element (CRE) in numerous promoters.22 ATF3 is a stress-induced transcription
factor, which has key roles in modulating metabolism, immunity, and oncogenesis. A variety of extracellular signals, such
as endoplasmic reticulum (ER) stress, cytokines, chemokines, and LPS, have been implicated in the induction of ATF3.23

It had been reported that ATF3 promoted Gadd45β/γ transcription and glomerular mesangial cells apoptosis induced by
complement C5b-9.24 Several studies verified in both mouse models and patients that urinary exosomal ATF3 (uATF3)
expression was higher in the AKI group than in the normal group.25,26 Therefore, uATF3 could a biomarker for early
AKI. Growth differentiation factor 15 (GDF15), a member of the transforming growth factor beta family, was associated
with immunosuppression, anti-apoptosis and anti-inflammation.27 Furthermore, several studies had shown that GDF15
expression was upregulated in AKI induced by different factors.28,29 However, the effect of GDF15 on AKI was still
unclear.

Serpine1 encoding plasminogen activator inhibitor-1 (PAI-1), would suppress fibrinolysis and enhance renal inter-
stitial fibrosis which were precisely the pathological characteristic of AKI.30,31 Moreover, the expression of PAI-1 was
significantly correlated with renal inflammatory injury,32,33 and knocking down PAI-1 would play a protective role.34

Another study demonstrated that the Serpine1 gene expression was notably upregulated in cisplatin-induced AKI kidney
tissues.35 Thus, Serpine1 may be a potential marker for AKI. NR1D1, as the member of nuclear receptor subfamily 1
group D, functioned as transcriptional repressors with haem as their endogenous ligand.36 NR1D1 was considered as the
components of the circadian clock system,37 which play an essential role in regulating circadian rhythms.38 NR1D1 was
also involved in the regulation of many physiological processes and diseases, including inflammatory responses and
cancer.39 Researchers found inhibition of NR1D1 attenuated ferroptosis-mediated AKI.40 The mechanism of NR1D1 in
AKI was still unclear and needed further study.

With the advancement of sequencing technology, genomics is playing an essential role in disease diagnosis,
mechanism research and treatment. Now, sequencing technology is more and more used in clinic, and key genes may
play an important role in the occurrence and development of some disease. Thus, the diagnosis of AKI could be
determined by the expression of key genes and the AKI can be treated by intervention of key genes, so as to improve
patient prognosis and reduce the occurrence of serious complications.

Conclusion
In conclusion, by analysis the results of sequencing and validation, we identified eight critical genes in AKI, including
GDF15, Serpine1, ATF3, NR1D1, Egr1, Egr2, Fos, Fosb, and verified the concordance of Egr1 and Fos in tissue samples.
Their abnormal expression may activate multiple signaling pathways, ultimately leading to the development and
progression of AKI. Furthermore, we constructed a related miRNA–mRNA regulatory network based on the above
eight critical genes, which may provide new insights into the molecular pathogenesis of AKI.
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